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Mining of electronic health records (EHR) promises to automate the identification of
comprehensive disease phenotypes. However, the realization of this promise is hindered
by the unavailability of generalizable ground-truth information, data incompleteness
and heterogeneity, and the lack of generalization to multiple cohorts. We present
here a data-driven approach to identify clinical states that we implement for 585
critical care patients with suspected pneumonia recruited by the SCRIPT study, which
we compare to and integrate with 9,918 pneumonia patients from the MIMIC-IV
dataset. We extract and curate from their structured EHRs a primary set of clinical
features (53 and 59 features for SCRIPT and MIMIC-IV, respectively), including
disease severity scores, vital signs, and so on, at various degrees of completeness. We
aggregate irregular time series into daily frequency, resulting in 12,495 and 94,684
patient-day pairs for SCRIPT and MIMIC, respectively. We define a “common-sense”
ground truth that we then use in a semisupervised pipeline to optimize choices for data
preprocessing, and reduce the feature space to four principal components. We describe
and validate an ensemble-based clustering method that enables us to robustly identify
five clinical states, and use a Gaussian mixture model to quantify uncertainty in cluster
assignment. Demonstrating the clinical relevance of the identified states, we find that
three states are strongly associated with disease outcomes (dying vs. recovering), while
the other two reflect disease etiology. The outcome associated clinical states provide
significantly increased discrimination of mortality rates over standard approaches.

EHR mining | high dimensionality | clustering | multicenter integration

Pneumonia is the world’s leading cause of death, posing a significant burden to health-
care systems. In the United States, pneumonia is the second-most common cause of
hospital admission, and around 20% of adult pneumonia hospitalizations include at
least one intensive care unit (ICU) stay (1). For patients admitted to the ICU for other
causes, pneumonia is the most common secondary complication, with an attributable
mortality of around 10% (2). Although several pneumonia classification schemes have
been proposed (3), risk factors identified (1, 4), and severity scores developed (5, 6), many
challenges remain. Diagnosis and treatment prognosis for severe pneumonia remains
difficult, ambiguous, and subject to antibiotic abuse (2, 7). This is largely due to the
complex nature of the disease—pneumonia is intrinsically heterogeneous, characterized
by a variety of pathologies, symptoms, comorbidities, and clinical courses. The myriad
ways in which pneumonia evolves over time are poorly understood, with vastly different
treatment responses under seemingly indistinguishable clinical manifestations (8). To
identify meaningful phenotypic differences over pneumonia progression and understand
patterns of states transition dynamics would shed light on precise clinical therapeutics
and improve prognosis reliability.

Compared with traditional top–down, biomarker-based ways of characterizing
pneumonia subtypes (4, 9, 10), data-driven methods hold the potential to capture the
complexity of pneumonia trajectories in a novel way (11–13). Electronic health records
(EHR) systems have been adopted worldwide by many healthcare providers (14). EHR
contain rich information on patients’ clinical phenotypes, including medical events, vital
signs, medications, lab assays, diagnosis, and so on (15). Moreover, EHR track large
populations of patients over long periods of time, thus serving as a unique instrument
to uncover heterogeneity and progression trajectories of diseases (14, 16, 17). Recently,
EHR-based studies have begun to shed light on biomarker identification (18), patient
stratification (19, 20), risk prediction (21), and chronic disease management (16, 22).
However, the potential of EHR comes with challenges, highlighted by irregularity,
heterogeneity, and sparsity of the data (23, 24). Specifically, EHR contains multimodal
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clinical measurements that are irregularly sampled with uneven
time intervals, with high levels of missing entries that are
not random but may reflect conscious decisions by clinicians.
Despite efforts being made to accommodate the observational
nature of EHR, most EHR-based studies still rely on heuristic
strategies and ad hoc adjustments (15). A framework with
objective criteria that standardizes EHR processing, including
feature selection, normalization, missing value imputation, and
dimensionality reduction, is not only necessary for robustly
investigating pneumonia disease states but also helpful for the
general field of EHR data mining (Fig. 1).

Our study aims to determine whether it is possible to
identify in a data-driven manner clinical states associated with
a pneumonia diagnosis from time discriminated EHR and, if the
answer is positive, to characterize patterns of states transition
dynamics (Fig. 1B). To this end, we develop and validate
a semisupervised data preprocessing pipeline that optimizes
feature selection, normalization, imputation, and dimensionality
reduction toward the ability to distinguish patient-day pairs
according to their associated mortality. We benchmark common
clustering algorithms, improve clustering robustness via an
ensemble strategy, and demonstrate the utility of ensemble
density peak clustering (DPC) in both synthetic and real-
world EHR datasets. Our novel, rigorous approach enable us
to identify five clinical states, as well as verify their clinical
significance. In addition, we are able to characterize patterns
of state transition dynamics for different pneumonia etiologies
and discharge dispositions.

Data and Methods

Data. The SCRIPT (25) dataset comprises the records of 585 pa-
tients with suspected severe pneumonia enrolled in Northwestern
University Successful Clinical Response In Pneumonia Therapy
(SCRIPT) study (https://script.northwestern.edu) between June
2018 and February 2022. The data are available in Physionet
(26) under https://doi.org/10.13026/5phr-4r89. To be included
in the cohort, a patient had 1) to be admitted to the ICU, 2) to
have required mechanical ventilation, and 3) to have undergone
at least one BAL, a procedure routinely conducted to support
pneumonia diagnosis. We show in Fig. 1a a representative patient
timeline from hospital admission to discharge.

The MIMIC-IV (Medical Information Mart for Intensive
Care IV) dataset (27) is a comprehensive, general-purpose dataset
that contains structured and unstructured EHR of more than
40,000 patients admitted to the ICU of Beth Israel Deaconess
Medical Center between 2008 and 2019. To ensure consistency
with the SCRIPT dataset, we restrict our analysis of MIMIC-
IV data to the structured EHR records of a patient’s ICU stay.
We identify pneumonia patients according to the International
Classification of Diseases (ICD) codes (28). In total, we identified
9,918 pneumonia patients from MIMIC-IV who required
mechanical ventilation and were admitted to the ICU.

The patients in the SCRIPT and MIMIC-IV cohorts differ in
a number of important ways (Table 1). First, due to its sampling
time window, nearly one third of the SCRIPT cohort have a
diagnosis of COVID-19 patients, while none of the patients in
the MIMIC-IV cohort have such a diagnosis. Second, patients in
the SCRIPT cohort are, on average, more severely ill than those in
the MIMIC-IV cohort. This is visible in their significantly higher
overall mortality rates, higher admission sequential organ failure
assessment (SOFA) scores, and longer ICU stays. Third, the
records of the patients in the SCRIPT cohort have more detailed

A

B

C

Fig. 1. Illustration of study workflow. (A) Hospitalization timeline for a
representative patient with one ICU stay (thin gray line), who undergoes
mechanical ventilation (light yellow bar) and extracorporeal membrane
oxygenation (ECMO; light red bar). Before discharge to home, the patient
spends some days in the ward (thicker gray bar). The patient undergoes three
broncho-alveolar lavages (BALs, purple diamond), which yield diagnoses of
community-acquired pneumonia (CAP) with viral infection (first BAL) and
ventilator-associated pneumonia (VAP) with bacterial and viral coinfection
(second and third BALs). (B) Illustration of data processing at single center
level. We extract clinical features from structured EHRs. We then identify
a common-sense ground-truth and select preprocessing steps that balance
maximization of discrimination of extreme states while minimizing data loss.
We learn a low-dimensionality embedding space using PCA and use the
described ensemble DPC approach to reliably and robustly identify clinical
states. We associate those clinical states with patient outcomes and with dis-
ease etiology by studying transitions between clinical states. (C) To integrate
multicenter cohorts, we identify common features, characterize similarities of
embedding spaces, and determine the embedding that provides the richest
characterization of the data.

annotations and adjudications than those of the MIMIC-IV
cohort. For example, patients in the SCRIPT cohort more
frequently have their pathogens determined (84.1% vs. 39.9%),
and have manually adjudicated pneumonia episodes.

Data Preprocessing. The SCRIPT dataset presents structured
EHR for each patient’s patient-day pairs of their ICU stay (29).
We group clinical features according to their nature and level of
completeness (SI Appendix, Fig. S1).

Multimodal clinical features extracted from the MIMIC-IV
dataset are irregular in nature, with various sampling frequencies
and lengths. As described in ref. 29 with the SCRIPT dataset, we
regularize all time series to a per-day basis. To facilitate research
reproducibility, we use public scripts from the MIMIC Code
Repository (30) to extract and curate clinical features whenever
available.

For both datasets, we encode patient final discharge dispo-
sitions into 3 categories: “Dying” (patients who pass away),
“Recovered” (sent home, excluding “Home for hospice”), and
“Other.” The latter includes discharges to other healthcare
facilities such as long-term acute care hospitals (29).
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Table 1. Summary of cohort patient characteristics
SCRIPT MIMIC-IV

Number of patients 585 9,918
Age, mean (SD) 60.6 (15.2) 66.6 (16.3)
Gender, n (%) Male 346 (59.1) 5,649 (57.0)

Female 239 (40.9) 4,269 43.0)
Ethnicity, n (%) White 344 (58.8) 6,579 (66.3)

Black or African American 119 (20.3) 1,086 (10.9)
Asian 17 (2.9) 287 (2.9)
Other 788 (7.9)
Unknown or Not Reported 105 (17.9) 1,178 (11.9)

Discharge, n (%) Died 243 (41.5) 2,112 (21.3)
Other 209 (35.7) 5,021 (50.7)
Home 133 (22.7) 2,771 (28.0)

Patient category, n (%) COVID-19 190 (32.5)
Other Viral Pneumonia 50 (8.5) 429 (4.3)
Nonviral Pneumonia 252 (43.1) 3,524 (35.5)
Nonpneumonia control 93 (15.9)
Undetermined 5,965 (60.1)

Number of ICU stays, mean (SD) 1.3 (0.7) 1.2 (0.5)
Number of ICU days, mean (SD) 21.4 (22.9) 9.5 (9.9)
Admit SOFA score, mean (SD) 10.6 (4.2) 5.5 (3.7)

Ground Truth. We develop a semisupervised pipeline to optimize
data preprocessing in a manner that is as unbiased, objective, and
as automated as possible. We start by creating an approximate
ground truth via filtering and partitioning patient-days into what
most people would agree are vastly distinct extreme states—
patient-days near patient death vs. patient-days near patient
discharge to home. Specifically, we extract ICU patient-days
within 48 h of patient death, as death typically occurs in the
ICU, and ICU patient-days within 10 d of discharge to home, as
the patient may be moved to ward prior to discharge. The former
defines the ground truth Dying state while the latter defines the
Recovered state. As a sanity test, we reason that an appropriate
analysis pipeline should be at least able to distinguish these two
extreme and vastly different states.

We quantify the separation of the two ground truth states
by the silhouette coefficient (31) and quantify performance of
a support vector machine (SVM) in predicting these extreme
states from the learned embedding by area under the receiver
operating characteristic (AUROC) curve. Thereby, we optimize
the choices of feature selection, normalization, imputation, and
dimensionality reduction in a semisupervised manner, toward
better separation of extreme states that we can safely assume to
be vastly different.

Feature Normalization. Clinical features in EHR are of vastly
different scales and can be numerical (discrete or continuous),
or categorical (nominal or ordinal) in nature. The challenge thus
is to choose a feature normalization strategy that harmonizes
such heterogeneity while preserving physiologically meaningful
variance among patient-day vectors. To tackle this challenge,
we benchmark untransformed (raw) data against five commonly
used normalization strategies (SI Appendix, Fig. S2): MinMax
scaler (MM), Standard Scaler (SS), Robust Scaler (RS), k-bin
discretizer (KBD), and a combination of KBD and MinMax
Scaler (KBD+MM).

For the SCRIPT cohort, as shown in SI Appendix, Fig. S2A,
KBD continuously achieves high silhouette coefficients for
prevalent feature sets, and only when including ventilation or
lab test features with more sparsity does its performance drop
significantly. Thus, we use KBD for feature normalization and

consider feature sets up comprising combinations of the set of
SOFA subscores, vital signs, demographics, and frequent lab tests
in the downstream analysis of the SCRIPT cohort.

For the MIMIC cohort, as shown in SI Appendix, Fig. S2B,
the MM scaler continuously achieves high Silhouette coefficients
for various feature sets. The set of SOFA subscores is the only
feature set where the MM scaler performs marginally worse than
KBD. Thus, we use the MM scaler for the MIMIC cohort.

Missing Value Imputation. The nonrandom nature of missing
values in the EHR requires suitable approaches to missing value
imputation in order to avoid artifacts (32). We benchmark
four commonly used data imputation methods: last observation
carried forward (LOCF), k-nearest neighbors (KNN), multiple
imputation by chained equations (MICE), and fill zero (FZ).

For the SCRIPT cohort, as shown in SI Appendix, Fig. S3A,
LOCF with limit 2 improves data availability without signifi-
cantly compromising the discrimination performance. On the
other hand, for the MIMIC-IV cohort, all imputation strategies
significantly deteriorate our ability to discriminate between the
two extreme clinical state (SI Appendix, Fig. S3B for details).
Therefore, we use LOCF with limit 2 to impute missing values
in the SCRIPT dataset, while for the MIMIC dataset, we do no
additional imputation of missing values.

Dimensionality Reduction and Feature Selection. We examine
to what extent current machine learning algorithms can learn
from sparse and noisy features. To this end, we examine the
learned principal component analysis (PCA) (33) output as we
gradually include more features. We choose PCA because it is
a linear transformation that does not introduce uncontrolled
nonlinear deformations of the data. This allows us to see
and interpret what PCA learns from each set of features. We
determine the number of significant principal components (PCs)
using Horn’s parallel analysis (34). We determine whether
additional features are informative or noisy by evaluating the
top feature loadings of significant PCs. Newly added features
are deemed noninformative or noisy if adding them does
not lead to significant change in the top feature loadings
(SI Appendix, Figs. S5 and S7). We quantify similarity among
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PCs derived from different feature sets by cosine similarity
(SI Appendix, Fig. S6).

For the SCRIPT dataset, we identify four different feature sets
that are informative (SI Appendix, Fig. S5), and four consensus
PCs across feature sets as well as relatively distinctive ones with
more features (SI Appendix, Fig. S6). For the MIMIC dataset,
different feature sets result in very similar PCA spaces with only
two significant PCs (SI Appendix, Fig. S8). These results indicate
that for SCRIPT dataset, the four different feature sets may reveal
slightly different heterogeneity of patient-day vectors. In contrast,
the patients in MIMIC-IV dataset form a more homogeneous
cohort, and the observed variability can be well explained solely by
the SOFA subscores, additional features not significantly altering
the learned embedding.

Clustering: Ensemble DPC (eDPC). Clustering of high-
dimensional data is a remarkably challenging task. Many
commonly used approaches are stochastic in nature and typically
yield vastly different results for different executions of the

same algorithm or different hyperparameter choices. Moreover,
different clustering approaches frequently show very poor
agreement in their outputs and produce clusters that do not
conform to common sense expectations (such as a density peak
at the cluster center; see SI Appendix, Figs. S11–S13).

DPC (35) was proposed as a way to identify cluster centers
based on two common sense criteria. First, a cluster center must
lie in a region of high local density. Second, a cluster center should
not be too close to other cluster centers (to avoid overfitting). One
can inspect these two criteria by calculating each data point’s
local density and its distance to the nearest point with a higher
local density. Typically, one then identifies data points with high
values for both criteria as density peaks and, thus, potential cluster
centers.

While the DPC algorithm satisfies common sense expecta-
tions, there are several issues that arise when implementing it (36).
First, local density estimation as originally implemented is quite
noisy, and overly sensitive to hyperparameter choice. Second,
while it is not known a priori how many peaks there are in the

A

B

C

D

Fig. 2. Low-dimensionality embedding space learned from SOFA subscores and vital signs captures diversity of patient data. (A) We compare explained
variance in data vs. their randomization to determine the number of significant PCs for SCRIPT (Left) and MIMIC-IV (Right) cohorts. We plot the fraction of
variance explained by each PC for the data (purple solid line) and for shuffled data (blue dashed line). Error bars show 90% CI constructed by bootstrapping and
the red arrow shows the last significant PC. (B) Top feature loadings of the significant PCs for SCRIPT and MIMIC cohorts. Red indicates positive loadings and
blue indicates negative loadings. Greater color saturation indicates larger magnitude. (C) Within-distribution and out-of-distribution performance of models for
discriminating extreme states. We compute the AUC for SVM models trained on the SCRIPT training dataset, using SOFA subscores and vital signs as features,
on the SCRIPT test dataset (green solid line) and MIMIC-IV dataset (green dashed line). We find outstanding performance. We also compute the AUC for SVM
models trained on the MIMIC-IV training dataset, using SOFA subscores and vital signs as features, on the MIMIC-IV test dataset (orange solid line) and on
the SCRIPT dataset (orange dashed line). We find good but lower performance. (D) Projections of combined distributions of patient-day vectors onto learned
embedding spaces learned from the SCRIPT training dataset. It is visually apparent that the two cohorts have different characteristics.
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data, especially for noisy real-world datasets with complex density
distributions or high dimensionality, DPC provides no objective
way to correctly identify that number. Third, the way of assigning
cluster identity for the rest of data points is overly simplistic and
ignores uncertainties within potentially overlapping regions.

We build upon DPC (35) by specifically addressing these three
major issues and, in doing so, obtain a significantly increased
performance (SI Appendix, Table S2). First, we use a Gaussian
kernel, instead of hard-coded cutoff, for density estimation,
and determine optimal bandwidth parameter via fivefold cross
validation. Second, we repeatedly compute the density and
distance for bootstrapped samples, and construct an aggregate list
of candidate cluster centers from multiple bootstrapped samples.
We then select as candidate cluster centers the top-ranked centers
according to the product of distance and density. Third, we
conduct K-means clustering (37) on candidate cluster centers
and determine the optimal number of clusters via maximization
of the silhouette coefficient (31). Fourth, we assign cluster centers
to the center of mass of each K-means identified cluster. Fifth, we
fit a Gaussian mixture model (38) with fixed centers on density
peaks, thereby determining cluster identity for each data point,
as well as quantifying the uncertainty of each cluster assignment.

Results

Integration of Two Datasets in Shared PCA Embedding. Using
SOFA-subscores plus vital signs, we identify four and two
significant PCs for the SCRIPT and MIMIC dataset, respectively
(Fig. 2A). As shown in Fig. 2B, the two largest PCs are
characterized by GCS scores and renal points, respectively, for
both the SCRIPT and MIMIC datasets. Vital signs dominate
the loadings for the other two significant PCs obtained for the
SCRIPT dataset.

To further validate that the data preprocessing pipeline
captures the ground truth variance between extreme Dying
and Recovered states, we train SVMs models using the learned
PCA representations. We then test its performance in predicting
the ground-truth Dying vs. Recovered states in both within-
distribution and out-of-distribution test sets. Specifically, we
train the SVM model on the SCRIPT training set (9:1 train-test
splitting ratio) and test it on: 1) the SCRIPT test set (within-
distribution test), 2) the MIMIC-IV dataset (out-of-distribution
test). We also train the SVM model on the MIMIC-IV training
set 5:5 train-test splitting ratio) and test it on: 1) the MIMIC-
IV test set (within-distribution test), 2) the SCRIPT training set
(out-of-distribution test).

We find that SCRIPT-trained SVM achieves an AUROC near
1 for both in-distribution and out-of-distribution test sets (Fig.
2C and SI Appendix, Fig. S9). In fact, the SVM model trained
on SCRIPT performs as well as on MIMIC-IV training set as
SVM model trained on it. In contrast, the SVM model trained
on MIMIC-IV cannot perform as well on the SCRIPT dataset.
This suggests that the PCA representation learned with SCRIPT
captures the underlying variance and structure of MIMIC-IV
data, but not vice versa. Therefore, we project the MIMIC-
IV data onto the PCA space learned from the SCRIPT cohort
(Fig. 2D).

eDPC Robustly Identifies Five Clinical States. Upon inspection
of data distribution along each dimension, it is visually apparent
that the distribution of patient-day pairs in PC space is
nonuniform and that the two cohorts occupy both overlaying
and distinct regions in the shared PCA space (Fig. 2D and SI
Appendix, Fig. S10). This observation suggests the existence of

discrete, high-density regions (clusters) that may correspond to
physiologically distinct clinical states.

We use eDPC to reliably identify clusters that correspond to
clinical states from patient-day state vectors in the reduced feature
space (SI Appendix, Text). We identify consensus clustering
solutions from the SCRIPT dataset with four different feature
sets, although at different levels of granularity (SI Appendix,
Figs. S16–S19). For the MIMIC dataset, eDPC consistently
identifies only two clusters with different feature sets, while the
GMM model fitted with SCRIPT data achieves as well, if not
better, a mortality differentiation (SI Appendix, Fig. S20). We
thus focus on the five-clusters solution obtained from SCRIPT
training cohort with SOFA subscores plus vital signs features and
examine its generalization to in-distribution (SCRIPT testing)
and out-of-distribution (MIMIC) cohorts. Indeed, the GMM
model fitted with SCRIPT training data identifies similar five
clusters in the PCA space (i.e., similar feature characteristics)
from both SCRIPT testing and MIMIC cohorts (Fig. 3A).

Uncovered States and Transitions Are Clinically Meaningful.
To further validate the clinical relevance of the five uncovered
clinical states, as well as investigate the dynamics of pneumonia
progression, we break down each ICU stay into quintiles and
separate patients according to disease outcome and etiology
(Fig. 3B).

Across the SCRIPT training, testing, and MIMIC-IV cohorts,
we observe an increasing proportion, along their ICU stay, of
patient-day vectors classified into cluster C5 (golden brown)
for patients who died, and a decreasing proportion of patient-
day vectors classified into cluster C5 for patients who recovered

A

B

Fig. 3. Clinical states are associated with patient outcomes and disease
etiology. (A) GMM model trained on SCRIPT training dataset (Right panel).
Cluster membership of patient-day vectors for the SCRIPT testing dataset
(Middle panel) and the MIMIC-IV cohort (Left panel). (B) Proportion of patient-
day vectors classified into each of the five clinical states for patients stratified
by patient outcome and disease etiology. Note strong association of clusters
C1, C2, and C5 to patient outcomes and of cluster C4 to COVID-19.

PNAS 2024 Vol. 121 No. 45 e2417688121 https://doi.org/10.1073/pnas.2417688121 5 of 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
N

O
R

T
H

W
E

ST
E

R
N

 U
N

IV
E

R
SI

T
Y

, S
E

R
IA

L
S 

D
E

PA
R

T
M

E
N

T
" 

on
 N

ov
em

be
r 

1,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

16
5.

12
4.

84
.6

5.

https://www.pnas.org/lookup/doi/10.1073/pnas.2417688121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2417688121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2417688121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2417688121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2417688121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2417688121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2417688121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2417688121#supplementary-materials


Fig. 4. Clinical states yield greater discriminatory power of patient outcomes than SOFA scores at short time horizons and provide earlier insight into disease
etiology. (Top row) Next-day mortality rates for patients with patient-day vectors in clusters C1, C2, or C5 and or SOFA score in quintiles Q1, Q2, or Q5. Number
over bars show ratio of mortality rates between two groups. Across all three datasets, clinical states provide greater stratification of patient mortality than
SOFA scores. (Bottom row) Percentage of patients with a COVID-19 episode diagnosis (see SI Appendix, Text for details) for patients with a patient-day vector in
clusters C3 or C4 and or SOFA score in quintiles Q3 or Q4. Number over bars show ratio of COVID-19 diagnosis rates between two groups. Patients diagnosed
with COVID-19 are overrepresented on cluster C4.

(Fig. 3B and SI Appendix, Figs. S22–S25). In contrast, we find
an increasing proportion, along their ICU stays, of patient-day
vectors classified into cluster C1 (jade) for patients who did not
die, and a decreasing proportion of patient-day vectors classified
into clusters C1 and C2 (turquoise) for patients who died (see
also SI Appendix, Figs. S18–S20).

While states C1, C2, and C5 are associated with disease
outcome, states C4 and C3 are associated with etiology Fig. 3B
and SI Appendix, Figs. S22–S25). Patients with a COVID-19
pneumonia diagnosis—but not other viral pneumonia—are char-
acterized by patient-day vectors that are preferentially classified
into cluster C4 (purple) and appear to be excluded from cluster
C3 (gold). In contrast, patients with a nonviral pneumonia
diagnosis—and for MIMIC-IV, especially patients with fungal
infections—are characterized by patient-day vectors that are
preferentially classified into cluster C3.

Mortality Rate Discrimination. An important question remain-
ing to be answered is whether the uncovered clinical states
provide greater discriminatory power with regard to mortality
than the current gold standard—SOFA scores. To answer this
question, we again stratify patients into groups with distinct
SOFA scores, mortality rates, and etiologies. First, we look at
mortality. Mortality rate is expected to increase linearly with
SOFA score for long time horizons. However, at short time
horizons, the SOFA score does not provide good discrimination
(mortality rate of Q5 vs. Q2 is only about a factor of 5 to 7
and there is no discrimination between the mortality rates of Q2
and Q1). The mortality rate discrimination of the clinical states
is considerably and significantly higher (Fig. 4 and SI Appendix,
Fig. S30 and Table S4).

A second question remaining to be answered is whether
the uncovered clinical states provide discriminatory power with
regard to etiology. We can only use the SCRIPT training and
testing cohorts for answering this question. For both, COVID-
19 infection is consistently associated with cluster C4 but not
with cluster C3. As a control, we can see that neither intermediate
quintile of SOFA scores is associated with COVID-19 (Fig. 4 and
SI Appendix, Fig. S31 and Table S5). Remarkably, the association
with cluster C4 is indicative of COVID-19 etiology even before
a formal diagnosis is registered, suggesting the potential for
early prediction and patient stratification when the pathogen is
unknown. This is especially significant given the large proportion
of pneumonia patients whose pathogen remains unidentified
throughout treatment.

Discussion

We identify and characterize five clinical states from structured
EHR of pneumonia ICU patients in a robust data-driven manner.
These five clinical states are associated with pneumonia etiology
as well as disease outcomes. Our findings provide valuable
insights for the integration of EHRs across different hospitals,
especially when dealing with cohorts that differ on multiple
aspects (Table 1). Although the MIMIC-IV cohort includes a
significantly larger number of patients compared to the SCRIPT
dataset, it exhibits less diversity especially on the more severe end
of the spectrum. This lack of richness limits the granularity of the
clinical states that can be identified from it alone. On the other
hand, the diversity exhibited within the SCRIPT cohort enables
models trained on SCRIPT data to achieve high discriminatory
power and generalizability to the MIMIC-IV cohort. These
findings underscore the importance of data sampling coverage,
complexity, and quality over sheer sample size.

Our study has several limitations. First, our analysis only
focuses on patient days spent within the ICU, thus not including
mild pneumonia conditions or later recovery stages. Second, the
five clinical states identified are unlikely to be exhaustive. Larger
datasets and greater diversity of patients characteristics will likely
reveal additional states. Third, we did not investigate how clinical
interventions may affect state transitions. Fourth, we focused
on aggregate characteristics and did not investigate individual
trajectories. These are all important matters for future research.

Data, Materials, and Software Availability. The code supporting this
study is available at Github (https://github.com/amarallab/Clinical_states) (39).
Previously published data were used for this work (25–27, 40).
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