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Agingis associated withasystemic
length-associated transcriptomeimbalance
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Aging isamong the mostimportant risk factors for morbidity and mortality.
To contribute toward a molecular understanding of aging, we analyzed
age-resolved transcriptomic data from multiple studies. Here, we show that
transcriptlength alone explains most transcriptional changes observed with
aging in mice and humans. We present three lines of evidence supporting
the biologicalimportance of the uncovered transcriptome imbalance.

First, in vertebrates the length association primarily displays a lower

relative abundance of long transcripts in aging. Second, eight antiaging
interventions of the Interventions Testing Program of the National Institute
on Aging can counter this length association. Third, we find that in humans
and mice the genes with the longest transcripts enrich for genes reported to
extend lifespan, whereas those with the shortest transcripts enrich for genes
reported to shorten lifespan. Our study opens fundamental questions on
aging and the organization of transcriptomes.

The transcriptome responds rapidly, selectively, reproducibly and
strongly to a wide variety of molecular and physiological insults expe-
rienced by an organism'. While the transcripts of thousands of genes
have been reported to change with age?, the magnitude by which most
transcriptlevels change is smallin comparison with classical examples of
generegulation®*. We hence hypothesize that agingis associated with a
phenomenon that affects the transcriptomeinasubtle but global manner

thatgoes unnoticed when focusing onthe changesinexpression of indi-
vidual genes. Specifically, the small magnitudes of change forindividual
genes open the possibility that analyses requiring the transcript levels
of individual genes to reach specific statistical significance thresholds
might not be able to discern statistically significant global changes.
Supporting the perspective that changes may occur at a global
level, several studies on animals have reported that RNA formation
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decreases during aging*~°. Moreover, Vermeij et al." suggested for
mice and humans that age-dependent DNA damage leads to a reduc-
tion in the expression of long genes by inferring with transcriptional
elongation. In contrast to this global perspective, many studies report
that transcription factors and microRNAs (miRNAs) can also mediate
age-dependent change of transcripts™">. While both global and gene-
centric processes contribute to age-dependent changes, it remains
unclear which one dominates.

Results

Gradient-boosting regression of transcriptomic changes

To avoid potential ambiguity about experimental or analytical choices
within datasets from published studies, we performed RNA sequencing
(RNA-seq) to measure and survey the transcriptome of 17 tissues from
C57BL/6) mice raised under standardized conditions and provided
fromthe colonies of the National Institute on Aging (NIA). We collected
data on male mice of 4, 9,12, 18 and 24 months of age. For every age,
we considered six mice, except for rare occasions where amouse died
before datacollection, or sample preparation failed for experimental
reasons (see Supplementary Table 1for the number of mice for each
tissue and age).

We defined age-dependent transcriptional changes of an indi-
vidual gene as the fold change of its transcript abundance, whichin turn
we measured as the log,-transformed ratio of the signal attributed to
transcripts of one gene at agiven agerelative to the signal attributed to
transcripts of that genein the same tissue of 4-month-old mice. As total
RNA abundance changes for several tissues and cell types during the
lifespan of animals*~’, it isimportant to point out that most transcrip-
tomic studies—including ours—included animplicit normalization of
the abundance of one transcriptrelative to all other transcripts. Hence,
an observed fold increase for a transcript could still correspond to a
lower number of transcript molecules if the molarity of transcripts
wasreduced for most genes. To explicitly acknowledge this normaliza-
tion, we used the terms ‘relative fold increase/decrease’ and ‘relative
fold change’instead of the more commonly used terms ‘fold increase/
decrease’ and ‘fold change’. To avoid introducing assumptions about
the dynamics of temporal changes of transcripts with aging, through-
out the paper we considered pairwise comparisons between a given
age and 4-month-old mice.

We used a machine learning approach to identify molecular fea-
turesassociated with therelative fold change with age of every protein-
coding gene of mice (Supplementary Fig.1). Tobe comprehensive, we
considered 2,236 broadly cataloged"" features of individual genes
and transcripts. Of these, 310 corresponded to transcription factor
binding sites that have been validated in at least one genome-wide
assay™, whereas1,912 corresponded to predicted miRNA binding sites®.
Lastly, 14 features corresponded to architectural properties of genes
or transcripts such as the number of exons, guanine-cytosine (GC)
content, chromosome number, the number of alternate
transcripts and the length of the gene and mature transcripts (Sup-
plementary Table 2).

We used gradient-boosting regression'® because it is widely
regarded to avoid over-fitting and does not require the amounts of
dataneeded for deep learning approaches. Briefly, gradient-boosting
regression creates ensembles of decision trees where optimal criteria
forthebranchingofthe tree are determined by the features considered.
Gradient boosting iteratively adds decision trees to the ensemble so
that the difference between observed changes and changes inferred
by the ensemble decreases. We quantified the difference between
observed and inferred changes using a Huber loss function”, which
for a given total absolute distance will favor those ways of branching
thetrees where the distance will arise from many genes having a small
distance while disfavoring those ways of branching the trees where the
distance would arise from a few genes having a large distance. This is
called the model training step.

Forevery unique tissue—age pair, we created ten gradient-boosting
regression models with each model randomly sampling 90% of all
genes. We then evaluated the predictionaccuracy for every tissue-age
pair by applying the trained model to the 10% of genes excluded from
the training steps. We evaluated the prediction accuracy as the Spear-
man correlation between observed and median predicted relative
fold changes. Note that the evaluation of the prediction accuracy of
thegradient-boosting regression (Extended Data Fig. 1a-c) remained
unchanged when following an alternative procedure to sample genes
(Extended DataFig. 1d). Further, the prediction accuracy of gradient-
boosting regression matched the experimental accuracy between
two cohorts of mice, which each consist of three mice euthanized on
different days (Methods and Supplementary Fig. 2).

Lastly, we compared gradient-boosting regression against differ-
ential gene expression analyses” and found both approaches to be in
good agreement, but gradient-boosting regression was more sensitive
(Methods and Extended Data Fig. 2).

Transcriptlengths explain transcriptomic changes

Gradient-boosting regression not only yields predictions about the
relative fold change of transcripts but also informs on theimportance
ofindividual featuresto the accuracy of those predictions. We are thus
able toreturn to our initial motivation to identify molecular features
associated with the relative fold change of every protein-coding gene.

Amongthe 2,236 considered features, we found that the most con-
sistently informative feature is the median length of mature transcript
molecules (Supplementary Table 2), followed by the number of tran-
scription factors, the length of the gene and the median length of the
coding sequence (Fig. 1a and Supplementary Figs. 3 and 4). Note that
we started assembling the features before the first publication report-
ing on the association between aging and transcriptional elongation™.

Features relating to length—namely, the length of the mature tran-
script, thelength of the gene or the length of the coding sequence—were
correlated (Extended Data Fig. 3a). These 2,236 features do notinclude
thelength of primary transcripts because typically itis not well defined
withinthe GenBank sequence database. Among the 68 tissue-age pairs
(17 tissues multiplied by 4 age comparisons to 4-month-old animals),
63 pairs had at least one of the features relating to length among the
top 5explanatory features (Fig. 1a). Demonstrating redundancy across
distinct features describing length, omission of any of these features
did not affect model performance (Extended Data Fig. 3b).

Note that length-related features are more informative than fea-
tures describing the binding of any specific transcription factor or
miRNA (Fig.1a). Transcriptlength also was the mostinformative feature
for the earliest age comparison possible with our experimental survey,
9-month-old versus 4-month-old animals (Extended DataFig. 3¢c), hint-
ingataprocess with an early onset.

To determine whether transcript length could directly associ-
ate with age-dependent changes of the transcriptome, or whether
transcript length informs on age-dependent transcriptional change
through combinatorial interactions with transcription factors, miRNAs
or other architectural features of the genome, we directly compared
observed relative fold changes against transcript length.

We used the Spearman correlationto create aglobal, genome-wide
metric that considers all detected transcripts instead of focusing on
asubset of individual genes. We defined the length correlation (py,)
as the Spearman correlation between transcript lengths and relative
fold changes. We found that this global age-dependent transcriptional
change extends beyond individual genes identified to be differen-
tially expressed (at adjusted P < 0.05) when considered in isolation
(Fig. 1b). When comparing transcriptomes of 9-month-old tissues
against those of 4-month-old tissues, 10 of 17 tissues already demon-
strated a statistically significant anticorrelation (P < 0.01; Fig. 1c and
Extended Data Fig. 4). The number of affected tissues then remained
statistically indistinguishable in 12-month-old and 18-month-old
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Fig.1| Observation of length-associated transcriptome imbalances.

a, Importance of individual features or of the best-ranked feature within one
group of related features in the gradient-boosting regression across n = 68
tissue-age pairs examined over one independent experimental series.

b, Association betweenlog,, transcript length and the relative fold change
intranscript abundance between esophagus samples from 4-month-old and
24-month-old mice. We quantified the observed length correlation using the
Spearman correlation between transcript length and relative fold changes (pr,).
Kernel density estimates use a linear gray scale. The thin and thicker black lines
indicate outermost boundaries of 80% and 90% of kernel density estimates,
respectively. Black circles highlight those genes with a relative fold decrease (58)
andrelative fold increase (46) identified by gene-specific differential expression
at aBenjamini-Hochberg-adjusted P value below 0.05 with the latter Pvalue
obtained by DESeq2, which uses a two-sided Wald test. ¢, Box plot of the 68 pr,
obtained from age comparisons across the n =17 tissues and four ages examined
over one independent experimental series. To provide a baseline for individual

Relative fold change

sample variability, we used permutation testing (beige shading) by assigning
mice of the same age to two groups and then obtaining p;, between them. ‘All’
marks alln =330 such permutations from dataacross all 17 tissues and median
per tissue. n =17 tissues were examined over one independent experimental
series. d, NanoString analysis with ametabolism panel to analyze relative fold
changes in large-intestine samples gathered from six 24-month-old and six
4-month-old mice. ‘Decr. and ‘incr. refer to genes with arelative fold decrease
and relative fold increase of their transcripts, respectively. We found n = 343
genes with arelative fold decrease and n = 420 genes with arelative fold increase
of their transcripts over one independent experiment. In the box plots (a, ¢

and d), the center is the median, notches indicate the bootstrapped 95%
confidence intervals of the median, bounds of the box represent the 25% and 75%
percentiles, whiskers extend up to 1.5 times the height of the box, and minima and
maxima are the observed minima and maxima. In c and d, we estimated P values
using two-sided Mann-Whitney U'tests (Extended Data Figs.1-5, Supplementary
Figs.1-8 and Supplementary Tables1and 2).

tissues (see 95% confidence intervals of medians as indicated by
notchesinFig.1c). For 24-month-old animals, 14 of 17 different tissues
displayed astatistically significant anticorrelation between transcript
lengths and relative fold changes (P < 0.01; Fig. 1c and Extended Data
Fig. 4) and the remaining 3 of 17 different tissues displayed a statisti-
cally significant positive correlation between transcript lengths and
relative fold changes (P < 0.01; Fig. 1c and Extended DataFig.4). Thus,
the relative abundance of transcripts from long genes can change
compared to those from short genes for old mice. To emphasize the
systemic nature of the association between transcriptlength and rela-
tive fold changes, we termed this phenomenon ‘length-associated
transcriptome imbalance’.

Before attempting a more detailed biological investigation of the
length-associated transcriptome imbalance in mice and other verte-
brates, we first performed a detailed interrogation of its robustness.
This interrogation showed that the imbalance can alternatively be
quantified by the difference in length in the median transcript length

of genes with a statistically significant relative fold increase of their
transcripts (adjusted P < 0.05) and the median transcript length of
genes with a statistically significant fold decrease of their transcripts
(adjusted P < 0.05; Supplementary Fig. 5). We could not find evidence
for potential technical artifacts related to the quality of sequencing,
the choice of data analysis pipeline, the induction of stress-response
genes, inter-animal variability, or whether we consider the length
of the transcripts or the genes or the coding sequence (Methods,
Fig.1cand Supplementary Figs. 6-8). Finally, and most importantly, we
directly confirmed our main finding of an age-related anticorrelation
between transcript length and relative fold changes by means of two
experimental approaches other than RNA-seq: NanoString (Fig. 1d)
and proteomics (Extended Data Fig. 5)'%.

Length association is robust across organisms
Torefine the scope of our observation of alength-associated transcrip-
tomeimbalanceinold mice, we extended our analyses to datasets from
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Fig.2| Age-dependent length-associated changes persist across organisms
and laboratories. a, Presence of a significant length-associated transcriptome
imbalance (Methods) in work by Schaum et al.”, Benayoun et al.?’, Shavlakadze
etal.”’ and Reichwald et al.””. NR, not registered; NS, not significant. b, Fraction
of n=17tissues of this study and n = 28 tissues of other studies listed in a that
showed asignificant relative fold decrease of long transcripts or a significant
relative fold increase. Tissues were counted for each occurrence in one of the
other studies. ¢, Fraction of detected n = 28 cell types in Kimmel et al.”, and
n=121cell types processed by FACS and n = 46 cell types processed using a
droplet-based approach (Tabula Muris Senis)* with a fold decrease of long
transcripts or asignificant relative fold increase. Cell types present in different
tissues were counted for each occurrence in one tissue. Comparisons are for each
occurrence of acell type, and relative fold changes observed between an old and
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Muris Senis**, between 3-month-old and 24-month-old mice and yielded 121 cell
types detected by FACS and 46 cell types detected by droplet-based sequencing.
d, Box plot of calculated Spearman correlation (py;) between log,, transcript
length and relative fold changes for the different cell types (n) reported for
individual tissues in Tabula Muris Senis FACS data. In the box plots, the center

is the median, notches indicate bootstrapped 95% confidence intervals of the
median, bounds of boxes are the 25% and 75% percentiles, whiskers extend up
to 1.5 times the height of the box, minima and maxima are the observed minima
and maxima. Black dots indicate individual cell types. Ina-c, the presence of an
association with length was assessed by a two-sided ¢-distribution significance
test of Spearman correlation® at P < 0.01. In b and ¢, individual data points
arenot shown as bars represent the fraction of tissues or cell types; thus, error
bars are 95% confidence intervals of bootstrapped estimates of these fractions
(Extended DataFig. 6, Supplementary Figs. 9-13 and Supplementary Table 3).

transcriptomic studies in mice and other vertebrates from a variety
of laboratories'2. To ensure that our findings are representative of
earlier reports on aging—and do not reflect upon some idiosyncrasy
of our experiments—in our calculations, we used the relative fold
changes reported by the authors of the published studies. For stud-
ies where relative fold changes for all genes are reported, we quanti-
fied the transcriptome imbalance through the length correlation py;,
defined as the Spearman correlation between transcript lengths and
relative fold changes. If only the genes found to have asignificant rela-
tive fold change of their transcripts were reported, we quantified the
transcriptome imbalance by difference in median transcript length
of relative fold-increased genes versus relative fold-decreased genes
(Supplementary Fig. 5).

We reanalyzed mouse data from two studies: Benayoun et al.*
and Schaum et al.”%. For the latter, we found that 10 of 17 mouse tis-
sues showed a length-associated imbalance against long transcripts
(P<0.01; Fig. 2a and Supplementary Fig. 9a-c). For the former, we
found that2 of 4 mouse tissues showed alength-associated imbalance
against long transcripts between 3-month-old and 29-month-old mice
(P<0.01; Fig. 2a and Supplementary Fig. 9d). Further, transcripts

reported by Benayoun et al.”° to change in relative abundance with
age independent of any specific tissue showed a length-associated
imbalance against long transcripts at the significance cutoff of P < 0.05
(Supplementary Fig. 9d).

We also reanalyzed the transcriptome data from rat samples
reported by Shavlakadze et al.” for four tissues and compared tran-
scriptome changes between 6-month-old and 24-month-old animals.
We found a statistically significant anticorrelation between relative
fold changes and transcript length for samples from gastrocnemius
and hippocampusttissues (P < 0.01; Fig.2a and Supplementary Fig.10),
and a significant positive correlation for samples of kidney (P < 0.01;
Fig.2aand Supplementary Fig.10a), but no significant correlation for
samples of liver (although the latter also showed a significant anticor-
relation when considering gene length instead of transcript length;
Supplementary Fig.10b).

Finally, we reanalyzed the transcriptome data from Kkillifish
samples reported by Reichwald et al."”” and compared transcriptome
changes between 5-week-old and 39-week-old animals. We quanti-
fied length here as gene lengths, as this was the feature reported
by the authors. We found a length-dependent and age-dependent
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and maxima are the observed minima and maxima (Extended Data Fig. 7,
Supplementary Figs. 14 and 15 and Supplementary Tables 4-6).

relative fold change in two of three killifish tissues (P < 0.01; Fig.2aand
Supplementary Fig. 11).

In their totality, these results support the hypothesis that the tis-
sues of several vertebrate model organisms display an age-dependent
transcriptome imbalance and that thisimbalance primarily displays a
relative fold decrease of long transcripts or genes. The fraction of such
tissues that we found in our study (-80%) is comparable (Fisher’s exact
P=0.11) to the fraction in other studies (-60%; Fig. 2b).

Length association is robust across cell types

Toresolve whether the length-associated imbalance observed among
the bulk transcriptomes of entire tissues reflects a change in cellular
composition orinthe molecular processes occurringin asubset of cell
types, we reanalyzed three datasets reporting single-cell transcrip-
tomic measurements during mouse aging. Data reported by Kimmel
et al.”? enabled us to compare samples from 7-month-old and 22- and

23-month-old mice. Fluorescence-activated cell sorting (FACS)-sorted
cellssubjected tofull-length transcriptome sequencing and, less-sensi-
tive?*, droplet-based cell isolation paired with sequencing of the 3’ end
oftranscripts datareported by Tabula Muris Senis enabled to compare
samples from 3-month-old and 24-month-old mice. Our reanalysis
revealed that most cell types demonstrated a statistically significant
anticorrelation between transcript lengths and age-dependent rela-
tivefold changes (210f28,102 of 121 and 31 of 46, respectively; Fig. 2c,
Extended Data Fig. 6 and Supplementary Table 3). We thus conclude
that a length-associated imbalance of the transcriptome occurs in
most cell types of mice, and—consistent with our findings for bulk
transcriptomes of entire tissues—mainly disfavors long transcriptsin
agedindividuals.

We next explore whether the extent of the length-associated imbal-
ance differed amongall detected cell types when comparing individual
tissues. We primarily considered FACS-sorted data of Tabula Muris
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Fig. 4| The age-dependent length-associated transcriptome imbalance is
responsive to several antiaging interventions. a, Share of the 11 antiaging
interventions of the Intervention Testing Program® tested that reduced
therelative fold decrease of long transcripts with aging. NS, not statistically
significant at the P < 0.01level following two-sided Mann-Whitney U test.

b, Transcript length for genes reported to be differentially expressed in Ames
mice’® for liver in an analysis including 3-, 6-,12- and 24-month-old animals.

¢, FGF21 excess for adipose tissue and skeletal muscle following exposure of
rhesus macaques to FGF21 (ref. *°). d, Rapamycin findings reported by Martinez-
Nunez et al.” for HEK293 cells following exposure, reported by Flynn et al.”’ for
hearts of 24-month-old mice following 3 months of exposure, and reported by
Mattson et al.” for cytotoxic T cells following 3 months of exposure. e, Transcript
length for genes reported to be differentially expressed in Snell mice” for
brown adipose tissue. f, Deletion of ribosomal S6 protein kinase 1 (S6K1)**

for 600-day-old female mice. g, Relative fold changes of transcriptsin retinal
ganglion cells of 12-month-old mice compared to 5-month-old mice®. h, Retinal
ganglion cells of 12-month-old mice following ectopic expression of Pou5f1, Sox2
and Kif4 (ref.?). Inb-h, the box plots of the lengths of transcripts show a relative
fold decrease (decr.) or relative fold increase (incr.) upon exposure (for details of
ref.¥, see the Methods). In the box plots, the center is the median, notches
indicate bootstrapped 95% confidence intervals of the median, bounds of boxes
are the 25% and 75% percentiles, whiskers extend up to 1.5 times the height of

the box, minima and maxima are the observed minima and maxima. Black dots
indicate observationsif the number of genes < 10. We estimated P values with
two-sided Mann-Whitney Utests. nindicates the number of genes with arelative
fold decrease and relative fold increase. The notches display bootstrapped 95%
confidence intervals of transcript length (Extended Data Fig. 8).
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Senis as it provides insight into the largest number of tissues, and
then ranked tissues according to the median length-associated tran-
scriptome imbalance of their cell types (Fig. 2d). Of all 136 pairwise
comparisons across the different tissues, only 5 comparisons show
significant (P < 0.01) differences (Supplementary Fig.12a). This overall
absence of statistically detectable tissue-specific differences per-
sisted when considering the other single-cell datasets (Supplementary
Fig.12b-e). Further, it resembled a similar ranking of tissues based
on the bulk RNA-seq data generated by us. While it is possible to rank
tissues according to the correlation between transcript lengths and
age-dependent relative fold changes of transcripts in this bulk RNA-
seq data (Extended Data Fig. 4 and Supplementary Fig.13), biological
variability between two cohorts of mice often exceeds observed dif-
ferences across tissues (Supplementary Fig. 13). We thus conclude
that either there are few differences across tissues or current mouse
studies do not have sufficient analytical power toreliably detect these
differences (Discussion).

Length-associated transcriptome imbalance in human aging
To determine whether a length-associated transcriptome imbalance
also occurs in human aging, we next reanalyzed data collected by the
Genotype-Tissue Expression (GTEx) consortium? from human tis-
sues at the time of death (Supplementary Fig. 14a). We again identi-
fied length-related features were predictive of relative fold change of
transcripts (Fig. 3a), with gene length here being the most informative
individual feature in the trained models (Fig. 3a and Supplementary
Table 4). For consistency with our preceding analyses, however, we
focused ontranscriptlength (Fig.3b,c). Our analysis of human tissues
again showed an anticorrelation between transcript length and rela-
tive fold changes (Fig. 3b,c and Supplementary Tables 5 and 6). This
finding was also recovered when considering either the length of the
gene or thelength of the coding sequenceinstead of transcript length
(Supplementary Fig.14b,c).

An anticorrelation between transcript lengths and relative fold
changes was already apparent for most tissues from middle-aged
donors (40-59 years) in comparison with those from young donors
(20-39 years; Fig. 3b). The share of tissues affected (-60%; Fig. 3d)
in old donors (60-79 years) was similar to that reported above for
the vertebrate model (Fig. 2). We conclude that a length-associated
transcriptomeimbalance also occursin humans and thatit too prefer-
entially leads to arelative fold decrease of long transcripts.

Giventhe large number of donors withinthe GTEx (Supplementary
Fig.14a), werevisited the question of whether the transcriptome imbal-
ance affects all tissues equally. We ranked tissues by the magnitude of
their transcriptome imbalance and found that we could reject this null
hypothesis (Supplementary Fig.15) as we observed that the imbalance
was significantly (P < 0.001) stronger in brain tissues (Mann-Whitney U
test values of 561and 486 for tissues from middle-aged and old donors;
Fig. 3b and Supplementary Fig. 15); this finding persisted even when
excluding genes relating to inflammatory and neuronal processes
(Extended Data Fig. 7a) or controlling for gender (Extended Data
Fig. 7b,c). This pattern is also consistent with the findings of an inde-
pendent study on human hippocampus that explicitly demonstrated
arelative fold decrease with age of the transcripts from long genes'.

Length association responds to antiaging interventions

To systematically investigate whether the length-associated transcrip-
tomeimbalanceis related to aging or merely to the passage of time, we
considered 11antiaging interventions with strong support for extend-
ing lifespan withinthe Interventions Testing Program of the NIA*** and
where differential expression results of transcripts were published and
directly provided by the authors of the corresponding studies. Within
these published differential expression results, we found statistically
significant (P < 0.01) support for a preferential fold increase of long
transcripts for 7 interventions (Fig. 5a-f and Extended Data Fig. 8):

fibroblast growth factor 21 (FGF21) excess, Myc heterozygosity, rapa-
mycin, resveratrol, S6 kinase 1 (S6K1) deletion, senolytics and Snell
mice. We did not find statistically significant support (P> 0.01) for the
4 remaining interventions: Ames mice, eating every other day, Little
mice and metformin.

We cannot say whether the absence of a significant length-asso-
ciated relative fold change for 4 interventions reflects upon the true
potential of these interventions or upon experimental parameters,
sample size or the number of genes reported by the authors of the
original studies. Curiously, amongall tested combinations of antiaging
interventions and tissues and ages, the incidence rate of a significant
(P < 0.05) effect seemed somewhat smaller for in vivo than for cell
culture settings (7 of 16 and 3 of 4, respectively; two-sided Fisher’s
exacttest, P=0.58). Giventherelative fold increase of long transcripts
following 7 of the 11interventions analyzed by us and preceding results
by Vermeijetal.”’ on caloric restriction opposing the length-associated
transcriptome imbalance in an ERCC excision repair 1 (ERCC1) prog-
eroid mouse model, we can conclude that the length-associated tran-
scriptomeimbalanceis responsive to antiaging interventions and that
severalinterventions promoting longevity oppose the direction of the
transcriptome imbalance that we are reporting here to be the primary
direction of the relative fold change encountered within vertebrates
(Figs.2b,cand 3d).

In addition to the above interventions, we probed rejuvenation
by partial reprogramming through ectopic expression of Pou5f1, Sox2
andKlf4.Weturned to arecentstudy by Luetal.?®, whichreported tran-
scriptomic dataonretinal ganglion cellsin middle-aged 12-month-old
micerelative to 5-month-old mice. Surprisingly, but consistent with our
observationsinaminority of tissues (Fig. 2b,cand Fig. 3d), we found a
length-associated transcriptome imbalance with a relative fold increase
(rather than fold decrease) of long transcripts during aging (Fig. 4g).
However, following rejuvenation, the relative fold increase of long
transcriptsin12-month-old micerelative to 5-month-old mice reverted
(Fig.4g,h). We thus conclude that the length-associated transcriptome
imbalance is responsive to antiaging interventions.

Shortest and longest transcripts impact longevity opposingly
Tofurther probe therelation between the observed length-associated
transcriptome imbalance and aging, we next examined a previously
established catalog of ‘pro-longevity’ and ‘anti-longevity’ genes for
which aloss-of-function mutation decreases or increases the lifespan
of model organisms, respectively”. We mapped the genes listed in
the catalog onto their human and mouse orthologs and performed an
enrichment analysis considering all protein-coding genes that occurred
atleast once in the database used for annotation. The identified 665
genes accounted for a small subset of the genome (3%) and, notably,
inhumantissues showed a nearly indistinguishable length-associated
transcriptome imbalance as other genes (Spearman, 0.93; Supple-
mentary Fig.16a).

We focused on the genes with the 5% shortest median transcript
lengths and the genes with the 5% longest median transcript lengths
as those genes are most poised to show a length-associated relative
fold change during aging (Supplementary Fig.16b,c). The enrichment
analysis showed that genes encoding the shortest transcripts were
significantly depleted from pro-longevity genes and significantly
enriched for anti-longevity genes, whereas the genes encoding the
longest transcripts were significantly enriched for pro-longevity genes
and significantly depleted from anti-longevity genes (Fig. 5a,b). This
observation was robust against the specific threshold chosen for tran-
scripts to be classified as short or long (Extended Data Fig. 9a,b) and
held when considering differencesin median transcriptlength between
pro-longevity and anti-longevity genes (Mann-Whitney Utest P= 0.008
and P=0.004 for human and mouse, respectively; Extended Data
Fig. 9c-f). Further, the enrichments and depletions reached signifi-
cance (P < 0.01) for one of four human cases and three of four murine
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Fig. 5| Enrichment analysis suggests that the shortest and longest transcripts
have opposing associations with longevity. a,b, Fold enrichment for ‘pro-
longevity’ (P, green) and ‘anti-longevity’ (A, orange) of protein-coding human
genes (a) or mouse genes (b) among the genes with transcript lengths in the
bottom 5% or top 5% of lengths. Negative enrichment indicates depletion; n
indicates the observed number of genes with a pro-longevity or anti-longevity
phenotype among these genes with extreme transcript lengths; eindicates
expected number of genes with a pro-longevity or anti-longevity phenotype if
there was no association between transcript lengths and longevity phenotypes.
We estimated P values using two-sided Fisher’s exact test. The data suggest

that pro-longevity genes may be depleted among the shortest genes and may

be enriched among the longest genes. ¢, Human Gene Ontology analysis for
annotation enrichment among genes with transcripts in the bottom 5% of
transcript lengths and annotation depletion among genes with transcripts

in the top 5% of transcript lengths. Area of circle is proportional to number

of genes. Edges represent highest embedding of alower-level hierarchical
annotation (smaller circle) within a higher-level one (larger circle). Red (blue)
indicates genes enriched in genes with shortest (longest) transcripts (P < 0.05;
Benjamini-Hochberg-corrected Fisher’s exact test; Extended Data Figs. 9 and 10,
Supplementary Fig. 16, Supplementary Data1and Supplementary Tables 7-10).

cases when considering allhuman protein-coding genes instead of only
those annotated for longevity phenotypes (Methods and Extended
DataFig.9g,h).

As cellular pathways can be encoded by genes of different gene
lengths®’, we nextinvestigated whether the shortest and longest tran-
scripts in humans encode cellular processes and physiology that has
been associated with aging. To identify candidate processes, we per-
formed a Gene Ontology analysis for annotations enriched among
transcripts of one length extreme and simultaneously depleted among
transcripts of the other length extreme. We determined the false-
positive rate of this approach to identify such annotations. Briefly,
we determined the false-positive rate was negligible as no more than
one single annotation appeared to be enriched within 200 different
randomizations (Methods).

Upon analysis of the annotations observed within the human
genome, we found 138 annotations of mouse genes and 140 annota-
tions of human genes to be enriched among transcripts of one length
extreme and simultaneously depleted among transcripts of the other
length extreme. Reassuringly, our approach independently recov-
ered well-established observations concerning the molecular, cellular
and physiological processes associated with aging (Supplementary
Tables 7-10) and partially recapitulated a recent study that only con-
sidered the enrichment of individual annotations®. We found that
the anabolic branches of proteostasis, mitochondrial function, tel-
omere maintenance, chromatin organization and immune function®***
were enriched among the shortest transcripts and depleted from the
longest transcripts. Transcriptional regulation®, developmental pro-
cesses™, ATP binding®, cytoskeletal structure and synaptic activity”
were enriched among the longest transcripts and depleted from the
shortest transcripts. To help navigation across related annotations,
we constructed a network representation that presents individual
annotationsaccordingto the shared overlap of annotated genes rather
thanthe hierarchical structure provided by the Gene Ontology analysis
(Methods, ref. *® and Fig. 5¢). See Extended Data Fig. 10 and Supple-
mentary Data 1for labels of individual Gene Ontology terms within this
network. Collectively, these findings demonstrate a remarkably high
overlap between the functions encoded by the shortest and longest
transcripts and the biological hallmarks of aging®*.

The results presented herein thus strongly support the idea that
genes encoding opposing roles toward longevity could be distinc-
tively and systemically affected by the length-associated transcrip-
tomeimbalance. In most tissues, the length-associated transcriptome
imbalance should thus promote the expression of genes that appear
to contribute to aging (Figs. 2b,c and 3d), whereas in some tissues
(Figs. 2b,c and 3d), the length-associated transcriptome imbalance
should promote the expression of genes that appear to contribute to
staving off aging.

Discussion

We recognize that our study holds a far-reaching implication on how
RNA-seq studies are analyzed and interpreted. Technical biases in
RNA-seq studies, which affect gene-specific readouts according to
their length, have been reported widely, and several tools have been
subsequently deployed to computationally counter the effects of this
length association**™*, As demonstrated by our NanoString experi-
ment, and by our reanalysis of published proteomics data, this data
processing step may hide biologically driven associations between
transcript length and relative fold change.

Our observational study invites further work on the molecular
and temporal onset of the length-associated transcriptome imbal-
ance, the role of gene regulatory networks, population variability
in larger cohorts, the normalization of gene expression data during
aging and whether an initial length-associated transcriptome imbal-
ance could be causative to aging. Moreover, whether our current
findings on aging would extend to further genetic backgrounds and
genes whose role in shortening or lengthening lifespan have not yet
been discovered*.

However, perhaps the most pressing remaining question relates
totheorigin of the length-associated transcriptome imbalance during
aging. Our findings about the genes with the shortest and longest tran-
scripts enriching for genes with different roles toward longevity could
be viewed as support for longevity-related roles of genes driving the
evolution of their transcript length. However, this explanation would
presently only appear to account for afraction of the genes that show
atranscriptlength-associated change during aging (Figs. 2b,c and 3d).
Further, gene lengths appear largely invariant in a phylogenetic king-
dom**¢and differences in gene and protein lengths have already been
attributed to multiple factors, including cellular energy constraints,
expression levels and gene duplications*’*5,
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Turning to earlier literature, a length-associated transcriptome
imbalance does not appear specific to aging itself. Moreover, there
seemto be multiple potential molecular origins for alength-associated
transcriptome imbalance. Most prominent among the specific molecu-
lar mechanisms, DNA damage has been explicitly demonstrated to
yield alength-associated transcriptomeimbalance with arelative fold
decrease of the longest transcripts ina progeroid model of aging'®. Heat
shock, which challenges proteostasis, a hallmark of aging®, leads to
alength-associated transcriptome imbalance by causing premature
transcriptional termination through crypticintronic polyadenylation®.
Similarly, loss of splicing factor proline/glutamine (Sfpq), encoded
by the gene that displays the strongest differential splicing during
humanaging®’, hasbeen showntoyield alength-associated transcrip-
tomeimbalance by interfering with transcriptional elongation of long
genes’. Methyl CpG binding protein 2 (MeCP2) opposes a length-
associated transcriptome imbalance by dysregulating transcriptional
initiation according to the length of the gene body*>*. Further, patients
with Alzheimer’s disease show a length-associated transcriptome
imbalance whose onset has been suspected to stem from somatic
mutations that affected transcript stability.

Jointly, these observations invite the unsupported hypotheses
that during aging there may not be a single origin for the length-
associated transcriptome imbalance and that the length-associated
transcriptomeimbalanceinaginginstead represents anintermediate
step withina ‘bowtie structure’ through which multiple environmental
and internal conditions simultaneously affect multiple downstream
outputs®*. The length-associated transcriptome imbalance thus may
offeritself as an explanation for the recent observation of inter-tissue
convergence of gene expression during aging’®. Further arguing in
favor of an integrative role of the length-associated transcriptome
imbalance, we find evidence that several distinct antiaging inter-
ventions counter the length-associated transcriptome imbalance
against long transcripts despite these different antiaging interven-
tions partially affecting different aspects of cellular and organismal
physiology>*°.

One superficially conflicting observation, which may further help
to narrow down the origin of the length-associated transcriptome
imbalance, is the realization that in a small subset of tissues and cell
types the longest transcripts display a relative fold increase rather
than arelative fold decrease (Figs. 2b,c, 3d and 4g), with the former
also appearing to be malleable to antiaging interventions (Fig. 4h).
One possible explanationis that there exist two independent types of
length-associated transcriptome imbalances of which the first one dis-
playsarelative fold increase of the longest transcripts, and the second
one arelative fold decrease of the longest transcripts. Alternatively,
both types of length-associated transcriptome imbalances could be
vis-a-vis manifestations of asingle phenomenonsuch as changesinthe
net processivity of the formation of mature transcripts. Specifically,
we suspect that the age-dependent length-associated transcriptome
imbalancein vertebrates primarily displaying arelative fold decrease
(rather thanrelative fold increase) of long transcripts may arise from
the hypothesis that there are more ways for perturbations to break
than toimprove cellular function®.

As the shortest and longest transcripts enrich for opposing
roles toward longevity, opposing types of the length-associated
transcriptome imbalance in different tissues also open the questions
on whether these tissues are poised differentially toward aging and
there could be trade-offs between tissues during aging beyond the
recognized trade-offs between somatic and germline tissue®. Inde-
pendent of the specific direction of relative fold changes, altered
transcript levels of thousands of genes or of specific subsets of genes
may also promote aging by challenging epigenetic, transcriptional
and proteomic homeostasis®*** and reducing the capacity of cells to
properly respond to internal or external factors (such as protein aggre-
gates or pathogens). Further independent of any transcript length,

imbalances in gene expression have the potential to alter subcellular
stoichiometries®.

Spurred by our findings on antiaging interventions, we believe that
understanding the direction of causality between other age-dependent
cellular and transcriptomic changes and length-associated transcrip-
tome imbalance could open novel research directions for antiaging
interventions.

Methods

Statistics and reproducibility

Nostatistical methods were used to predetermine sample sizes, but our
samplesizesaresimilar to those reported in previous publications?-*>*,
We performed a two-cohort design to estimate reproducibility after
our experiments and focused our analytical approach on theidentifica-
tion of patterns that are detectable within our given sample number.
For testing the generalizability of our findings, we considered external
datasets in mice and other organisms.

Inaninitial pilot analysis, we used a Lilliefors test to assess assump-
tions on normality. For comparing different ages, we used a two-sided
Mann-Whitney Utest to account for non-normality and visually double-
checked that compared groups would have a similar skewness. For
quantifying the significance of genome-wide correlations (and thus
bypassing the need for gene-specific Pvalues), we used a t-distribution
testasthelatter appearstobeanaccurate approximation when work-
ing with thousands of data points®.

Mann-Whitney U'test, Spearman correlations and Fisher’s exact
test were computed through scipy.stats (version1.2.1)*’. Bootstrapped
estimates of the 95% confidence intervals of the medians were obtained
through Seaborn®, For comparison purposes, we also performed dif-
ferential gene expression analyses using DESeq?2 (ref.®), which provide
significance values that follow a set of frequent assumptions on gene
expressiondistributions™. Significance of the difference between two
correlations was tested with Daniel Soper’s Free Statistics Calculators
4.0 (https://www.danielsoper.com/statcalc/), which implemented a
corresponding test developed by Fisher”.

For adjusted P values, we followed a Benjamini-Hochberg
correction’.

No randomization of samples was performed by us as we had
ordered mice of different ages and allocated mice of different ages to
different groups for analysis.

Investigators were not blinded to group allocation during data
collection and outcome assessment and further data analysis. Blind-
ing during data collection was not possible as old mice look different
from younger mice; blinding was not relevant during data analysis,
as the latter used a machine learning strategy to find the properties
informing on age-dependent change.

No data were excluded from the analyses, except for additional
control analysis, which tested the robustness of the conclusion against
different exclusion criteria (Supplementary Fig.10c-f).

After completion of the manuscript, however, we noted that the
original experiment contained muscle tissues for which no sequence
data were obtained, and that the original preparation of sequence
dataincluded sorted alveolar macrophages, alveolar type 2 cells and
monocyte-derived dendritic cells. Preceding the analysis started in
this paper, sequence data of the latter had not been carried forward
toward analysis as quality-control (QC) metrics appeared different
and indicative of lower quality than the other experimental prepara-
tions. Retrospectively, analyzing these three cell populations toward
alength-associated transcriptome imbalance after the (otherwise)
completion of this paper, we find, consistent with our comprehen-
sive reanalysis of cell types through public single-cell transcriptomic
data®?**,alength-associated transcriptome with arelative fold reduc-
tion of long transcripts in alveolar macrophages and alveolar type 2
cells (Supplementary Fig.17).

The experiments were not and could not have been randomized.
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Estimation of confidence intervals for bar plots. Bar plots repre-
sent empirically observed fractional data; for example, phenomenon
present in 14 of 20 tissues would be 70%. Confidence intervals were
estimated by bootstrapping 1,000 times. Each bootstrap corresponds
to drawing with replacement. In the above example, this would mean
doing20independent randomizations where for each randomization
there was a 70% chance that the phenomenon would be present (and
30% chance that not).

Animal keeping. All mouse procedures were approved by the Insti-
tutional Animal Care and Use Committee at Northwestern University.
Allstrainsincluding wild-type mice were bred and housed at a specific-
pathogen-free barrier facility at the Center for Comparative Medicine
atNorthwestern University. Male C57BL/6) mice were provided by the
NIA, one of the National Institutes of Health (NIH), and were housed
at Northwestern University Feinberg School of Medicine Center for
Comparative Medicine for 4 weeks before euthanasia. Our rationale
was to focus on a standardized murine model that is commonly used
across differentlaboratories so that our findings could be investigated
or continued by others.

Mice were euthanized by pentobarbital sodium overdose. Imme-
diately the chest cavity was opened, and animals were perfused viathe
left ventricle with 10 ml of HBSS (Ca/Mn’*). The following tissues were
collected:lung, heart, liver, kidney, adrenal gland, white (perigonadal)
and brown adipose tissue, skin, muscle satellite cells, frontal cortex,
cerebellum, esophagus, stomach, and small and large intestines. Gut
epithelial cells were isolated after flushing large intestine with EDTA/
EGTA solution. Lungs were subjected to enzymatic digestiontorelease
stromal andimmune cells and sorted by FACS as described elsewhere”.
All tissues and cells were immediately frozen on dry ice and stored at
-80 °Cfor processing. Muscle satellite cells were prepared as described
inwork by Runyan et al.”.

RNA isolation and RNA sequencing. RNA was isolated using an
RNeasy DNA/RNA kit after homogenization and lysis in guanidine
thiocyanate buffer supplemented with -mercaptoethanol. RNA con-
centration and quality were assessed using an Agilent TapeStation.
RNA-seq libraries were prepared using an NEB Next RNA Ultra kit with
a polyA enrichment module using an Agilent Bravo NGS Automated
fluidics handling platform as described elsewhere”. Libraries were
multiplexed and sequenced on an Illumina NextSeq 500 platform
using 75 cycles of high-output flow cells and a dual indexing strategy.
Our rationale was to use a protocol that had been standardized and
applied by our sequencing facility.

While targeting 6 mice per age and organ, we ultimately only
obtained sequenced samples for an average of 5.76 mice per age and
organ (because of errors in sample isolation and/or liquid handling).

Bioinformatics. Sequencing reads were analyzed using animplementa-
tion of Ceto (https://github.com/ebartom/NGSbartom/) in Nextflow”.
Briefly, BCL files were demultiplexed and converted to fastq files using
bcl2fastq (version 2.17.1.14), with default parameters. The raw reads
were trimmed using trimmomatic’ (version 0.36), with the following
parameters: trailing = 30 and minlen = 20. Trimmed reads were aligned
to the mouse reference genome (GRCm38.p3) with annotations from
Ensembl v78 using tophat (version 2.1.0)”, with the following param-
eters:nonoveljunctions, read-mismatches = 2, read-edit-distance =2
and max-multihits = 5. Aligned reads were counted using Htseq-count
from htseq’®, with the following parameters: intersection-nonempty,
reverse strand, feature-type = exons, and id-attribute = gene_id. Our
rationale wasto use abioinformatic setup that had been standardized
and applied by our facilities.

Differential expression of bulk RNA sequencing. For measurements
derived frommultiple individuals, differential gene expression analysis

was performed with DESeq_2 (ref. ©°), version 1.20 (mouse) and 1.22
(human) using an a value of 0.05 for the adjusted P-value cutoff. We
subsequently only kept genes that mapped unambiguously between
Ensembl gene identifiers and NCBI (Entrez) gene identifiers®.

To estimate the differential gene expression between individu-
als, we directly computed the log, ratio of raw counts for transcripts
detected inboth individuals.

Characteristics of genes. For transcription factors, we mapped the
Gene Transcription Regulatory Database (v18_06)" to +200 nucleo-
tides to transcriptional start sites supplied by BioMart for the human
reference genome build GRCh38.p12 and the mouse reference genome
build GrCm38.p6. For miRNAs, we used miRDB (v5.0)". For mature
transcripts, length parameters and GC content were identified from
GenBank and mapped to genes as described elsewhere using the
median across different transcripts'®>. Number of exons, and their mini-
mal, median and maximal lengths, were extracted from BioMart. For
genes and chromosomes, characteristics were extracted as described
elsewhere®. Our rationale was to consider a broad set of information
that mightinform on the formation or turnover of transcripts.

Modeling. Gradient-boosting regression models were built in scikit-
learn (version 0.20.3)'. Of the transcripts, 90% were included as the
training setand10% were used as atest set. The 10% of the test set tran-
scripts that had been withheld during training were used to evaluate
the performance of the models. Our rationale for the gradient boosting
wasto account for possible non-linearities. We only considered protein-
coding genes withatleast oneresearch publication and an official gene
symbol, and which unambiguously mapped in a 1:1 relation between
NCBI (Entrez) gene identifiers and Ensembl gene identifiers.

Kernel-density visualizations. Kernel-density visualizations were
created with Seaborn®® using default parameters.

Comparison to two cohorts of mice. To quantitatively evaluate the
performance of our machine learning approach, we first estimated
the maximal performance that should be achievable by our experi-
mental data. The latter will depend on biological, experimental and
technical variability, the true number of genes that change expression
during aging and their true magnitudes of change, and the sensitivity
of RNA-seq to detect transcript molecules and their change. We built
uponthe two-cohort design of our experimental survey and compared
transcriptional fold changes between the two cohorts. Specifically,
the six mice of each age and tissue pair had drawn from two cohorts
with three mice per age each that were euthanized on different days
(or two and three mice per age if we only obtained samples from five
mice, or two mice per age if we only obtained samples from four mice).
As anticipated?, Spearman correlations for the relative fold changes
between measurements obtained by two cohorts of mice appeared
small (interquartile range (0, 0.250)) and, in some cases, even slightly
negative (Supplementary Fig. 2b). Of direct relevance to our efforts
to evaluate the performance of our machine learning approach, the
Spearman correlations between observed relative fold changes and
predicted relative fold changes (Extended Data Fig. 1a), however,
resembled or exceeded those observed between both cohorts (Sup-
plementary Fig. 2b).

Comparison to differential gene expression analysis. We found good
agreement between the prediction accuracy of our gradient-boost-
ing regression models and the number of expressed genes detected
to be differentially expressed (Extended Data Fig. 2). We also found
that gradient-boosting regression reached statistical significance
(P<0.01) for tissue-age pairs where the transcript of no single gene
was statistically significantly differentially expressed at a Benjamini-
Hochberg-adjusted P-value cutoff of 0.05 (Extended Data Fig. 2c¢),
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suggesting that differential gene expression analyses might yield false-
negative findings.

Alternate bioinformatics. To ensure robustness of results beyond
individual bioinformatic pipelines, we reanalyzed in-house bulk RNA-
seq datasets using the publicly available nf-core/RNA-seq pipeline
version1.4.2implemented in Nextflow 19.10.0 using Singularity 3.2.1-1
with the minimal command: nextflow run nf-core/rnaseq -r 1.4.2 -
singleEnd -profile singularity —unStranded -fc_group_features_type
‘gene_id>"*%, Briefly, lane-level reads were trimmed using trimGalore!
0.6.4 and aligned to the GRCm38 genome using STAR 2.6.1d". Gene-
level assignment was then performed using featureCounts (1.6.4)%.
Includedinthe nf-core/RNA-seq QC outputis amatrix of Pearson corre-
lations of log,(CPM) values generated using edgeR (3.26.5)%. Lanes with
Pearson R < 0.7 compared toall other lanes constituting a given sample
were excluded from further analysis. Extant lanes were then merged
by sample with SAMtools 1.6 using the minimal command ‘samtools
merge --r’**. Merged BAM files were then reassigned using Rsubread
1.32.4 in R 3.5.1 using the minimal command ‘featureCounts(files,
annot.inbuilt = ‘mm10’, minFragLength = 25)’ and merged into separate
datasets by tissue in DESeq2 (1.22.2)°%%?, Using a combined factor of
age, and influenza dose (plaque-forming units), differential expres-
sion analysis (DEA) was performed with the formula ‘~-combined’. A
local estimate of gene dispersion best fit observed dispersions in all
cases. DEA was therefore performed using the minimal command
‘DESeq(dataset, fitType = ‘local’, parallel = T)". DEA tables were output
for all permutations of age and influenza dose for a given tissue and
analyzed as above.

Length correlations. To avoid assumptions on linearity, we used the
Spearman correlation between transcript length and relative fold
change of transcripts in older individuals over younger ones. Signifi-
cance was obtained through the scipy.stats (version1.2.1) implementa-
tion of the Spearman correlation®’.

Forhuman GTEx data, werestricted our analysis to tissues present
insamples from young and middle-aged and old donors.

Quantification through difference in median transcript length. We
alternatively quantified the length-associated transcriptome imbal-
ance through the difference in median transcript length among those
genes that, in adifferential gene expression analysis, showed a signifi-
cantrelative foldincrease and the transcript length of those genes that
showed significant relative fold decrease.

Technical robustness checks. As technical artifacts could affect tran-
scripts according to length*****3, we further tested the robustness of
therecovered length-associated transcriptome imbalance.

First, werepeated our initial analysis (Fig. 1c) and filtered the data-
sets for those organs where the relative fold changes correlated across
both cohorts exceed a Spearman correlation of 0.2 and found that
the correlation between transcript lengths and relative fold changes
persisted (Supplementary Fig. 6a). Further, and based on counting
the tissues exceeding a Spearman correlation of 0.2, we noted, as
expected”, that the age-dependent changes were most reproducible
when comparing 24-month-old organs against 4-month-old organs
(Supplementary Fig. 6a). Second, we did not observe changes in RNA
integrity with age (Supplementary Fig. 6b). Third, we observed the
same correlations between transcript length and relative fold change
if we removed the requirement for the annotation of genes to be sup-
ported by several lines of evidence such as gene symbols or litera-
ture published in MEDLINE, lowering the likelihood that our findings
could be an artifact of the stringency of applied gene annotations
(Supplementary Fig. 6¢).

For our fourth robustness check, we excluded samples where
the sequencing datayielded lower-quality metrics. Reassuringly, this

yielded practically identical measurements of thelength correlations—
withtwo conditions (12-month-old lung, and 18-month-old large intes-
tine) even turning a positive correlation (favoring long genes) toward
the more negative correlation (disfavoringlong genes) as seen for the
majority of conditions (Supplementary Fig. 6d). Solely, the condition
with the strongest imbalance (18-month-old large intestine), now
showed aweaker imbalance (Spearman correlation with length, from
-0.67 to —0.24; Supplementary Fig. 6d). As a fifth robustness check,
and after our initial discovery of the age-dependent length correla-
tion, we asked one team member, who was not involved in the design
or execution of the initial bioinformatic preprocessing, to prepare
anindependent bioinformatic pipeline, QC and sample filtering, and
differential gene expression analysis. To mitigate the potential risk
associated with custom pipelines, the team member used nf-core/
RNA-seq, which provides community-curated bioinformatics pipe-
lines®®. Again, we observed practically identical measurements of the
length correlations—with 18-month-old hearts again turning a positive
correlationtoward the more representative negative correlation (Sup-
plementary Fig. 6e). Sixth, we excluded, after the bioinformatic pro-
cessing and differential gene expression analysis, genes with aknown
annotationrelating to the inflammatory response (genes that tend to
be short) and neuronal genes (genes that tend to be long). Again, we
observed practically identical measurements of the length correlations
(Supplementary Fig.10f).

Seventh, after a non-parametric LOWESS regression between
transcriptlengthand relative fold changes*>*, we no longer observed
any length-associated transcriptome imbalance when considering the
correlation between transcript lengths and residual fold changes after
LOWESS regression. This suggests that the length-associated transcrip-
tome imbalance is a transcriptome-wide phenomenon that could be
accounted for by transcript length alone (Supplementary Fig.10g).

Eighth, reanalyzing published transcript degradation rates*, we
found thatlonger transcripts were slightly more stable when compared
toother transcripts across the genome (Spearman, —0.03; Supplemen-
tary Fig.10h).

Ninth, we tested if a length-associated transcriptome imbalance
persistsif, instead of transcript length, we considered other, correlated
(Extended Data Fig. 3a) readouts of length. We therefore measured
the correlation between the observed relative fold changes and the
median genelength (Supplementary Fig. 7a,b) and the median length
of the coding sequence (Supplementary Fig. 7c,d). Indeed, we
continued to detect a length-associated transcriptome imbalance
(Supplementary Fig. 7).

Biological variation. We determined whether our sample size of six
mice would be sufficient to conclude whether the length-associated
transcriptomeimbalance measured between mice of distinct chrono-
logical ages would exceed the length-associated transcriptome imbal-
ance seen among mice of the same chronological age. We performed
retrospective subsampling of all mice of agiven chronological age and
separated theminto two equally sized groups (or three versus two mice
ifonesample had notbeen processed; Supplementary Table1). Foreach
possible permutation of separating mice into two different groups, we
measured the correlation between transcript lengths and the relative
fold changes of transcripts between those two groups. Comparing
these permutations against the length-associated imbalance that we
observedacross distinct chronological ages, weinferred that—giventhe
number of 17 organs and target sample size of 6 mice—we can presently
only conclude for the comparison between 4-month-old and 24-month-
old mice that the majority of organs demonstrate an imbalance with
age that exceedsinterindividual variability (Mann-Whitney U < 0.001;
Fig.1c and Supplementary Fig. 8a,b).

Next, we performed all pairwise comparisons between all mice of
agiven agerelative to all 4-month-old mice. Reminiscent of our preced-
ing analysis, we observed the imbalance was most pronounced when
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comparing 24-month-old mice against 4-month-old mice (Supplemen-
taryFig.8b).For allbut two organs (lung and skin; Supplementary Fig.
8c), wefound arelative fold decrease of long transcripts for more than
half of all pairwise comparisons. Notably, the occurrence of a general
trend of the length correlation by age does not indicate that all possi-
ble combinations of mice show afitting reduction of long transcripts
by age. Across all combinations, and organs, we found this fraction
to be 67% (interquartile range (53%, 81%)), indicating that the length-
dependent imbalance against long transcripts is not fully penetrant
(Extended DataFig. 8c).

NanoString. NanoString analysis was performed by NUSeq Core using
the metabolism panel (v1).

Samples were hybridized overnight at 65 °C for 16 h, according
to NanoString’s recommended protocol. As all samples were DV300
>90% (that is, 90% of the RNA species should be of 300 nucleotides
or longer), 75 ng input RNA was used for each hybridization reaction.
Samples were thenimmediately loaded into the NanoString nCounter
cartridges and processed. Differential expression was performed using
nSolver version4.0.70 (NanoString) between the 4-month group and
the 24-month group using default parameters.

Reanalysis of previous studies. We considered genes reported to
show a relative fold decrease or relative fold increase in earlier stud-
ies. For mice and rats, we used protein-coding genes with at least one
research publication and an official gene symbol, and the median
transcript lengths derived from GenBank. For killifish, we used genes
and gene lengths as reported by Reichwald et al.”.

For studies reporting transcriptome measurements (Schaum
et al.”? and Shavlakadze et al.”"), we used a significance threshold of
P<0.01forthe correlation between transcript length and relative fold
changes. For studiesthat only provided lists of differentially expressed
genesand theirrelative fold increase or relative fold decrease (Benay-
oun et al.?° and Reichwald et al.”’), we applied a two-sided Mann-
Whitney U test, to determine whether the median transcript length
of transcripts with arelative fold increase was different at the P < 0.01
level fromthe medianlength of transcripts with arelative fold decrease.
In case that multiple ages were tested separately by individual stud-
ies, we selected the ages closest to 4 and 24 months of age for young
and old, respectively.

Single-cell transcriptome imbalance. As cell types, we considered
the cell_type and cell_ontology_class columns within the respective
meta-data tables contained in the h5ad files of Kimmel et al.” and
Tabula Muris Senis*. We only considered protein-coding genes that
were detected in at least one cell of a given cell type in an individual
organin a given study. We determined the transcriptome imbalance
foreach celltype by correlating transcript length against the log,-fold
ratio formed by the summed raw counts of the older animals divided
by the summed raw counts of the younger animals.

Exclusion of genes with inflammation and neuronal function. To
determine robustness beyond short stress-induced genes and long
neuronal genes, we removed them from our analysis after bioinfor-
matic processing. We excluded genes if the lowercase spelling of the
Gene Ontology term contained ‘immune’, ‘stress’, ‘inflamm’ or ‘infect’,
‘brain’, ‘neuro’, ‘nerv’, ‘cerebral’, ‘cortex’ or ‘memory’.

Mapping of rhesus macaque genes. For the analysis of Murray et al.*¢,
we mapped genes to human transcript length through gene symbols
shared with humans.

Analysis of Flynn et al.. Contrasting other anti-interventions, we
reanalyzed the raw data of Flynn et al.” as, despite the statement
in a corresponding figure legend, their study did not include the

corresponding supplementary table with differential gene expres-
sion results (Supplementary Table 3).

Functional enrichments. We considered the genes with the 5% short-
est and 5% longest median transcript length. We used the annotation
of pro-longevity and anti-longevity genes from HAGR?***%_ If genes
were simultaneously annotated as pro-longevity and anti-longevity
genes (21of 665in human, 19 of 665 in mice), we kept both annotations.
Afterintersecting with protein-coding genes with areported transcript
length, this yielded 417 anti-longevity and 267 pro-longevity genes in
humans, and 307 anti-longevity and 200 pro-longevity genes in mice.
Our rationale was to adhere to the most comprehensive curation of
individual longevity genes.

For differential enrichment, we considered genes enriched among
the genes with transcripts of one length extreme (5% shortest and 5%
longest) at aBenjamini-Hochberg Pvalue < 0.05 and depleted among
the genes with the other length extreme. Unless indicated otherwise,
we restricted the background gene lists for the enrichment to those
genes carrying at least one annotation.

False-positive rate of opposing enrichment and depletion. To
understand whether an opposing enrichment and depletion of Gene
Ontology terms is common, we asked explicitly whether the number
of categories that were opposingly enriched among short and long
transcripts (Supplementary Tables 7-10) was higher than would be
expected by chance when comparing two randomsamples drawn from
thelength distributions observed in the mouse and human genomes.
We performed 100 randomizations for mouse and 100 randomizations
for human genes. For mice, no single randomization identified any
annotation. For humans, 1 of 100 randomizations identified a single
annotation (of 14,223 possible annotations for mouse genes, and 15,371
possible annotations for human genes), while the remaining 99 rand-
omizationsidentified noannotations. These values were significantly
lower than the number of annotations that we observed when using the
shortestand longest transcripts of mouse and humans, thatis, 138 and
140, respectively (Supplementary Tables 7-10).

Alternative enrichment analysis for longevity genes. As an additional
analysis, which we expected to have lower statistical power due to the
increased number of uninformative genes, we repeated our enrich-
ment analysis while considering all protein-coding genes, rather than
solely those occurring in the database used for annotation (Extended
Data Fig. 9g,h). We observed that the directionality in these trends
with aging always persisted in human and persisted in three of four
cases in mice—with the exception being anti-longevity genes among
the longest transcripts. Notably, for humans, one case—the depletion
of anti-longevity genes from the longest transcripts did not reach sta-
tistical significance (two-sided Fisher’s exact P= 0.31). Further, inmice,
the enrichment of anti-longevity genes among the shortest transcripts
did notreach statistical significance (two-sided Fisher’s exact P=0.31).

Annotation network construction. To organize annotations according
totheir similarity in the shared genes rather than the human-imposed
hierarchical organization, we represented the annotations found to be
enriched asnodes, drew edges between two nodes if at least one gene
carried both annotations and simply the network as follows: Starting
with node with the fewest attached genes, we kept the edge from that
nodetothe node with thelargestintersection set of attached genes. In
case of atie, thatis, in case there were several nodes with intersection
sets of attached genes of the same size, we kept the edge to the node
with the fewest number of attached genes. In case a tie remained, we
kept the edge to the annotation node with the fewest genes attached
but now including genes that were not included in the enrichment
analysis. We repeated this procedure for the other nodes in order of
increasing number of genes attached.
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Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

RNA-seq data created during this study, and used for Fig. 1 have been
deposited under GSE141252. Data underlying other figures have been
generated by other research groups and are available from them and/
or their respective publications.

Externally generated data canbe obtained from the following resources
listed according to their order of usage:

Gallego Romero etal.” (Additional File 11), Schaum et al.?* (https://fig-
share.com/articles/Differential_ Gene_Expression/12227531), Benayoun
etal.?’ (Supplementary Table 4), Shavlakadze et al.” (Supplementary
Table 1), Reichwald et al.”” (Supplementary Data 4), Kimmel et al.”®
(http://mca.research.calicolabs.com), Tabula Muris Senis (https://
figshare.com/articles/Processed_files_to_use_with_scanpy_/8273102
and https://figshare.com/articles/Processed_files_to_use_with_
scanpy_/8273102), GTEx (https://gtexportal.org/home/datasets
version 7; dbGaP accession phs000424.v7); Martinez-Nunez et al.”
(Supplementary Datafile);

Flynnetal.¥” (GSE48043); Mattson et al.”? (Table S2);
Amador-Noguez et al.”° (Supplementary Table 1 for Ames Dwarf
mice and Supplementary Table 2 for Little mice), Ng et al.”
(Table S8), Murray et al.’® (Supplementary Tables 1A and 1B);
Luizon et al.’® (Supplementary Table 1); Hofmann et al.”
(Supplementary Fig. 11); Dembic et al.”® (Appendix); Selman et al.**
(Supplementary Tables 2-4);

Hoffman et al.”” (Supplementary Table 5);

Jochems et al.”” (Supplementary Table 2); Lu et al.”® (Supplementary
Fig.4).

Additional data used in this study were:

Gene Transcription Regulation Database version 18.06 (http://gtrd.
biouml.org:8888/downloads/18.06/); miRDB version 5.0 (http://mirdb.
org/download/miRDB_v5.0_prediction_result.txt.gz);

Genes and transcript sequences from GenBank (GRCh38.p10
for human, and GRCm38.p5 for mice; ftp://ftp.ncbi.nlm.nih.gov/
genomes);

GTEx Portal version 7 (https://www.gtexportal.org/home/datasets/);
Exons from Biomart, using human genome GRCh38.p12 and mouse
genome GRCm38.p6 (https://www.ensembl.org/biomart/);
HAGR»%% specifically Longevity Map Build 3 and GenAge Build 19
(https://genomics.senescence.info/);

Homologene, version 68 (https://ftp.ncbi.nlm.nih.gov/pub/
HomoloGene/).

Gene Ontologies using the mapping to NCBI were provided by the
National Library of Medicine (https://ftp.ncbi.nlm.nih.gov/gene/DATA/
gene2go.gz)

Code availability
Code used during data analysis canbe accessed through https://github.
com/NUPulmonary/stoeger_et_2022_transcriptome_imbalance/.
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Extended Data Fig. 1| Performance of Gradient Boosting Regression (GBR) cross-validation, the default cross-validation scheme of this manuscript,
models, related to Fig. 1. (a) We defined prediction accuracy (pggg) as the against predication accuracy following four-fold cross-validation for individual
Spearman correlation between observed and predicted relative fold-changes. combinations of tissues and ages (black dots). In Monte Carlo cross-validation
(b) Significance of the prediction accuracy using t-distribution for two-sided agiven gene will on average be used nine times for developing the gradient
significance test for Spearman correlation®. (c) Density map of scatter plot boosting regression, and on average once for quantifying its performance. In
of observed and predicted relative fold-changes obtained from the cerebella four-fold cross-validation each gene will be considered exactly three times for
of 9-months old mice. There is clear correlation between the predicted and developing the gradient bossing regression, and exactly once for quantifying its
observed relative fold-changes, which we quantify through the GBR prediction performance.

accuracy (pggg)- (d) Comparison of prediction accuracy following Monte Carlo
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pairs. Reassuringly, we find a positive correlation between the two measures
indicating that the ability to predict relative fold-changesis related to there being
more genes differentially expressed. Shaded grey area indicates tissue-age pairs
without any gene that is being detected as differentially expressed. (c) As panel

b, but showing the significance of correlation between number of differentially
expressed genes and the prediction accuracies instead of the prediction accuracy
(pgsr)- Significance is determined using t-distribution for two-sided significance
test for Spearman correlation®.
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Extended DataFig. 5| Age-dependent length correlation persistsin
transcriptomic and proteomic data of Takemon et al.”s, related to Fig. 1.

(a) Relative fold-change of age-dependent transcript change as reported by
Takemon et al.”® who integrate information of transcriptomic change in kidneys
of 12- and 18-month-old mice versus 6-month-old mice. Length correlations (py,)
describes Spearman correlation between median transcript length, and relative
fold-change of transcripts. We highlight with black circles those 10 genes with a
relative fold-decrease and 186 genes with arelative fold-increase identified by an
adjusted Pvalue below 0.01 provided by the authors, who obtained Pvalues from
DESeq2 using alikelihood ratio test. (b) Relative fold-change of age-dependent

protein change as reported by Takemon et al.'® who integrate information of
proteomic change in kidneys of 12- and 18-month-old mice versus 6-month-

old mice. Proteome length correlations (py,) describes Spearman correlation
between median transcriptlength, and relative fold-change of proteins. The thin
and thicker black lines indicate outermost boundaries of 80% and 90% of kernel
density estimate, respectively. We highlight with black circles those 292 genes
witharelative fold-decrease and 186 genes with arelative fold-increase identified
by an adjusted Pvalue below 0.01 provided by the authors, who obtained Pvalues
from DESeq2 using a likelihood ratio test.
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Extended DataFig. 6 | Length correlation with relative fold-changes obtained for individual cell types inferred from single-cell RNA sequencing data, related
to Fig. 2. Brown lines are visual guides.

Nature Aging


http://www.nature.com/nataging

Analysis

https://doi.org/10.1038/s43587-022-00317-6

a P <103 P <10+
+0.4
- ’ WAl
S58 [[Brain
i g §)+0.2 ‘ .
L E=
EE®
8es O
£C5
[} 8 Q
e£c-02
— S o ,
-0.4 ¢ ¢
middle- old
aged
b
P=0.01 P =0.006
+0.4 | — 1 Female
£
- +0.2 .
k<] ¢
®©
T 0
5}
o
< -0.24
(2}
)
’
- -0.4 1 * .
middle- old
aged
P=0.03 P =0.005
__ 0.4 Male
g
§ +0.2
®©
= *
g
s 0
o
£
o -0.2
=
[0}
-
-0.4
middle- old Al
aged [ Brain

Extended Data Fig. 7 | See next page for caption.

¢ Adipose - Brown - NN

Adipose - Gonadal-

Adipose - Mesenteric—

Adipose - Subcutaneous—
Adipose - Visceral (Omentum)-

Adipose - White
Adrenal Gland

Artery - Aorta—
Artery - Coronary—
Artery - Tibial-
Blood - Blood
Blood - White blood cells-
Bone-
Bowel - Gut epithelium
Bowel - Large intestine
Bowel - Small intestine
Brain - Amygdala—
Brain - Anterior cingulate cortex (BA24)—
Brain - Brain—
Brain - Caudate (basal ganglia)—
Brain - Cerebellar Hemisphere -

Brain - Cerebellum -l ]

Brain - Cortex—
Brain - Frontal Cortex (BA9)-

Brain - Frontal cortex

Brain - Hippocampus—

Brain - Hypothalamus—

Brain - Nucleus accumbens (basal ganglia)—
Brain - Putamen (basal ganglia)—

Brain - Spinal cord (cervical c-1)-

Brain - Substantia nigra—

Breast - Mammary Tissue—

Colon - Sigmoid—

Colon - Transverse—

Esophagus -l

Esophagus - Gastroesophageal Junction—
Esophagus - Mucosa-
Esophagus - Muscularis—

Heart-

Heart - Atrial Appendage—
Heart - Left Ventricle—

Kidney

Kidney - Cortex—

Liver
Lung

Marrow—
Minor Salivary Gland-
Muscle - Gastrocnemius—

Muscle - Limb muscle—
Muscle - Muscle

Muscle - Skeletal-
Nerve - Tibial-
Olfactory bulb-
Ovary-
Pancreas—
Pituitary—
Prostate—

Skin -

Skin - Not Sun Exposed (Suprapubic)—
Skin - Sun Exposed (Lower leg)—
Small Intestine - Terminal lleum—

Spleen—
Stomach

Testis—
Thyroid—
Uterus—
Vagina-
Whole Blood-

.:nggeased
Dn/a

long
decreased

|:| n/s

RITH N ILLLE

-

Mouse - this study -
Mouse - Schaum et al. -
Mouse - Benayoun et al. —
Rat - Shavlakadze et al. —
Human female - GTEx
Human male - GTEx

I
©
it

5]
k=)
®©
2
<
Q
5]
o
'
<
@
=
o
S
@
N

Nature Aging


http://www.nature.com/nataging

Analysis

https://doi.org/10.1038/s43587-022-00317-6

Extended Data Fig. 7| Robustness of observation of length-associated
transcriptome imbalance in humans, related to Fig. 3. (a) Length correlation
after excluding genes annotated for inflammatory and neuronal processes
across all 43 tissues of female donors and all 43 tissues of male donors (dark grey)
and across 12 brain tissues of female donors and 12 brain tissues of male donors
(brown) considered. Pvalues represent two-sided Mann Whitney Utests with U
values of 571and 459 tissues from middle-aged and old donors, respectively.

(b) We find alength-associated transcriptome imbalance for tissues from female
(top) and male donors (bottom). n=median across all 43 tissues of female donors

and all 43 tissues of male donors (dark grey) and across 12 brain tissues of female
donors and 12 brain tissues of male donors (brown), respectively. In boxplots
center is median, notches bootstrapped 95% confidence interval of median,
bounds of box 25% and 75% percentiles, whiskers extend height of box 1.5 times,
minima and maxima observed minima and maxima. Pvalues represent two-sided
Mann Whitney U tests with Uvalues of 136 and 122 for tissues from middle-aged
and old female donors and U values of 148 and 121 from middle-aged and old male
donors, respectively. (c) As Fig. 2a but additionally including human tissues.
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Extended Data Fig. 8 | Anti-aging interventions oppose the relative fold-
decrease of long transcripts, related to Fig. 4. (a) We use color-coding in all
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or relative fold-increase (grey) according to the authors of the respective
studies. (b) Transcript length for genes reported by Ng et al.” to be differentially
expressed in the liver of mice eating every other day for three months after
reaching 3 months of age. (c) Transcript length for genes reported to be
differentially expressed in Little mice by Amador-Noguez®® for the liver in an
analysis including 3, 6,12, and 24-month-old animals. (d) Transcript length

for genes reported to be differentially expressed by Luizon et al.” following
exposure of primary human hepatocytes to metformin. (e) Transcript length for
genes reported to be differentially expressed in Myc haploinsufficient mice by
Hofmann et al.” for indicated tissues and in 5-month-old (young) and 24-month-
old (old) mice. Note that for 5-month-old muscle no comparisonis given as

no gene was reported to show arelative fold-decrease. (f) Transcript length

for genes reported to be differentially expressed by Dembic et al.’® following
exposure of human primary fibroblasts to resveratrol. Given the genome-wide
readout provided by the authors we could additionally compute P values using
t-distribution for two-sided significance test for Spearman correlation®®, which
willyield 0.0002. (g) Transcript length for genes reported to be differentially
expressed by Jochems et al.”” following exposure of cultured cells toward at least
one senolytic compound. Pvalues were estimated by two-sided Mann-Whitney
Utest. nindicates number of genes with a relative fold-decrease and relative
fold-decrease of their transcripts. Given the genome-wide readout provided by
the authors we could additionally compute Pvalues using t-distribution for two-
sided significance test for Spearman correlation®, which will yield 7.0e-9. (b-g)
Inboxplots center is median, notches bootstrapped 95% confidence interval of
median, bounds of box 25% and 75% percentiles, whiskers extend height ofbox 1.5
times, minima and maxima observed minima and maxima.
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10% shortest and 10% longest median transcript lengths in humans. Negative
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to percentile. (d) Letter value plot but for all 219 pro-longevity and 335 anti-
longevity genes across the mouse genome, with all protein-coding genes ranked
according to length and rank transformed to percentile. (e) Letter value plot of
transcript length of all 294 pro-longevity and 455 anti-longevity genes across the
human genome. (f) Letter value plot of transcript length all 219 pro-longevity
and 335 anti-longevity genes across the mouse genome. (g) As Fig. 5a, but using
allhuman protein-coding genes as the set being analyzed instead of restricting
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enrichment analysis toward genes with at least one annotation and focusing
onthe 5% shortest and 5% longest median transcript lengths. (h) As Fig. 5b, but
using all protein-coding genes as the set being analyzed instead of restricting
enrichment analysis toward genes with at least one annotation and focusing on
the 5% shortest and 5% longest median transcript lengths in mice. (a,b, g, h) n
indicates the absolute number of genes with a pro-longevity and anti-longevity
phenotype among the genes with 5% or 10% (as indicated as focus in pales)
shortest and longest median transcript lengths and e indicates expected number
of genes witha pro-longevity and anti-longevity phenotype if there was no
association between transcript lengths and longevity phenotypes. Pvalues were
estimated by two-sided Fisher’s exact test. (c-f) Letter value plots shows median
asblacklines, boxes of decreasing width percentiles of dataaccording to letter
ratios (+/-25%, +/-37.5,+/-43.75, etc.), and observed minima and maxima as
diamonds. Pvalues are from two-sided Mann-Whitney U'test.
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RNA sequencing data created during this study, and used for Fig. 1 has been deposited under GSE141252. Data underlying other figures has been generated by
other research groups and is available from them and/or their respective publications.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes, but our sample sizes are similar to those reported in previous publications.

The same size of 3 animals per tissue and age was chosen so to allow dissection and preparation of all 17 tissues of interest. We performed
the experiment with two different cohorts of mice sacrificed on different days to provide upper bounds for the effect sizes that can be
explained by our study (See Supplementary Fig. 3). No sample size calculation was performed. While we can not exclude some false-negative
findings, our analysis focused on the identification of phenomena that are detectable within this sample size. We show in Fig. 2 and 3 that the
inferred phenomenon also exists in other datasets on aging.

Data exclusions  No data were excluded from the analyses, except for additional control analysis which tested the robustness of the conclusion against
different exclusion criteria (Supplementary Fig. 10 c-f).

After completion of the manuscript, we however noted that the original experiment contained muscle tissues for which no sequence data was
obtained, and that the original preparation of sequence data included sorted Alveolar Macrophages, and Alveolar Type 2 cells and Monocyte-
derived dendritic cells. Preceding the analysis started in this manuscript, sequence data of the latter had not been carried forward toward
analysis as quality control metrics appeared different and indicative of lower quality than the other experimental preparations.
Retrospectively, analyzing these three cell populations toward a length-associated transcriptome imbalance after the (otherwise) completion
of this manuscript, we find — consistent with our comprehensive reanalysis of cell types through public single cell transcriptomic data —a
length-associated transcriptome with a relative fold-reduction of long transcripts in Alveolar Macrophages and Alveolar Type 2 cells
(Supplementary Fig. 17).

Replication We considered datasets prepared and/or analyzed by other investigators (Figs. 2, 3 and corresponding supplements). For NanoString analysis
we preformed a single experiment. For experiments performed by different laboratories we do not know how often they replicated their
analysis. The latter should have little effect on the meta-analysis described by us as we show that within their own analysis a length-
association had been present.
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Randomization  The different groups correspond to different ages.

Blinding Investigators were not blinded to group allocation during data collection and outcome assessment and further data analysis. Blinding during
data collection was not possible as old mice look different from younger mice; Blinding was not relevant during outcome assessment and
further data analysis, as the latter used a machine learning strategy to find the properties informing on age-dependent change.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology X |:| MRI-based neuroimaging
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Human research participants
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Dual use research of concern

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male C57BL/6J mice were provided by NIA NIH. Six mice were sacrificed at 4, 9, 12, 18, 24 months of age. Animals were house under
14 hour light, 10 hour dark cycle, at 18-23°C with 40-60% humidity.

Wild animals no wild animals were used in the study

Field-collected samples  no field-collected samples were used in the study

Ethics oversight The study was approved by Northwestern IACUC, study #1S00014451.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




	Aging is associated with a systemic length-associated transcriptome imbalance

	Results

	Gradient-boosting regression of transcriptomic changes

	Transcript lengths explain transcriptomic changes

	Length association is robust across organisms

	Length association is robust across cell types

	Length-associated transcriptome imbalance in human aging

	Length association responds to antiaging interventions

	Shortest and longest transcripts impact longevity opposingly


	Discussion

	Methods

	Statistics and reproducibility

	Estimation of confidence intervals for bar plots
	Animal keeping
	RNA isolation and RNA sequencing
	Bioinformatics
	Differential expression of bulk RNA sequencing
	Characteristics of genes
	Modeling
	Kernel-density visualizations
	Comparison to two cohorts of mice
	Comparison to differential gene expression analysis
	Alternate bioinformatics
	Length correlations
	Quantification through difference in median transcript length
	Technical robustness checks
	Biological variation
	NanoString
	Reanalysis of previous studies
	Single-cell transcriptome imbalance
	Exclusion of genes with inflammation and neuronal function
	Mapping of rhesus macaque genes
	Analysis of Flynn et al.
	Functional enrichments
	False-positive rate of opposing enrichment and depletion
	Alternative enrichment analysis for longevity genes
	Annotation network construction

	Reporting summary


	Acknowledgements

	Fig. 1 Observation of length-associated transcriptome imbalances.
	Fig. 2 Age-dependent length-associated changes persist across organisms and laboratories.
	Fig. 3 Length-associated transcriptome imbalance in humans.
	Fig. 4 The age-dependent length-associated transcriptome imbalance is responsive to several antiaging interventions.
	Fig. 5 Enrichment analysis suggests that the shortest and longest transcripts have opposing associations with longevity.
	Extended Data Fig. 1 Performance of Gradient Boosting Regression (GBR) models, related to Fig.
	Extended Data Fig. 2 Gradient boosting regression prediction provides good accuracy even when no genes are detected as significantly differentially expressed, related to Fig.
	Extended Data Fig. 3 Length-related features contain highly similar information toward age-dependent changes of the mouse transcriptome, related to Fig.
	Extended Data Fig. 4 Length-associated transcriptome imbalance for individual tissue-age pairs, related to Fig.
	Extended Data Fig. 5 Age-dependent length correlation persists in transcriptomic and proteomic data of Takemon et al.
	Extended Data Fig. 6 Length correlation with relative fold-changes obtained for individual cell types inferred from single-cell RNA sequencing data, related to Fig.
	Extended Data Fig. 7 Robustness of observation of length-associated transcriptome imbalance in humans, related to Fig.
	Extended Data Fig. 8 Anti-aging interventions oppose the relative fold-decrease of long transcripts, related to Fig.
	Extended Data Fig. 9 Transcript length and reported association to the biology of aging, related to Fig.
	Extended Data Fig. 10 Network of Gene Ontologies enriched for transcripts of one length-extreme and depleted from the other, related to Fig.




