Filippo Radicchi

Postdoctoral Fellow

Chemical & Biological Engineering
2145 Sheridan Road (Room E136)
EvanstonIL 60208US
Phone: 847 532 0667

Abstract

We study Kuramoto oscillators, driven by one pacemaker, on d-dimensional regular topologies with nearest neighbor interactions. We derive the analytical expressions for the common frequency in the case of phase-locked motion and for the critical frequency of the pacemaker, placed at an arbitrary position in the lattice, so that above the critical frequency no phase-locked motion is possible. We show that the mere change in topology from an open chain to a ring induces synchronization for a certain range of pacemaker frequencies and couplings, while keeping the other parameters fixed. Moreover, we demonstrate numerically that the critical frequency of the pacemaker decreases as a power of the linear size of the lattice with an exponent equal to the dimension of the system. This leads in particular to the conclusion that for infinite-dimensional topologies the critical frequency for having entrainment decreases exponentially with increasing size of the system, or, more generally, with increasing depth of the network, that is, the average distance of the oscillators from the pacemaker.