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Aging is associated with a systemic  
length-associated transcriptome imbalance

Thomas Stoeger    1,2,3  , Rogan A. Grant4,5, Alexandra C. McQuattie-Pimentel5, 
Kishore R. Anekalla5, Sophia S. Liu1, Heliodoro Tejedor-Navarro2, 
Benjamin D. Singer    5,6,7, Hiam Abdala-Valencia5, Michael Schwake8,9,  
Marie-Pier Tetreault10, Harris Perlman11, William E. Balch    12, 
Navdeep S. Chandel    5,6, Karen M. Ridge5,6, Jacob I. Sznajder5,6, 
Richard I. Morimoto4,13,15  , Alexander V. Misharin    5,6,15  , 
G. R. Scott Budinger    5,6,15   & Luis A. Nunes Amaral    1,2,14,15 

Aging is among the most important risk factors for morbidity and mortality. 
To contribute toward a molecular understanding of aging, we analyzed 
age-resolved transcriptomic data from multiple studies. Here, we show that 
transcript length alone explains most transcriptional changes observed with 
aging in mice and humans. We present three lines of evidence supporting 
the biological importance of the uncovered transcriptome imbalance. 
First, in vertebrates the length association primarily displays a lower 
relative abundance of long transcripts in aging. Second, eight antiaging 
interventions of the Interventions Testing Program of the National Institute 
on Aging can counter this length association. Third, we find that in humans 
and mice the genes with the longest transcripts enrich for genes reported to 
extend lifespan, whereas those with the shortest transcripts enrich for genes 
reported to shorten lifespan. Our study opens fundamental questions on 
aging and the organization of transcriptomes.

The transcriptome responds rapidly, selectively, reproducibly and 
strongly to a wide variety of molecular and physiological insults expe-
rienced by an organism1. While the transcripts of thousands of genes 
have been reported to change with age2, the magnitude by which most 
transcript levels change is small in comparison with classical examples of 
gene regulation2,3. We hence hypothesize that aging is associated with a 
phenomenon that affects the transcriptome in a subtle but global manner 

that goes unnoticed when focusing on the changes in expression of indi-
vidual genes. Specifically, the small magnitudes of change for individual 
genes open the possibility that analyses requiring the transcript levels 
of individual genes to reach specific statistical significance thresholds 
might not be able to discern statistically significant global changes.

Supporting the perspective that changes may occur at a global 
level, several studies on animals have reported that RNA formation 
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For every unique tissue–age pair, we created ten gradient-boosting 
regression models with each model randomly sampling 90% of all 
genes. We then evaluated the prediction accuracy for every tissue–age 
pair by applying the trained model to the 10% of genes excluded from 
the training steps. We evaluated the prediction accuracy as the Spear-
man correlation between observed and median predicted relative 
fold changes. Note that the evaluation of the prediction accuracy of 
the gradient-boosting regression (Extended Data Fig. 1a–c) remained 
unchanged when following an alternative procedure to sample genes 
(Extended Data Fig. 1d). Further, the prediction accuracy of gradient-
boosting regression matched the experimental accuracy between 
two cohorts of mice, which each consist of three mice euthanized on 
different days (Methods and Supplementary Fig. 2).

Lastly, we compared gradient-boosting regression against differ-
ential gene expression analyses2 and found both approaches to be in 
good agreement, but gradient-boosting regression was more sensitive 
(Methods and Extended Data Fig. 2).

Transcript lengths explain transcriptomic changes
Gradient-boosting regression not only yields predictions about the 
relative fold change of transcripts but also informs on the importance 
of individual features to the accuracy of those predictions. We are thus 
able to return to our initial motivation to identify molecular features 
associated with the relative fold change of every protein-coding gene.

Among the 2,236 considered features, we found that the most con-
sistently informative feature is the median length of mature transcript 
molecules (Supplementary Table 2), followed by the number of tran-
scription factors, the length of the gene and the median length of the 
coding sequence (Fig. 1a and Supplementary Figs. 3 and 4). Note that 
we started assembling the features before the first publication report-
ing on the association between aging and transcriptional elongation10.

Features relating to length—namely, the length of the mature tran-
script, the length of the gene or the length of the coding sequence—were 
correlated (Extended Data Fig. 3a). These 2,236 features do not include 
the length of primary transcripts because typically it is not well defined 
within the GenBank sequence database. Among the 68 tissue–age pairs 
(17 tissues multiplied by 4 age comparisons to 4-month-old animals), 
63 pairs had at least one of the features relating to length among the 
top 5 explanatory features (Fig. 1a). Demonstrating redundancy across 
distinct features describing length, omission of any of these features 
did not affect model performance (Extended Data Fig. 3b).

Note that length-related features are more informative than fea-
tures describing the binding of any specific transcription factor or 
miRNA (Fig. 1a). Transcript length also was the most informative feature 
for the earliest age comparison possible with our experimental survey, 
9-month-old versus 4-month-old animals (Extended Data Fig. 3c), hint-
ing at a process with an early onset.

To determine whether transcript length could directly associ-
ate with age-dependent changes of the transcriptome, or whether 
transcript length informs on age-dependent transcriptional change 
through combinatorial interactions with transcription factors, miRNAs 
or other architectural features of the genome, we directly compared 
observed relative fold changes against transcript length.

We used the Spearman correlation to create a global, genome-wide 
metric that considers all detected transcripts instead of focusing on 
a subset of individual genes. We defined the length correlation (ρTI) 
as the Spearman correlation between transcript lengths and relative 
fold changes. We found that this global age-dependent transcriptional 
change extends beyond individual genes identified to be differen-
tially expressed (at adjusted P < 0.05) when considered in isolation  
(Fig. 1b). When comparing transcriptomes of 9-month-old tissues 
against those of 4-month-old tissues, 10 of 17 tissues already demon-
strated a statistically significant anticorrelation (P < 0.01; Fig. 1c and 
Extended Data Fig. 4). The number of affected tissues then remained 
statistically indistinguishable in 12-month-old and 18-month-old 

decreases during aging4–9. Moreover, Vermeij et al.10 suggested for 
mice and humans that age-dependent DNA damage leads to a reduc-
tion in the expression of long genes by inferring with transcriptional 
elongation. In contrast to this global perspective, many studies report 
that transcription factors and microRNAs (miRNAs) can also mediate 
age-dependent change of transcripts11,12. While both global and gene-
centric processes contribute to age-dependent changes, it remains 
unclear which one dominates.

Results
Gradient-boosting regression of transcriptomic changes
To avoid potential ambiguity about experimental or analytical choices 
within datasets from published studies, we performed RNA sequencing 
(RNA-seq) to measure and survey the transcriptome of 17 tissues from 
C57BL/6J mice raised under standardized conditions and provided 
from the colonies of the National Institute on Aging (NIA). We collected 
data on male mice of 4, 9, 12, 18 and 24 months of age. For every age, 
we considered six mice, except for rare occasions where a mouse died 
before data collection, or sample preparation failed for experimental 
reasons (see Supplementary Table 1 for the number of mice for each 
tissue and age).

We defined age-dependent transcriptional changes of an indi-
vidual gene as the fold change of its transcript abundance, which in turn 
we measured as the log2-transformed ratio of the signal attributed to 
transcripts of one gene at a given age relative to the signal attributed to 
transcripts of that gene in the same tissue of 4-month-old mice. As total 
RNA abundance changes for several tissues and cell types during the 
lifespan of animals4–9, it is important to point out that most transcrip-
tomic studies—including ours—included an implicit normalization of 
the abundance of one transcript relative to all other transcripts. Hence, 
an observed fold increase for a transcript could still correspond to a 
lower number of transcript molecules if the molarity of transcripts 
was reduced for most genes. To explicitly acknowledge this normaliza-
tion, we used the terms ‘relative fold increase/decrease’ and ‘relative 
fold change’ instead of the more commonly used terms ‘fold increase/
decrease’ and ‘fold change’. To avoid introducing assumptions about 
the dynamics of temporal changes of transcripts with aging, through-
out the paper we considered pairwise comparisons between a given 
age and 4-month-old mice.

We used a machine learning approach to identify molecular fea-
tures associated with the relative fold change with age of every protein-
coding gene of mice (Supplementary Fig. 1). To be comprehensive, we 
considered 2,236 broadly cataloged13,14 features of individual genes 
and transcripts. Of these, 310 corresponded to transcription factor 
binding sites that have been validated in at least one genome-wide 
assay14, whereas 1,912 corresponded to predicted miRNA binding sites15. 
Lastly, 14 features corresponded to architectural properties of genes 
or transcripts such as the number of exons, guanine–cytosine (GC)  
content, chromosome number, the number of alternate  
transcripts and the length of the gene and mature transcripts (Sup-
plementary Table 2).

We used gradient-boosting regression16 because it is widely 
regarded to avoid over-fitting and does not require the amounts of 
data needed for deep learning approaches. Briefly, gradient-boosting 
regression creates ensembles of decision trees where optimal criteria 
for the branching of the tree are determined by the features considered. 
Gradient boosting iteratively adds decision trees to the ensemble so 
that the difference between observed changes and changes inferred 
by the ensemble decreases. We quantified the difference between 
observed and inferred changes using a Huber loss function17, which 
for a given total absolute distance will favor those ways of branching 
the trees where the distance will arise from many genes having a small 
distance while disfavoring those ways of branching the trees where the 
distance would arise from a few genes having a large distance. This is 
called the model training step.

http://www.nature.com/nataging
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tissues (see 95% confidence intervals of medians as indicated by 
notches in Fig. 1c). For 24-month-old animals, 14 of 17 different tissues 
displayed a statistically significant anticorrelation between transcript 
lengths and relative fold changes (P < 0.01; Fig. 1c and Extended Data 
Fig. 4) and the remaining 3 of 17 different tissues displayed a statisti-
cally significant positive correlation between transcript lengths and 
relative fold changes (P < 0.01; Fig. 1c and Extended Data Fig. 4). Thus, 
the relative abundance of transcripts from long genes can change 
compared to those from short genes for old mice. To emphasize the 
systemic nature of the association between transcript length and rela-
tive fold changes, we termed this phenomenon ‘length-associated  
transcriptome imbalance’.

Before attempting a more detailed biological investigation of the 
length-associated transcriptome imbalance in mice and other verte-
brates, we first performed a detailed interrogation of its robustness. 
This interrogation showed that the imbalance can alternatively be 
quantified by the difference in length in the median transcript length 

of genes with a statistically significant relative fold increase of their 
transcripts (adjusted P < 0.05) and the median transcript length of 
genes with a statistically significant fold decrease of their transcripts 
(adjusted P < 0.05; Supplementary Fig. 5). We could not find evidence 
for potential technical artifacts related to the quality of sequencing, 
the choice of data analysis pipeline, the induction of stress-response 
genes, inter-animal variability, or whether we consider the length 
of the transcripts or the genes or the coding sequence (Methods,  
Fig. 1c and Supplementary Figs. 6–8). Finally, and most importantly, we 
directly confirmed our main finding of an age-related anticorrelation 
between transcript length and relative fold changes by means of two 
experimental approaches other than RNA-seq: NanoString (Fig. 1d) 
and proteomics (Extended Data Fig. 5)18.

Length association is robust across organisms
To refine the scope of our observation of a length-associated transcrip-
tome imbalance in old mice, we extended our analyses to datasets from 
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Fig. 1 | Observation of length-associated transcriptome imbalances.  
a, Importance of individual features or of the best-ranked feature within one 
group of related features in the gradient-boosting regression across n = 68 
tissue–age pairs examined over one independent experimental series.  
b, Association between log10 transcript length and the relative fold change 
in transcript abundance between esophagus samples from 4-month-old and 
24-month-old mice. We quantified the observed length correlation using the 
Spearman correlation between transcript length and relative fold changes (ρTI). 
Kernel density estimates use a linear gray scale. The thin and thicker black lines 
indicate outermost boundaries of 80% and 90% of kernel density estimates, 
respectively. Black circles highlight those genes with a relative fold decrease (58) 
and relative fold increase (46) identified by gene-specific differential expression 
at a Benjamini–Hochberg-adjusted P value below 0.05 with the latter P value 
obtained by DESeq2, which uses a two-sided Wald test. c, Box plot of the 68 ρTI 
obtained from age comparisons across the n = 17 tissues and four ages examined 
over one independent experimental series. To provide a baseline for individual 

sample variability, we used permutation testing (beige shading) by assigning 
mice of the same age to two groups and then obtaining ρTI between them. ‘All’ 
marks all n = 330 such permutations from data across all 17 tissues and median 
per tissue. n = 17 tissues were examined over one independent experimental 
series. d, NanoString analysis with a metabolism panel to analyze relative fold 
changes in large-intestine samples gathered from six 24-month-old and six 
4-month-old mice. ‘Decr.’ and ‘incr.’ refer to genes with a relative fold decrease 
and relative fold increase of their transcripts, respectively. We found n = 343 
genes with a relative fold decrease and n = 420 genes with a relative fold increase 
of their transcripts over one independent experiment. In the box plots (a, c  
and d), the center is the median, notches indicate the bootstrapped 95% 
confidence intervals of the median, bounds of the box represent the 25% and 75% 
percentiles, whiskers extend up to 1.5 times the height of the box, and minima and 
maxima are the observed minima and maxima. In c and d, we estimated P values 
using two-sided Mann–Whitney U tests (Extended Data Figs. 1–5, Supplementary 
Figs. 1–8 and Supplementary Tables 1 and 2).
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transcriptomic studies in mice and other vertebrates from a variety 
of laboratories19–22. To ensure that our findings are representative of 
earlier reports on aging—and do not reflect upon some idiosyncrasy 
of our experiments—in our calculations, we used the relative fold 
changes reported by the authors of the published studies. For stud-
ies where relative fold changes for all genes are reported, we quanti-
fied the transcriptome imbalance through the length correlation ρTI, 
defined as the Spearman correlation between transcript lengths and 
relative fold changes. If only the genes found to have a significant rela-
tive fold change of their transcripts were reported, we quantified the 
transcriptome imbalance by difference in median transcript length 
of relative fold-increased genes versus relative fold-decreased genes 
(Supplementary Fig. 5).

We reanalyzed mouse data from two studies: Benayoun et al.20 
and Schaum et al.22. For the latter, we found that 10 of 17 mouse tis-
sues showed a length-associated imbalance against long transcripts 
(P < 0.01; Fig. 2a and Supplementary Fig. 9a–c). For the former, we 
found that 2 of 4 mouse tissues showed a length-associated imbalance 
against long transcripts between 3-month-old and 29-month-old mice 
(P < 0.01; Fig. 2a and Supplementary Fig. 9d). Further, transcripts 

reported by Benayoun et al.20 to change in relative abundance with 
age independent of any specific tissue showed a length-associated 
imbalance against long transcripts at the significance cutoff of P < 0.05 
(Supplementary Fig. 9d).

We also reanalyzed the transcriptome data from rat samples 
reported by Shavlakadze et al.21 for four tissues and compared tran-
scriptome changes between 6-month-old and 24-month-old animals. 
We found a statistically significant anticorrelation between relative 
fold changes and transcript length for samples from gastrocnemius 
and hippocampus tissues (P < 0.01; Fig. 2a and Supplementary Fig. 10), 
and a significant positive correlation for samples of kidney (P < 0.01; 
Fig. 2a and Supplementary Fig. 10a), but no significant correlation for 
samples of liver (although the latter also showed a significant anticor-
relation when considering gene length instead of transcript length; 
Supplementary Fig. 10b).

Finally, we reanalyzed the transcriptome data from killifish 
samples reported by Reichwald et al.19 and compared transcriptome 
changes between 5-week-old and 39-week-old animals. We quanti-
fied length here as gene lengths, as this was the feature reported 
by the authors. We found a length-dependent and age-dependent 
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and laboratories. a, Presence of a significant length-associated transcriptome 
imbalance (Methods) in work by Schaum et al.22, Benayoun et al.20, Shavlakadze 
et al.21 and Reichwald et al.19. NR, not registered; NS, not significant. b, Fraction 
of n = 17 tissues of this study and n = 28 tissues of other studies listed in a that 
showed a significant relative fold decrease of long transcripts or a significant 
relative fold increase. Tissues were counted for each occurrence in one of the 
other studies. c, Fraction of detected n = 28 cell types in Kimmel et al.23, and 
n = 121 cell types processed by FACS and n = 46 cell types processed using a 
droplet-based approach (Tabula Muris Senis)24 with a fold decrease of long 
transcripts or a significant relative fold increase. Cell types present in different 
tissues were counted for each occurrence in one tissue. Comparisons are for each 
occurrence of a cell type, and relative fold changes observed between an old and 
a young age group. For Kimmel et al.23, the comparison is between 7-month-old 
and 22- to 23-month-old mice and yielded 28 detected cell types, and for Tabula 

Muris Senis24, between 3-month-old and 24-month-old mice and yielded 121 cell 
types detected by FACS and 46 cell types detected by droplet-based sequencing. 
d, Box plot of calculated Spearman correlation (ρTI) between log10 transcript 
length and relative fold changes for the different cell types (n) reported for 
individual tissues in Tabula Muris Senis FACS data. In the box plots, the center 
is the median, notches indicate bootstrapped 95% confidence intervals of the 
median, bounds of boxes are the 25% and 75% percentiles, whiskers extend up 
to 1.5 times the height of the box, minima and maxima are the observed minima 
and maxima. Black dots indicate individual cell types. In a–c, the presence of an 
association with length was assessed by a two-sided t-distribution significance 
test of Spearman correlation66 at P < 0.01. In b and c, individual data points 
are not shown as bars represent the fraction of tissues or cell types; thus, error 
bars are 95% confidence intervals of bootstrapped estimates of these fractions 
(Extended Data Fig. 6, Supplementary Figs. 9–13 and Supplementary Table 3).
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relative fold change in two of three killifish tissues (P < 0.01; Fig. 2a and  
Supplementary Fig. 11).

In their totality, these results support the hypothesis that the tis-
sues of several vertebrate model organisms display an age-dependent 
transcriptome imbalance and that this imbalance primarily displays a 
relative fold decrease of long transcripts or genes. The fraction of such 
tissues that we found in our study (~80%) is comparable (Fisher’s exact 
P = 0.11) to the fraction in other studies (~60%; Fig. 2b).

Length association is robust across cell types
To resolve whether the length-associated imbalance observed among 
the bulk transcriptomes of entire tissues reflects a change in cellular 
composition or in the molecular processes occurring in a subset of cell 
types, we reanalyzed three datasets reporting single-cell transcrip-
tomic measurements during mouse aging. Data reported by Kimmel 
et al.23 enabled us to compare samples from 7-month-old and 22- and 

23-month-old mice. Fluorescence-activated cell sorting (FACS)-sorted 
cells subjected to full-length transcriptome sequencing and, less-sensi-
tive24, droplet-based cell isolation paired with sequencing of the 3′ end 
of transcripts data reported by Tabula Muris Senis enabled to compare 
samples from 3-month-old and 24-month-old mice. Our reanalysis 
revealed that most cell types demonstrated a statistically significant 
anticorrelation between transcript lengths and age-dependent rela-
tive fold changes (21 of 28, 102 of 121 and 31 of 46, respectively; Fig. 2c, 
Extended Data Fig. 6 and Supplementary Table 3). We thus conclude 
that a length-associated imbalance of the transcriptome occurs in 
most cell types of mice, and—consistent with our findings for bulk 
transcriptomes of entire tissues—mainly disfavors long transcripts in 
aged individuals.

We next explore whether the extent of the length-associated imbal-
ance differed among all detected cell types when comparing individual 
tissues. We primarily considered FACS-sorted data of Tabula Muris 
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data points cannot be shown as representing the fraction of tissues, error bars 
are the 95% confidence intervals of bootstrapped estimates of these fractions. 
Tissues were counted for each occurrence in another studies. In the box plots  
(a and b), the center is the median, notches indicate bootstrapped 95% 
confidence intervals of the median, bounds of boxes are the 25% and 75% 
percentiles, whiskers extend up to 1.5 times the height of the box, minima 
and maxima are the observed minima and maxima (Extended Data Fig. 7, 
Supplementary Figs. 14 and 15 and Supplementary Tables 4–6).
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Fig. 4 | The age-dependent length-associated transcriptome imbalance is 
responsive to several antiaging interventions. a, Share of the 11 antiaging 
interventions of the Intervention Testing Program26 tested that reduced 
the relative fold decrease of long transcripts with aging. NS, not statistically 
significant at the P < 0.01 level following two-sided Mann–Whitney U test.  
b, Transcript length for genes reported to be differentially expressed in Ames 
mice90 for liver in an analysis including 3-, 6-, 12- and 24-month-old animals.  
c, FGF21 excess for adipose tissue and skeletal muscle following exposure of 
rhesus macaques to FGF21 (ref. 86). d, Rapamycin findings reported by Martinez-
Nunez et al.91 for HEK293 cells following exposure, reported by Flynn et al.87 for 
hearts of 24-month-old mice following 3 months of exposure, and reported by 
Mattson et al.92 for cytotoxic T cells following 3 months of exposure. e, Transcript 
length for genes reported to be differentially expressed in Snell mice93 for  
brown adipose tissue. f, Deletion of ribosomal S6 protein kinase 1 (S6K1)94 

for 600-day-old female mice. g, Relative fold changes of transcripts in retinal 
ganglion cells of 12-month-old mice compared to 5-month-old mice28. h, Retinal 
ganglion cells of 12-month-old mice following ectopic expression of Pou5f1, Sox2 
and Klf4 (ref. 28). In b–h, the box plots of the lengths of transcripts show a relative 
fold decrease (decr.) or relative fold increase (incr.) upon exposure (for details of  
ref. 87, see the Methods). In the box plots, the center is the median, notches 
indicate bootstrapped 95% confidence intervals of the median, bounds of boxes 
are the 25% and 75% percentiles, whiskers extend up to 1.5 times the height of 
the box, minima and maxima are the observed minima and maxima. Black dots 
indicate observations if the number of genes ≤ 10. We estimated P values with 
two-sided Mann–Whitney U tests. n indicates the number of genes with a relative 
fold decrease and relative fold increase. The notches display bootstrapped 95% 
confidence intervals of transcript length (Extended Data Fig. 8).
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Senis as it provides insight into the largest number of tissues, and 
then ranked tissues according to the median length-associated tran-
scriptome imbalance of their cell types (Fig. 2d). Of all 136 pairwise 
comparisons across the different tissues, only 5 comparisons show 
significant (P < 0.01) differences (Supplementary Fig. 12a). This overall 
absence of statistically detectable tissue-specific differences per-
sisted when considering the other single-cell datasets (Supplementary  
Fig. 12b–e). Further, it resembled a similar ranking of tissues based 
on the bulk RNA-seq data generated by us. While it is possible to rank 
tissues according to the correlation between transcript lengths and 
age-dependent relative fold changes of transcripts in this bulk RNA-
seq data (Extended Data Fig. 4 and Supplementary Fig. 13), biological 
variability between two cohorts of mice often exceeds observed dif-
ferences across tissues (Supplementary Fig. 13). We thus conclude 
that either there are few differences across tissues or current mouse 
studies do not have sufficient analytical power to reliably detect these 
differences (Discussion).

Length-associated transcriptome imbalance in human aging
To determine whether a length-associated transcriptome imbalance 
also occurs in human aging, we next reanalyzed data collected by the 
Genotype-Tissue Expression (GTEx) consortium25 from human tis-
sues at the time of death (Supplementary Fig. 14a). We again identi-
fied length-related features were predictive of relative fold change of 
transcripts (Fig. 3a), with gene length here being the most informative 
individual feature in the trained models (Fig. 3a and Supplementary 
Table 4). For consistency with our preceding analyses, however, we 
focused on transcript length (Fig. 3b,c). Our analysis of human tissues 
again showed an anticorrelation between transcript length and rela-
tive fold changes (Fig. 3b,c and Supplementary Tables 5 and 6). This 
finding was also recovered when considering either the length of the 
gene or the length of the coding sequence instead of transcript length 
(Supplementary Fig. 14b,c).

An anticorrelation between transcript lengths and relative fold 
changes was already apparent for most tissues from middle-aged 
donors (40–59 years) in comparison with those from young donors 
(20–39 years; Fig. 3b). The share of tissues affected (~60%; Fig. 3d) 
in old donors (60–79 years) was similar to that reported above for 
the vertebrate model (Fig. 2). We conclude that a length-associated 
transcriptome imbalance also occurs in humans and that it too prefer-
entially leads to a relative fold decrease of long transcripts.

Given the large number of donors within the GTEx (Supplementary 
Fig. 14a), we revisited the question of whether the transcriptome imbal-
ance affects all tissues equally. We ranked tissues by the magnitude of 
their transcriptome imbalance and found that we could reject this null 
hypothesis (Supplementary Fig. 15) as we observed that the imbalance 
was significantly (P < 0.001) stronger in brain tissues (Mann–Whitney U 
test values of 561 and 486 for tissues from middle-aged and old donors; 
Fig. 3b and Supplementary Fig. 15); this finding persisted even when 
excluding genes relating to inflammatory and neuronal processes 
(Extended Data Fig. 7a) or controlling for gender (Extended Data  
Fig. 7b,c). This pattern is also consistent with the findings of an inde-
pendent study on human hippocampus that explicitly demonstrated 
a relative fold decrease with age of the transcripts from long genes10.

Length association responds to antiaging interventions
To systematically investigate whether the length-associated transcrip-
tome imbalance is related to aging or merely to the passage of time, we 
considered 11 antiaging interventions with strong support for extend-
ing lifespan within the Interventions Testing Program of the NIA26,27 and 
where differential expression results of transcripts were published and 
directly provided by the authors of the corresponding studies. Within 
these published differential expression results, we found statistically 
significant (P < 0.01) support for a preferential fold increase of long 
transcripts for 7 interventions (Fig. 5a–f and Extended Data Fig. 8): 

fibroblast growth factor 21 (FGF21) excess, Myc heterozygosity, rapa-
mycin, resveratrol, S6 kinase 1 (S6K1) deletion, senolytics and Snell 
mice. We did not find statistically significant support (P > 0.01) for the 
4 remaining interventions: Ames mice, eating every other day, Little 
mice and metformin.

We cannot say whether the absence of a significant length-asso-
ciated relative fold change for 4 interventions reflects upon the true 
potential of these interventions or upon experimental parameters, 
sample size or the number of genes reported by the authors of the 
original studies. Curiously, among all tested combinations of antiaging 
interventions and tissues and ages, the incidence rate of a significant 
(P < 0.05) effect seemed somewhat smaller for in vivo than for cell 
culture settings (7 of 16 and 3 of 4, respectively; two-sided Fisher’s 
exact test, P = 0.58). Given the relative fold increase of long transcripts 
following 7 of the 11 interventions analyzed by us and preceding results 
by Vermeij et al.10 on caloric restriction opposing the length-associated 
transcriptome imbalance in an ERCC excision repair 1 (ERCC1) prog-
eroid mouse model, we can conclude that the length-associated tran-
scriptome imbalance is responsive to antiaging interventions and that 
several interventions promoting longevity oppose the direction of the 
transcriptome imbalance that we are reporting here to be the primary 
direction of the relative fold change encountered within vertebrates 
(Figs. 2b,c and 3d).

In addition to the above interventions, we probed rejuvenation 
by partial reprogramming through ectopic expression of Pou5f1, Sox2 
and Klf4. We turned to a recent study by Lu et al.28, which reported tran-
scriptomic data on retinal ganglion cells in middle-aged 12-month-old 
mice relative to 5-month-old mice. Surprisingly, but consistent with our 
observations in a minority of tissues (Fig. 2b,c and Fig. 3d), we found a 
length-associated transcriptome imbalance with a relative fold increase 
(rather than fold decrease) of long transcripts during aging (Fig. 4g). 
However, following rejuvenation, the relative fold increase of long 
transcripts in 12-month-old mice relative to 5-month-old mice reverted 
(Fig. 4g,h). We thus conclude that the length-associated transcriptome 
imbalance is responsive to antiaging interventions.

Shortest and longest transcripts impact longevity opposingly
To further probe the relation between the observed length-associated 
transcriptome imbalance and aging, we next examined a previously 
established catalog of ‘pro-longevity’ and ‘anti-longevity’ genes for 
which a loss-of-function mutation decreases or increases the lifespan 
of model organisms, respectively29. We mapped the genes listed in 
the catalog onto their human and mouse orthologs and performed an 
enrichment analysis considering all protein-coding genes that occurred 
at least once in the database used for annotation. The identified 665 
genes accounted for a small subset of the genome (3%) and, notably, 
in human tissues showed a nearly indistinguishable length-associated 
transcriptome imbalance as other genes (Spearman, 0.93; Supple-
mentary Fig. 16a).

We focused on the genes with the 5% shortest median transcript 
lengths and the genes with the 5% longest median transcript lengths 
as those genes are most poised to show a length-associated relative 
fold change during aging (Supplementary Fig. 16b,c). The enrichment 
analysis showed that genes encoding the shortest transcripts were 
significantly depleted from pro-longevity genes and significantly 
enriched for anti-longevity genes, whereas the genes encoding the 
longest transcripts were significantly enriched for pro-longevity genes 
and significantly depleted from anti-longevity genes (Fig. 5a,b). This 
observation was robust against the specific threshold chosen for tran-
scripts to be classified as short or long (Extended Data Fig. 9a,b) and 
held when considering differences in median transcript length between 
pro-longevity and anti-longevity genes (Mann–Whitney U test P = 0.008 
and P = 0.004 for human and mouse, respectively; Extended Data  
Fig. 9c–f). Further, the enrichments and depletions reached signifi-
cance (P < 0.01) for one of four human cases and three of four murine 
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cases when considering all human protein-coding genes instead of only 
those annotated for longevity phenotypes (Methods and Extended 
Data Fig. 9g,h).

As cellular pathways can be encoded by genes of different gene 
lengths30, we next investigated whether the shortest and longest tran-
scripts in humans encode cellular processes and physiology that has 
been associated with aging. To identify candidate processes, we per-
formed a Gene Ontology analysis for annotations enriched among 
transcripts of one length extreme and simultaneously depleted among 
transcripts of the other length extreme. We determined the false-
positive rate of this approach to identify such annotations. Briefly, 
we determined the false-positive rate was negligible as no more than 
one single annotation appeared to be enriched within 200 different 
randomizations (Methods).

Upon analysis of the annotations observed within the human 
genome, we found 138 annotations of mouse genes and 140 annota-
tions of human genes to be enriched among transcripts of one length 
extreme and simultaneously depleted among transcripts of the other 
length extreme. Reassuringly, our approach independently recov-
ered well-established observations concerning the molecular, cellular 
and physiological processes associated with aging (Supplementary  
Tables 7–10) and partially recapitulated a recent study that only con-
sidered the enrichment of individual annotations31. We found that 
the anabolic branches of proteostasis, mitochondrial function, tel-
omere maintenance, chromatin organization and immune function32,33 
were enriched among the shortest transcripts and depleted from the 
longest transcripts. Transcriptional regulation34, developmental pro-
cesses35, ATP binding36, cytoskeletal structure and synaptic activity37 
were enriched among the longest transcripts and depleted from the 
shortest transcripts. To help navigation across related annotations, 
we constructed a network representation that presents individual 
annotations according to the shared overlap of annotated genes rather 
than the hierarchical structure provided by the Gene Ontology analysis 
(Methods, ref. 38 and Fig. 5c). See Extended Data Fig. 10 and Supple-
mentary Data 1 for labels of individual Gene Ontology terms within this 
network. Collectively, these findings demonstrate a remarkably high 
overlap between the functions encoded by the shortest and longest 
transcripts and the biological hallmarks of aging33,39.

The results presented herein thus strongly support the idea that 
genes encoding opposing roles toward longevity could be distinc-
tively and systemically affected by the length-associated transcrip-
tome imbalance. In most tissues, the length-associated transcriptome 
imbalance should thus promote the expression of genes that appear 
to contribute to aging (Figs. 2b,c and 3d), whereas in some tissues  
(Figs. 2b,c and 3d), the length-associated transcriptome imbalance 
should promote the expression of genes that appear to contribute to 
staving off aging.

Discussion
We recognize that our study holds a far-reaching implication on how 
RNA-seq studies are analyzed and interpreted. Technical biases in 
RNA-seq studies, which affect gene-specific readouts according to 
their length, have been reported widely, and several tools have been 
subsequently deployed to computationally counter the effects of this 
length association40–43. As demonstrated by our NanoString experi-
ment, and by our reanalysis of published proteomics data, this data 
processing step may hide biologically driven associations between 
transcript length and relative fold change.

Our observational study invites further work on the molecular 
and temporal onset of the length-associated transcriptome imbal-
ance, the role of gene regulatory networks, population variability 
in larger cohorts, the normalization of gene expression data during 
aging and whether an initial length-associated transcriptome imbal-
ance could be causative to aging. Moreover, whether our current 
findings on aging would extend to further genetic backgrounds and 
genes whose role in shortening or lengthening lifespan have not yet  
been discovered44.

However, perhaps the most pressing remaining question relates 
to the origin of the length-associated transcriptome imbalance during 
aging. Our findings about the genes with the shortest and longest tran-
scripts enriching for genes with different roles toward longevity could 
be viewed as support for longevity-related roles of genes driving the 
evolution of their transcript length. However, this explanation would 
presently only appear to account for a fraction of the genes that show 
a transcript length-associated change during aging (Figs. 2b,c and 3d). 
Further, gene lengths appear largely invariant in a phylogenetic king-
dom45,46 and differences in gene and protein lengths have already been 
attributed to multiple factors, including cellular energy constraints, 
expression levels and gene duplications47,48.
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Fig. 5 | Enrichment analysis suggests that the shortest and longest transcripts 
have opposing associations with longevity. a,b, Fold enrichment for ‘pro-
longevity’ (P, green) and ‘anti-longevity’ (A, orange) of protein-coding human 
genes (a) or mouse genes (b) among the genes with transcript lengths in the 
bottom 5% or top 5% of lengths. Negative enrichment indicates depletion; n 
indicates the observed number of genes with a pro-longevity or anti-longevity 
phenotype among these genes with extreme transcript lengths; e indicates 
expected number of genes with a pro-longevity or anti-longevity phenotype if 
there was no association between transcript lengths and longevity phenotypes. 
We estimated P values using two-sided Fisher’s exact test. The data suggest 
that pro-longevity genes may be depleted among the shortest genes and may 
be enriched among the longest genes. c, Human Gene Ontology analysis for 
annotation enrichment among genes with transcripts in the bottom 5% of 
transcript lengths and annotation depletion among genes with transcripts 
in the top 5% of transcript lengths. Area of circle is proportional to number 
of genes. Edges represent highest embedding of a lower-level hierarchical 
annotation (smaller circle) within a higher-level one (larger circle). Red (blue) 
indicates genes enriched in genes with shortest (longest) transcripts (P < 0.05; 
Benjamini–Hochberg-corrected Fisher’s exact test; Extended Data Figs. 9 and 10, 
Supplementary Fig. 16, Supplementary Data 1 and Supplementary Tables 7–10).
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Turning to earlier literature, a length-associated transcriptome 
imbalance does not appear specific to aging itself. Moreover, there 
seem to be multiple potential molecular origins for a length-associated 
transcriptome imbalance. Most prominent among the specific molecu-
lar mechanisms, DNA damage has been explicitly demonstrated to 
yield a length-associated transcriptome imbalance with a relative fold 
decrease of the longest transcripts in a progeroid model of aging10. Heat 
shock, which challenges proteostasis, a hallmark of aging33, leads to 
a length-associated transcriptome imbalance by causing premature 
transcriptional termination through cryptic intronic polyadenylation49. 
Similarly, loss of splicing factor proline/glutamine (Sfpq), encoded 
by the gene that displays the strongest differential splicing during 
human aging50, has been shown to yield a length-associated transcrip-
tome imbalance by interfering with transcriptional elongation of long 
genes51. Methyl CpG binding protein 2 (MeCP2) opposes a length-
associated transcriptome imbalance by dysregulating transcriptional 
initiation according to the length of the gene body52,53. Further, patients 
with Alzheimer’s disease show a length-associated transcriptome 
imbalance whose onset has been suspected to stem from somatic 
mutations that affected transcript stability54.

Jointly, these observations invite the unsupported hypotheses 
that during aging there may not be a single origin for the length-
associated transcriptome imbalance and that the length-associated 
transcriptome imbalance in aging instead represents an intermediate 
step within a ‘bowtie structure’ through which multiple environmental 
and internal conditions simultaneously affect multiple downstream 
outputs55–57. The length-associated transcriptome imbalance thus may 
offer itself as an explanation for the recent observation of inter-tissue 
convergence of gene expression during aging58. Further arguing in 
favor of an integrative role of the length-associated transcriptome 
imbalance, we find evidence that several distinct antiaging inter-
ventions counter the length-associated transcriptome imbalance 
against long transcripts despite these different antiaging interven-
tions partially affecting different aspects of cellular and organismal  
physiology59,60.

One superficially conflicting observation, which may further help 
to narrow down the origin of the length-associated transcriptome 
imbalance, is the realization that in a small subset of tissues and cell 
types the longest transcripts display a relative fold increase rather 
than a relative fold decrease (Figs. 2b,c, 3d and 4g), with the former 
also appearing to be malleable to antiaging interventions (Fig. 4h). 
One possible explanation is that there exist two independent types of 
length-associated transcriptome imbalances of which the first one dis-
plays a relative fold increase of the longest transcripts, and the second 
one a relative fold decrease of the longest transcripts. Alternatively, 
both types of length-associated transcriptome imbalances could be 
vis-à-vis manifestations of a single phenomenon such as changes in the 
net processivity of the formation of mature transcripts. Specifically, 
we suspect that the age-dependent length-associated transcriptome 
imbalance in vertebrates primarily displaying a relative fold decrease 
(rather than relative fold increase) of long transcripts may arise from 
the hypothesis that there are more ways for perturbations to break 
than to improve cellular function61.

As the shortest and longest transcripts enrich for opposing 
roles toward longevity, opposing types of the length-associated 
transcriptome imbalance in different tissues also open the questions 
on whether these tissues are poised differentially toward aging and 
there could be trade-offs between tissues during aging beyond the 
recognized trade-offs between somatic and germline tissue62. Inde-
pendent of the specific direction of relative fold changes, altered 
transcript levels of thousands of genes or of specific subsets of genes 
may also promote aging by challenging epigenetic, transcriptional 
and proteomic homeostasis63,64 and reducing the capacity of cells to 
properly respond to internal or external factors (such as protein aggre-
gates or pathogens). Further independent of any transcript length, 

imbalances in gene expression have the potential to alter subcellular  
stoichiometries65.

Spurred by our findings on antiaging interventions, we believe that 
understanding the direction of causality between other age-dependent 
cellular and transcriptomic changes and length-associated transcrip-
tome imbalance could open novel research directions for antiaging 
interventions.

Methods
Statistics and reproducibility
No statistical methods were used to predetermine sample sizes, but our 
sample sizes are similar to those reported in previous publications21,22,24. 
We performed a two-cohort design to estimate reproducibility after 
our experiments and focused our analytical approach on the identifica-
tion of patterns that are detectable within our given sample number. 
For testing the generalizability of our findings, we considered external 
datasets in mice and other organisms.

In an initial pilot analysis, we used a Lilliefors test to assess assump-
tions on normality. For comparing different ages, we used a two-sided 
Mann–Whitney U test to account for non-normality and visually double-
checked that compared groups would have a similar skewness. For 
quantifying the significance of genome-wide correlations (and thus 
bypassing the need for gene-specific P values), we used a t-distribution 
test as the latter appears to be an accurate approximation when work-
ing with thousands of data points66.

Mann–Whitney U test, Spearman correlations and Fisher’s exact 
test were computed through scipy.stats (version 1.2.1)67. Bootstrapped 
estimates of the 95% confidence intervals of the medians were obtained 
through Seaborn68. For comparison purposes, we also performed dif-
ferential gene expression analyses using DESeq2 (ref. 69), which provide 
significance values that follow a set of frequent assumptions on gene 
expression distributions70. Significance of the difference between two 
correlations was tested with Daniel Soper’s Free Statistics Calculators 
4.0 (https://www.danielsoper.com/statcalc/), which implemented a 
corresponding test developed by Fisher71.

For adjusted P values, we followed a Benjamini–Hochberg 
correction72.

No randomization of samples was performed by us as we had 
ordered mice of different ages and allocated mice of different ages to 
different groups for analysis.

Investigators were not blinded to group allocation during data 
collection and outcome assessment and further data analysis. Blind-
ing during data collection was not possible as old mice look different 
from younger mice; blinding was not relevant during data analysis, 
as the latter used a machine learning strategy to find the properties 
informing on age-dependent change.

No data were excluded from the analyses, except for additional 
control analysis, which tested the robustness of the conclusion against 
different exclusion criteria (Supplementary Fig. 10c–f).

After completion of the manuscript, however, we noted that the 
original experiment contained muscle tissues for which no sequence 
data were obtained, and that the original preparation of sequence 
data included sorted alveolar macrophages, alveolar type 2 cells and 
monocyte-derived dendritic cells. Preceding the analysis started in 
this paper, sequence data of the latter had not been carried forward 
toward analysis as quality-control (QC) metrics appeared different 
and indicative of lower quality than the other experimental prepara-
tions. Retrospectively, analyzing these three cell populations toward 
a length-associated transcriptome imbalance after the (otherwise) 
completion of this paper, we find, consistent with our comprehen-
sive reanalysis of cell types through public single-cell transcriptomic 
data23,24, a length-associated transcriptome with a relative fold reduc-
tion of long transcripts in alveolar macrophages and alveolar type 2 
cells (Supplementary Fig. 17).

The experiments were not and could not have been randomized.
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Estimation of confidence intervals for bar plots. Bar plots repre-
sent empirically observed fractional data; for example, phenomenon 
present in 14 of 20 tissues would be 70%. Confidence intervals were 
estimated by bootstrapping 1,000 times. Each bootstrap corresponds 
to drawing with replacement. In the above example, this would mean 
doing 20 independent randomizations where for each randomization 
there was a 70% chance that the phenomenon would be present (and 
30% chance that not).

Animal keeping. All mouse procedures were approved by the Insti-
tutional Animal Care and Use Committee at Northwestern University. 
All strains including wild-type mice were bred and housed at a specific-
pathogen-free barrier facility at the Center for Comparative Medicine 
at Northwestern University. Male C57BL/6J mice were provided by the 
NIA, one of the National Institutes of Health (NIH), and were housed 
at Northwestern University Feinberg School of Medicine Center for 
Comparative Medicine for 4 weeks before euthanasia. Our rationale 
was to focus on a standardized murine model that is commonly used 
across different laboratories so that our findings could be investigated 
or continued by others.

Mice were euthanized by pentobarbital sodium overdose. Imme-
diately the chest cavity was opened, and animals were perfused via the 
left ventricle with 10 ml of HBSS (Ca/Mn+). The following tissues were 
collected: lung, heart, liver, kidney, adrenal gland, white (perigonadal) 
and brown adipose tissue, skin, muscle satellite cells, frontal cortex, 
cerebellum, esophagus, stomach, and small and large intestines. Gut 
epithelial cells were isolated after flushing large intestine with EDTA/
EGTA solution. Lungs were subjected to enzymatic digestion to release 
stromal and immune cells and sorted by FACS as described elsewhere73. 
All tissues and cells were immediately frozen on dry ice and stored at 
−80 °C for processing. Muscle satellite cells were prepared as described 
in work by Runyan et al.74.

RNA isolation and RNA sequencing. RNA was isolated using an 
RNeasy DNA/RNA kit after homogenization and lysis in guanidine 
thiocyanate buffer supplemented with β-mercaptoethanol. RNA con-
centration and quality were assessed using an Agilent TapeStation. 
RNA-seq libraries were prepared using an NEB Next RNA Ultra kit with 
a polyA enrichment module using an Agilent Bravo NGS Automated 
fluidics handling platform as described elsewhere73. Libraries were 
multiplexed and sequenced on an Illumina NextSeq 500 platform 
using 75 cycles of high-output flow cells and a dual indexing strategy. 
Our rationale was to use a protocol that had been standardized and 
applied by our sequencing facility.

While targeting 6 mice per age and organ, we ultimately only 
obtained sequenced samples for an average of 5.76 mice per age and 
organ (because of errors in sample isolation and/or liquid handling).

Bioinformatics. Sequencing reads were analyzed using an implementa-
tion of Ceto (https://github.com/ebartom/NGSbartom/) in Nextflow75. 
Briefly, BCL files were demultiplexed and converted to fastq files using 
bcl2fastq (version 2.17.1.14), with default parameters. The raw reads 
were trimmed using trimmomatic76 (version 0.36), with the following 
parameters: trailing = 30 and minlen = 20. Trimmed reads were aligned 
to the mouse reference genome (GRCm38.p3) with annotations from 
Ensembl v78 using tophat (version 2.1.0)77, with the following param-
eters: no novel junctions, read-mismatches = 2, read-edit-distance = 2 
and max-multihits = 5. Aligned reads were counted using Htseq-count 
from htseq78, with the following parameters: intersection-nonempty, 
reverse strand, feature-type = exons, and id-attribute = gene_id. Our 
rationale was to use a bioinformatic setup that had been standardized 
and applied by our facilities.

Differential expression of bulk RNA sequencing. For measurements 
derived from multiple individuals, differential gene expression analysis 

was performed with DESeq2 (ref. 69), version 1.20 (mouse) and 1.22 
(human) using an α value of 0.05 for the adjusted P-value cutoff. We 
subsequently only kept genes that mapped unambiguously between 
Ensembl gene identifiers and NCBI (Entrez) gene identifiers13.

To estimate the differential gene expression between individu-
als, we directly computed the log2 ratio of raw counts for transcripts 
detected in both individuals.

Characteristics of genes. For transcription factors, we mapped the 
Gene Transcription Regulatory Database (v18_06)14 to ±200 nucleo-
tides to transcriptional start sites supplied by BioMart for the human 
reference genome build GRCh38.p12 and the mouse reference genome 
build GrCm38.p6. For miRNAs, we used miRDB (v5.0)15. For mature 
transcripts, length parameters and GC content were identified from  
GenBank and mapped to genes as described elsewhere using the 
median across different transcripts13. Number of exons, and their mini-
mal, median and maximal lengths, were extracted from BioMart. For 
genes and chromosomes, characteristics were extracted as described 
elsewhere13. Our rationale was to consider a broad set of information 
that might inform on the formation or turnover of transcripts.

Modeling. Gradient-boosting regression models were built in scikit-
learn (version 0.20.3)16. Of the transcripts, 90% were included as the 
training set and 10% were used as a test set. The 10% of the test set tran-
scripts that had been withheld during training were used to evaluate 
the performance of the models. Our rationale for the gradient boosting 
was to account for possible non-linearities. We only considered protein-
coding genes with at least one research publication and an official gene 
symbol, and which unambiguously mapped in a 1:1 relation between 
NCBI (Entrez) gene identifiers and Ensembl gene identifiers.

Kernel-density visualizations. Kernel-density visualizations were 
created with Seaborn68 using default parameters.

Comparison to two cohorts of mice. To quantitatively evaluate the 
performance of our machine learning approach, we first estimated 
the maximal performance that should be achievable by our experi-
mental data. The latter will depend on biological, experimental and 
technical variability, the true number of genes that change expression 
during aging and their true magnitudes of change, and the sensitivity 
of RNA-seq to detect transcript molecules and their change. We built 
upon the two-cohort design of our experimental survey and compared 
transcriptional fold changes between the two cohorts. Specifically, 
the six mice of each age and tissue pair had drawn from two cohorts 
with three mice per age each that were euthanized on different days 
(or two and three mice per age if we only obtained samples from five 
mice, or two mice per age if we only obtained samples from four mice). 
As anticipated2, Spearman correlations for the relative fold changes 
between measurements obtained by two cohorts of mice appeared 
small (interquartile range (0, 0.250)) and, in some cases, even slightly 
negative (Supplementary Fig. 2b). Of direct relevance to our efforts 
to evaluate the performance of our machine learning approach, the 
Spearman correlations between observed relative fold changes and 
predicted relative fold changes (Extended Data Fig. 1a), however, 
resembled or exceeded those observed between both cohorts (Sup-
plementary Fig. 2b).

Comparison to differential gene expression analysis. We found good 
agreement between the prediction accuracy of our gradient-boost-
ing regression models and the number of expressed genes detected 
to be differentially expressed (Extended Data Fig. 2). We also found 
that gradient-boosting regression reached statistical significance 
(P < 0.01) for tissue–age pairs where the transcript of no single gene 
was statistically significantly differentially expressed at a Benjamini–
Hochberg-adjusted P-value cutoff of 0.05 (Extended Data Fig. 2c), 
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suggesting that differential gene expression analyses might yield false- 
negative findings.

Alternate bioinformatics. To ensure robustness of results beyond 
individual bioinformatic pipelines, we reanalyzed in-house bulk RNA-
seq datasets using the publicly available nf-core/RNA-seq pipeline 
version 1.4.2 implemented in Nextflow 19.10.0 using Singularity 3.2.1–1 
with the minimal command: nextflow run nf-core/rnaseq -r 1.4.2 –
singleEnd -profile singularity –unStranded –fc_group_features_type 
‘gene_id’75,79,80. Briefly, lane-level reads were trimmed using trimGalore! 
0.6.4 and aligned to the GRCm38 genome using STAR 2.6.1d81. Gene-
level assignment was then performed using featureCounts (1.6.4)82. 
Included in the nf-core/RNA-seq QC output is a matrix of Pearson corre-
lations of log2(CPM) values generated using edgeR (3.26.5)83. Lanes with 
Pearson R < 0.7 compared to all other lanes constituting a given sample 
were excluded from further analysis. Extant lanes were then merged 
by sample with SAMtools 1.6 using the minimal command ‘samtools 
merge --r’84. Merged BAM files were then reassigned using Rsubread 
1.32.4 in R 3.5.1 using the minimal command ‘featureCounts(files, 
annot.inbuilt = ‘mm10’, minFragLength = 25)’ and merged into separate 
datasets by tissue in DESeq2 (1.22.2)69,82. Using a combined factor of 
age, and influenza dose (plaque-forming units), differential expres-
sion analysis (DEA) was performed with the formula ‘~combined’. A 
local estimate of gene dispersion best fit observed dispersions in all 
cases. DEA was therefore performed using the minimal command 
‘DESeq(dataset, fitType = ‘local’, parallel = T)’. DEA tables were output 
for all permutations of age and influenza dose for a given tissue and 
analyzed as above.

Length correlations. To avoid assumptions on linearity, we used the 
Spearman correlation between transcript length and relative fold 
change of transcripts in older individuals over younger ones. Signifi-
cance was obtained through the scipy.stats (version 1.2.1) implementa-
tion of the Spearman correlation67.

For human GTEx data, we restricted our analysis to tissues present 
in samples from young and middle-aged and old donors.

Quantification through difference in median transcript length. We 
alternatively quantified the length-associated transcriptome imbal-
ance through the difference in median transcript length among those 
genes that, in a differential gene expression analysis, showed a signifi-
cant relative fold increase and the transcript length of those genes that 
showed significant relative fold decrease.

Technical robustness checks. As technical artifacts could affect tran-
scripts according to length40,42,43, we further tested the robustness of 
the recovered length-associated transcriptome imbalance.

First, we repeated our initial analysis (Fig. 1c) and filtered the data-
sets for those organs where the relative fold changes correlated across 
both cohorts exceed a Spearman correlation of 0.2 and found that 
the correlation between transcript lengths and relative fold changes 
persisted (Supplementary Fig. 6a). Further, and based on counting 
the tissues exceeding a Spearman correlation of 0.2, we noted, as 
expected21, that the age-dependent changes were most reproducible 
when comparing 24-month-old organs against 4-month-old organs 
(Supplementary Fig. 6a). Second, we did not observe changes in RNA 
integrity with age (Supplementary Fig. 6b). Third, we observed the 
same correlations between transcript length and relative fold change 
if we removed the requirement for the annotation of genes to be sup-
ported by several lines of evidence such as gene symbols or litera-
ture published in MEDLINE, lowering the likelihood that our findings  
could be an artifact of the stringency of applied gene annotations 
(Supplementary Fig. 6c).

For our fourth robustness check, we excluded samples where 
the sequencing data yielded lower-quality metrics. Reassuringly, this 

yielded practically identical measurements of the length correlations—
with two conditions (12-month-old lung, and 18-month-old large intes-
tine) even turning a positive correlation (favoring long genes) toward 
the more negative correlation (disfavoring long genes) as seen for the 
majority of conditions (Supplementary Fig. 6d). Solely, the condition 
with the strongest imbalance (18-month-old large intestine), now 
showed a weaker imbalance (Spearman correlation with length, from 
−0.67 to −0.24; Supplementary Fig. 6d). As a fifth robustness check, 
and after our initial discovery of the age-dependent length correla-
tion, we asked one team member, who was not involved in the design 
or execution of the initial bioinformatic preprocessing, to prepare 
an independent bioinformatic pipeline, QC and sample filtering, and 
differential gene expression analysis. To mitigate the potential risk 
associated with custom pipelines, the team member used nf-core/
RNA-seq, which provides community-curated bioinformatics pipe-
lines80. Again, we observed practically identical measurements of the 
length correlations—with 18-month-old hearts again turning a positive 
correlation toward the more representative negative correlation (Sup-
plementary Fig. 6e). Sixth, we excluded, after the bioinformatic pro-
cessing and differential gene expression analysis, genes with a known 
annotation relating to the inflammatory response (genes that tend to 
be short) and neuronal genes (genes that tend to be long). Again, we 
observed practically identical measurements of the length correlations  
(Supplementary Fig. 10f).

Seventh, after a non-parametric LOWESS regression between 
transcript length and relative fold changes42,85, we no longer observed 
any length-associated transcriptome imbalance when considering the 
correlation between transcript lengths and residual fold changes after 
LOWESS regression. This suggests that the length-associated transcrip-
tome imbalance is a transcriptome-wide phenomenon that could be 
accounted for by transcript length alone (Supplementary Fig. 10g).

Eighth, reanalyzing published transcript degradation rates43, we 
found that longer transcripts were slightly more stable when compared 
to other transcripts across the genome (Spearman, −0.03; Supplemen-
tary Fig. 10h).

Ninth, we tested if a length-associated transcriptome imbalance 
persists if, instead of transcript length, we considered other, correlated 
(Extended Data Fig. 3a) readouts of length. We therefore measured 
the correlation between the observed relative fold changes and the 
median gene length (Supplementary Fig. 7a,b) and the median length  
of the coding sequence (Supplementary Fig. 7c,d). Indeed, we 
continued to detect a length-associated transcriptome imbalance  
(Supplementary Fig. 7).

Biological variation. We determined whether our sample size of six 
mice would be sufficient to conclude whether the length-associated 
transcriptome imbalance measured between mice of distinct chrono-
logical ages would exceed the length-associated transcriptome imbal-
ance seen among mice of the same chronological age. We performed 
retrospective subsampling of all mice of a given chronological age and 
separated them into two equally sized groups (or three versus two mice 
if one sample had not been processed; Supplementary Table 1). For each 
possible permutation of separating mice into two different groups, we 
measured the correlation between transcript lengths and the relative 
fold changes of transcripts between those two groups. Comparing 
these permutations against the length-associated imbalance that we 
observed across distinct chronological ages, we inferred that—given the 
number of 17 organs and target sample size of 6 mice—we can presently 
only conclude for the comparison between 4-month-old and 24-month-
old mice that the majority of organs demonstrate an imbalance with 
age that exceeds interindividual variability (Mann–Whitney U < 0.001; 
Fig. 1c and Supplementary Fig. 8a,b).

Next, we performed all pairwise comparisons between all mice of 
a given age relative to all 4-month-old mice. Reminiscent of our preced-
ing analysis, we observed the imbalance was most pronounced when 
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comparing 24-month-old mice against 4-month-old mice (Supplemen-
tary Fig. 8b). For all but two organs (lung and skin; Supplementary Fig. 
8c), we found a relative fold decrease of long transcripts for more than 
half of all pairwise comparisons. Notably, the occurrence of a general 
trend of the length correlation by age does not indicate that all possi-
ble combinations of mice show a fitting reduction of long transcripts 
by age. Across all combinations, and organs, we found this fraction 
to be 67% (interquartile range (53%, 81%)), indicating that the length-
dependent imbalance against long transcripts is not fully penetrant 
(Extended Data Fig. 8c).

NanoString. NanoString analysis was performed by NUSeq Core using 
the metabolism panel (v1).

Samples were hybridized overnight at 65 °C for 16 h, according 
to NanoString’s recommended protocol. As all samples were DV300 
>90% (that is, 90% of the RNA species should be of 300 nucleotides 
or longer), 75 ng input RNA was used for each hybridization reaction. 
Samples were then immediately loaded into the NanoString nCounter 
cartridges and processed. Differential expression was performed using 
nSolver version 4.0.70 (NanoString) between the 4-month group and 
the 24-month group using default parameters.

Reanalysis of previous studies. We considered genes reported to 
show a relative fold decrease or relative fold increase in earlier stud-
ies. For mice and rats, we used protein-coding genes with at least one 
research publication and an official gene symbol, and the median 
transcript lengths derived from GenBank. For killifish, we used genes 
and gene lengths as reported by Reichwald et al.19.

For studies reporting transcriptome measurements (Schaum 
et al.22 and Shavlakadze et al.21), we used a significance threshold of 
P < 0.01 for the correlation between transcript length and relative fold 
changes. For studies that only provided lists of differentially expressed 
genes and their relative fold increase or relative fold decrease (Benay-
oun et al.20 and Reichwald et al.19), we applied a two-sided Mann–
Whitney U test, to determine whether the median transcript length 
of transcripts with a relative fold increase was different at the P < 0.01 
level from the median length of transcripts with a relative fold decrease. 
In case that multiple ages were tested separately by individual stud-
ies, we selected the ages closest to 4 and 24 months of age for young  
and old, respectively.

Single-cell transcriptome imbalance. As cell types, we considered 
the cell_type and cell_ontology_class columns within the respective 
meta-data tables contained in the h5ad files of Kimmel et al.23 and 
Tabula Muris Senis24. We only considered protein-coding genes that 
were detected in at least one cell of a given cell type in an individual 
organ in a given study. We determined the transcriptome imbalance 
for each cell type by correlating transcript length against the log2-fold 
ratio formed by the summed raw counts of the older animals divided 
by the summed raw counts of the younger animals.

Exclusion of genes with inflammation and neuronal function. To 
determine robustness beyond short stress-induced genes and long 
neuronal genes, we removed them from our analysis after bioinfor-
matic processing. We excluded genes if the lowercase spelling of the 
Gene Ontology term contained ‘immune’, ‘stress’, ‘inflamm’ or ‘infect’, 
‘brain’, ‘neuro’, ‘nerv’, ‘cerebral’, ‘cortex’ or ‘memory’.

Mapping of rhesus macaque genes. For the analysis of Murray et al.86, 
we mapped genes to human transcript length through gene symbols 
shared with humans.

Analysis of Flynn et al.. Contrasting other anti-interventions, we 
reanalyzed the raw data of Flynn et al.87 as, despite the statement 
in a corresponding figure legend, their study did not include the 

corresponding supplementary table with differential gene expres-
sion results (Supplementary Table 3).

Functional enrichments. We considered the genes with the 5% short-
est and 5% longest median transcript length. We used the annotation 
of pro-longevity and anti-longevity genes from HAGR29,88,89. If genes 
were simultaneously annotated as pro-longevity and anti-longevity 
genes (21 of 665 in human, 19 of 665 in mice), we kept both annotations. 
After intersecting with protein-coding genes with a reported transcript 
length, this yielded 417 anti-longevity and 267 pro-longevity genes in 
humans, and 307 anti-longevity and 200 pro-longevity genes in mice. 
Our rationale was to adhere to the most comprehensive curation of 
individual longevity genes.

For differential enrichment, we considered genes enriched among 
the genes with transcripts of one length extreme (5% shortest and 5% 
longest) at a Benjamini–Hochberg P value < 0.05 and depleted among 
the genes with the other length extreme. Unless indicated otherwise, 
we restricted the background gene lists for the enrichment to those 
genes carrying at least one annotation.

False-positive rate of opposing enrichment and depletion. To 
understand whether an opposing enrichment and depletion of Gene 
Ontology terms is common, we asked explicitly whether the number 
of categories that were opposingly enriched among short and long 
transcripts (Supplementary Tables 7–10) was higher than would be 
expected by chance when comparing two random samples drawn from 
the length distributions observed in the mouse and human genomes. 
We performed 100 randomizations for mouse and 100 randomizations 
for human genes. For mice, no single randomization identified any 
annotation. For humans, 1 of 100 randomizations identified a single 
annotation (of 14,223 possible annotations for mouse genes, and 15,371 
possible annotations for human genes), while the remaining 99 rand-
omizations identified no annotations. These values were significantly 
lower than the number of annotations that we observed when using the 
shortest and longest transcripts of mouse and humans, that is, 138 and 
140, respectively (Supplementary Tables 7–10).

Alternative enrichment analysis for longevity genes. As an additional 
analysis, which we expected to have lower statistical power due to the 
increased number of uninformative genes, we repeated our enrich-
ment analysis while considering all protein-coding genes, rather than 
solely those occurring in the database used for annotation (Extended 
Data Fig. 9g,h). We observed that the directionality in these trends 
with aging always persisted in human and persisted in three of four 
cases in mice—with the exception being anti-longevity genes among 
the longest transcripts. Notably, for humans, one case—the depletion 
of anti-longevity genes from the longest transcripts did not reach sta-
tistical significance (two-sided Fisher’s exact P = 0.31). Further, in mice, 
the enrichment of anti-longevity genes among the shortest transcripts 
did not reach statistical significance (two-sided Fisher’s exact P = 0.31).

Annotation network construction. To organize annotations according 
to their similarity in the shared genes rather than the human-imposed 
hierarchical organization, we represented the annotations found to be 
enriched as nodes, drew edges between two nodes if at least one gene 
carried both annotations and simply the network as follows: Starting 
with node with the fewest attached genes, we kept the edge from that 
node to the node with the largest intersection set of attached genes. In 
case of a tie, that is, in case there were several nodes with intersection 
sets of attached genes of the same size, we kept the edge to the node 
with the fewest number of attached genes. In case a tie remained, we 
kept the edge to the annotation node with the fewest genes attached 
but now including genes that were not included in the enrichment 
analysis. We repeated this procedure for the other nodes in order of 
increasing number of genes attached.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
RNA-seq data created during this study, and used for Fig. 1 have been 
deposited under GSE141252. Data underlying other figures have been 
generated by other research groups and are available from them and/
or their respective publications.
Externally generated data can be obtained from the following resources 
listed according to their order of usage:
Gallego Romero et al.43 (Additional File 11), Schaum et al.22 (https://fig-
share.com/articles/Differential_Gene_Expression/12227531), Benayoun 
et al.20 (Supplementary Table 4), Shavlakadze et al.21 (Supplementary 
Table 1), Reichwald et al.19 (Supplementary Data 4), Kimmel et al.23 
(http://mca.research.calicolabs.com), Tabula Muris Senis (https://
figshare.com/articles/Processed_files_to_use_with_scanpy_/8273102 
and https://figshare.com/articles/Processed_files_to_use_with_
scanpy_/8273102), GTEx (https://gtexportal.org/home/datasets 
version 7; dbGaP accession phs000424.v7); Martinez-Nunez et al.91 
(Supplementary Data file);
Flynn et al.87 (GSE48043); Mattson et al.92 (Table S2);
Amador-Noguez et al.90 (Supplementary Table 1 for Ames Dwarf  
mice and Supplementary Table 2 for Little mice), Ng et al.95  
(Table S8), Murray et al.86 (Supplementary Tables 1A and 1B);  
Luizon et al.96 (Supplementary Table 1); Hofmann et al.97  
(Supplementary Fig. 11); Dembic et al.98 (Appendix); Selman et al.94 
(Supplementary Tables 2–4);
Hoffman et al.93 (Supplementary Table 5);
Jochems et al.99 (Supplementary Table 2); Lu et al.28 (Supplementary 
Fig. 4).
Additional data used in this study were:
Gene Transcription Regulation Database version 18.06 (http://gtrd.
biouml.org:8888/downloads/18.06/); miRDB version 5.0 (http://mirdb.
org/download/miRDB_v5.0_prediction_result.txt.gz);
Genes and transcript sequences from GenBank (GRCh38.p10  
for human, and GRCm38.p5 for mice; ftp://ftp.ncbi.nlm.nih.gov/
genomes);
GTEx Portal version 7 (https://www.gtexportal.org/home/datasets/);
Exons from Biomart, using human genome GRCh38.p12 and mouse 
genome GRCm38.p6 (https://www.ensembl.org/biomart/);
HAGR29,88,89, specifically Longevity Map Build 3 and GenAge Build 19 
(https://genomics.senescence.info/);
Homologene, version 68 (https://ftp.ncbi.nlm.nih.gov/pub/
HomoloGene/).
Gene Ontologies using the mapping to NCBI were provided by the 
National Library of Medicine (https://ftp.ncbi.nlm.nih.gov/gene/DATA/
gene2go.gz)

Code availability
Code used during data analysis can be accessed through https://github.
com/NUPulmonary/stoeger_et_2022_transcriptome_imbalance/.
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Extended Data Fig. 1 | Performance of Gradient Boosting Regression (GBR) 
models, related to Fig. 1. (a) We defined prediction accuracy (ρGBR) as the 
Spearman correlation between observed and predicted relative fold-changes. 
(b) Significance of the prediction accuracy using t-distribution for two-sided 
significance test for Spearman correlation66. (c) Density map of scatter plot 
of observed and predicted relative fold-changes obtained from the cerebella 
of 9-months old mice. There is clear correlation between the predicted and 
observed relative fold-changes, which we quantify through the GBR prediction 
accuracy (ρGBR). (d) Comparison of prediction accuracy following Monte Carlo 

cross-validation, the default cross-validation scheme of this manuscript, 
against predication accuracy following four-fold cross-validation for individual 
combinations of tissues and ages (black dots). In Monte Carlo cross-validation 
a given gene will on average be used nine times for developing the gradient 
boosting regression, and on average once for quantifying its performance. In 
four-fold cross-validation each gene will be considered exactly three times for 
developing the gradient bossing regression, and exactly once for quantifying its 
performance.
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Extended Data Fig. 2 | Gradient boosting regression prediction provides 
good accuracy even when no genes are detected as significantly 
differentially expressed, related to Fig. 1. (a) Number of differentially 
expressed genes relative to 4-month-old tissues detected at a false discovery 
rate of 0.05. Values shown are log10 (detected differentially expressed genes + 
1). For example, a value of 1 in the figure indicates that 9 genes were detected 
to be differentially expressed. (b) Relationship between performance of the 
prediction accuracy (ρGBR) and the number of individual genes detected as 
differentially expressed at a false discovery rate of 0.05 across all tissue-age 

pairs. Reassuringly, we find a positive correlation between the two measures 
indicating that the ability to predict relative fold-changes is related to there being 
more genes differentially expressed. Shaded grey area indicates tissue-age pairs 
without any gene that is being detected as differentially expressed. (c) As panel 
b, but showing the significance of correlation between number of differentially 
expressed genes and the prediction accuracies instead of the prediction accuracy 
(ρGBR). Significance is determined using t-distribution for two-sided significance 
test for Spearman correlation66.

http://www.nature.com/nataging


Nature Aging

Analysis https://doi.org/10.1038/s43587-022-00317-6

Extended Data Fig. 3 | Length-related features contain highly similar 
information toward age-dependent changes of the mouse transcriptome, 
related to Fig. 1. (a) Pairwise Spearman correlation between selected features. 
(b) Prediction accuracy of relative fold-change for samples from tissues of 
24-month-old animals after excluding, in turn, gene length, transcript length, 
coding sequence (CDS) length, or no feature. The similarity of results confirms 
that all three length-related features provide the same level of information. (c) 

Importance of individual features or of the best-ranked feature within one group 
of related features in the gradient boosting regression models across n=17 tissues 
from 9-months-old mice. In boxplots center is median, notches bootstrapped 
95% confidence interval of median, bounds of box 25% and 75% percentiles, 
whiskers extend height of box 1.5 times, minima and maxima observed minima 
and maxima.
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Extended Data Fig. 4 | Length-associated transcriptome imbalance for 
individual tissue-age pairs, related to Fig. 1. (a) Length correlations (ρTI) are 
defined as Spearman correlation between median transcript length and relative 
fold-changes observed during aging. Note how most length correlations are 
negative. (b) Significance of correlation of panel a. Displayed significance values 

are cropped at 10−50. Note how most P values are lower than 10−20. Significance 
is determined using t-distribution for two-sided significance test for Spearman 
correlation66. (c) Number of detected genes underlying the computed length 
correlations (ρTI). Note how in nearly all cases, the correlation was obtained using 
more than 5,000 protein-coding genes.

http://www.nature.com/nataging


Nature Aging

Analysis https://doi.org/10.1038/s43587-022-00317-6

a
ρTI = –0.16
P < 10-60

ρPI = –0.13
P < 10-17

R
el

at
iv

e 
fo

ld
-c

ha
ng

e
pr

ot
ei

n

R
el

at
iv

e 
fo

ld
-c

ha
ng

e
R

N
A

log10 transcript length

b

2.5 3.0 3.5 4.0 4.5
−1.00
−0.75
−0.50
−0.25

0
+0.25
+0.50
+0.75
+1.00

2.5 3.0 3.5 4.0 4.5
−15

−10

−5

0

+5

+10

+15

log10 transcript length

Extended Data Fig. 5 | Age-dependent length correlation persists in 
transcriptomic and proteomic data of Takemon et al.18, related to Fig. 1. 
(a) Relative fold-change of age-dependent transcript change as reported by 
Takemon et al.18 who integrate information of transcriptomic change in kidneys 
of 12- and 18-month-old mice versus 6-month-old mice. Length correlations (ρTI) 
describes Spearman correlation between median transcript length, and relative 
fold-change of transcripts. We highlight with black circles those 10 genes with a 
relative fold-decrease and 186 genes with a relative fold-increase identified by an 
adjusted P value below 0.01 provided by the authors, who obtained P values from 
DESeq2 using a likelihood ratio test. (b) Relative fold-change of age-dependent 

protein change as reported by Takemon et al.18 who integrate information of 
proteomic change in kidneys of 12- and 18-month-old mice versus 6-month-
old mice. Proteome length correlations (ρPI) describes Spearman correlation 
between median transcript length, and relative fold-change of proteins. The thin 
and thicker black lines indicate outermost boundaries of 80% and 90% of kernel 
density estimate, respectively. We highlight with black circles those 292 genes 
with a relative fold-decrease and 186 genes with a relative fold-increase identified 
by an adjusted P value below 0.01 provided by the authors, who obtained P values 
from DESeq2 using a likelihood ratio test.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Robustness of observation of length-associated 
transcriptome imbalance in humans, related to Fig. 3. (a) Length correlation 
after excluding genes annotated for inflammatory and neuronal processes 
across all 43 tissues of female donors and all 43 tissues of male donors (dark grey) 
and across 12 brain tissues of female donors and 12 brain tissues of male donors 
(brown) considered. P values represent two-sided Mann Whitney U tests with U 
values of 571 and 459 tissues from middle-aged and old donors, respectively.  
(b) We find a length-associated transcriptome imbalance for tissues from female 
(top) and male donors (bottom). n=median across all 43 tissues of female donors 

and all 43 tissues of male donors (dark grey) and across 12 brain tissues of female 
donors and 12 brain tissues of male donors (brown), respectively. In boxplots 
center is median, notches bootstrapped 95% confidence interval of median, 
bounds of box 25% and 75% percentiles, whiskers extend height of box 1.5 times, 
minima and maxima observed minima and maxima. P values represent two-sided 
Mann Whitney U tests with U values of 136 and 122 for tissues from middle-aged 
and old female donors and U values of 148 and 121 from middle-aged and old male 
donors, respectively. (c) As Fig. 2a but additionally including human tissues.
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Extended Data Fig. 8 | Anti-aging interventions oppose the relative fold-
decrease of long transcripts, related to Fig. 4. (a) We use color-coding in all 
panels to indicate genes transcripts showing a relative fold-decreased (white) 
or relative fold-increase (grey) according to the authors of the respective 
studies. (b) Transcript length for genes reported by Ng et al.95 to be differentially 
expressed in the liver of mice eating every other day for three months after 
reaching 3 months of age. (c) Transcript length for genes reported to be 
differentially expressed in Little mice by Amador-Noguez90 for the liver in an 
analysis including 3, 6, 12, and 24-month-old animals. (d) Transcript length 
for genes reported to be differentially expressed by Luizon et al.96 following 
exposure of primary human hepatocytes to metformin. (e) Transcript length for 
genes reported to be differentially expressed in Myc haploinsufficient mice by 
Hofmann et al.97 for indicated tissues and in 5-month-old (young) and 24-month-
old (old) mice. Note that for 5-month-old muscle no comparison is given as 
no gene was reported to show a relative fold-decrease. (f) Transcript length 

for genes reported to be differentially expressed by Dembic et al.98 following 
exposure of human primary fibroblasts to resveratrol. Given the genome-wide 
readout provided by the authors we could additionally compute P values using 
t-distribution for two-sided significance test for Spearman correlation66, which 
will yield 0.0002. (g) Transcript length for genes reported to be differentially 
expressed by Jochems et al.99 following exposure of cultured cells toward at least 
one senolytic compound. P values were estimated by two-sided Mann-Whitney 
U test. n indicates number of genes with a relative fold-decrease and relative 
fold-decrease of their transcripts. Given the genome-wide readout provided by 
the authors we could additionally compute P values using t-distribution for two-
sided significance test for Spearman correlation66, which will yield 7.0e-9. (b-g) 
In boxplots center is median, notches bootstrapped 95% confidence interval of 
median, bounds of box 25% and 75% percentiles, whiskers extend height of box 1.5 
times, minima and maxima observed minima and maxima.
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Extended Data Fig. 9 | Transcript length and reported association to the 
biology of aging, related to Fig. 5. (a) Fold enrichment for ‘pro-longevity’ 
(P, green) and ‘anti-longevity’ (A, orange) genes among the genes with the 
10% shortest and 10% longest median transcript lengths in humans. Negative 
enrichment indicates depletion. (b) As panel a, but for mice. (c) Letter value plot 
of all 294 pro-longevity and 455 anti-longevity genes across the human genome, 
with all protein-coding genes ranked according to length and rank transformed 
to percentile. (d) Letter value plot but for all 219 pro-longevity and 335 anti-
longevity genes across the mouse genome, with all protein-coding genes ranked 
according to length and rank transformed to percentile. (e) Letter value plot of 
transcript length of all 294 pro-longevity and 455 anti-longevity genes across the 
human genome. (f) Letter value plot of transcript length all 219 pro-longevity 
and 335 anti-longevity genes across the mouse genome. (g) As Fig. 5a, but using 
all human protein-coding genes as the set being analyzed instead of restricting 

enrichment analysis toward genes with at least one annotation and focusing 
on the 5% shortest and 5% longest median transcript lengths. (h) As Fig. 5b, but 
using all protein-coding genes as the set being analyzed instead of restricting 
enrichment analysis toward genes with at least one annotation and focusing on 
the 5% shortest and 5% longest median transcript lengths in mice. (a,b, g, h) n 
indicates the absolute number of genes with a pro-longevity and anti-longevity 
phenotype among the genes with 5% or 10% (as indicated as focus in pales) 
shortest and longest median transcript lengths and e indicates expected number 
of genes with a pro-longevity and anti-longevity phenotype if there was no 
association between transcript lengths and longevity phenotypes. P values were 
estimated by two-sided Fisher’s exact test. (c-f) Letter value plots shows median 
as black lines, boxes of decreasing width percentiles of data according to letter 
ratios (+/− 25%, +/−37.5, +/−43.75, etc.), and observed minima and maxima as 
diamonds. P values are from two-sided Mann-Whitney U test.
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Extended Data Fig. 10 | Network of Gene Ontologies enriched for transcripts 
of one length-extreme and depleted from the other, related to Fig. 5. Human 
Gene Ontology analysis for annotation enrichment among genes with transcripts 
in the bottom 5% of gene lengths and annotation depletion among genes with 
transcripts in the top 5% of gene lengths. Area of circle is proportional to number 

of genes in set. Edges represent highest embedding of a lower-level hierarchical 
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