Filippo Radicchi

Postdoctoral Fellow

Chemical & Biological Engineering
2145 Sheridan Road (Room E136)
EvanstonIL 60208US
Phone: 847 532 0667

Abstract

We study phase entrainment of Kuramoto oscillators under different conditions on the interaction range and the natural frequencies. In the first part the oscillators are entrained by a pacemaker acting like an impurity or a defect. We analytically derive the entrainment frequency for arbitrary interaction range and the entrainment threshold for all-to-all couplings. For intermediate couplings our numerical results show a reentrance of the synchronization transition as a function of the coupling range. The origin of this reentrance can be traced back to the normalization of the coupling strength. In the second part we consider a system of oscillators with an initial gradient in their natural frequencies, extended over a one-dimensional chain or a two-dimensional lattice. Here it is the oscillator with the highest natural frequency that becomes the pacemaker of the ensemble, sending out circular waves in oscillator-phase space. No asymmetric coupling between the oscillators is needed for this dynamical induction of the pacemaker property nor need it be distinguished by a gap in the natural frequency.