Luís A. Nunes Amaral
Professor of Engineering Sciences and Applied Mathematics
Professor of Medicine (by courtesy)
Professor of Molecular Biosciences (by courtesy)
Professor of Physics & Astronomy (by courtesy)
Chemical & Biological Engineering
2145 Sheridan Road (Room E136)
Evanston, IL 60208, US
Phone:
(847) 491-7850Characterizing individual communication patterns
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 607-616 (2009)
Times cited: 22
Abstract
The increasing availability of electronic communication data, such as that arising from e-mail exchange, presents social and information scientists with new possibilities for characterizing individual behavior and, by extension, identifying latent structure in human populations. Here, we propose a model of individual e-mail communication that is sufficiently rich to capture meaningful variability across individuals, while remaining simple enough to be interpretable. We show that the model, a cascading non-homogeneous Poisson process, can be formulated as a double-chain hidden Markov model, allowing us to use an efficient inference algorithm to estimate the model parameters from observed data. We then apply this model to two e-mail data sets consisting of 404 and 6,164 users, respectively, that were collected from two universities in different countries and years. We find that the resulting best-estimate parameter distributions for both data sets are surprisingly similar, indicating that at least some features of communication dynamics generalize beyond specific contexts. We also find that variability of individual behavior over time is significantly less than variability across the population, suggesting that individuals can be classified into persistent "types". We conclude that communication patterns may prove useful as an additional class of attribute data, complementing demographic and network data, for user classification and outlier detection--a point that we illustrate with an interpretable clustering of users based on their inferred model parameters.