Luís A. Nunes Amaral

Professor of Engineering Sciences and Applied Mathematics
Professor of Medicine (by courtesy)
Professor of Molecular Biosciences (by courtesy)
Professor of Physics & Astronomy (by courtesy)

Chemical & Biological Engineering
2145 Sheridan Road (Room E136)
EvanstonIL 60208US
Phone: (847) 491-7850

Abstract

In physical, biological, technological and social systems, interactions between units give rise to intricate networks. These-typically non-trivial-structures, in turn, critically affect the dynamics and properties of the system. The focus of most current research on complex networks is, still, on global network properties. A caveat of this approach is that the relevance of global properties hinges on the premise that networks are homogeneous, whereas most real-world networks have a markedly modular structure. Here, we report that networks with different functions, including the Internet, metabolic, air transportation and protein interaction networks, have distinct patterns of connections among nodes with different roles, and that, as a consequence, complex networks can be classified into two distinct functional classes on the basis of their link type frequency. Importantly, we demonstrate that these structural features cannot be captured by means of often studied global properties.