Satyam Mukherjee
Postdoctoral Fellow
Chemical & Biological Engineering
2145 Sheridan Road (Room E136)
Evanston, IL 60208, US
Queue-length synchronization in communication networks
Phys. Rev. E 79, 056105 (2009)
Times cited: 3
Abstract
We study the synchronization in the context of network traffic on a 2-d communication network with local clustering and geographic separations. The network consists of nodes and randomly distributed hubs where the top five hubs ranked according to their coefficient of betweenness centrality (CBC) are connected by random assortative and gradient mechanisms. For multiple message traffic, messages can trap at the high CBC hubs, and congestion can build up on the network with long queues at the congested hubs. The queue lengths are seen to synchronize in the congested phase. Both complete and phase synchronization are seen, between pairs of hubs. In the decongested phase, the pairs start clearing and synchronization is lost. A cascading master-slave relation is seen between the hubs, with the slower hubs (which are slow to decongest) driving the faster ones. These are usually the hubs of high CBC. Similar results are seen for traffic of constant density. Total synchronization between the hubs of high CBC is also seen in the congested regime. Similar behavior is seen for traffic on a network constructed using the Waxman random topology generator. We also demonstrate the existence of phase synchronization in real internet traffic data.