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The use of methods from natural language processing1 has 
become an indispensable tool in applications of data sci-
ence pervading nearly every scientific discipline2,3. The main 

challenge is how to extract meaningful information from large and 
diverse datasets—most of which are comprised of unstructured 
texts. One of the most common approaches to represent textual data 
is the so-called bag-of-words model, in which one ignores the order 
of words within a given document. To improve the signal-to-noise 
ratio or decrease the amount of data, this is often accompanied by 
data filtering as part of the data pre-processing steps4. In practice, 
such activities can take up to 80% of the research effort5. However, 
we still lack fundamental insights into how these procedures affect 
the performance of specific algorithms6.

For concreteness, we consider topic modelling7, a paradigmatic 
unsupervised approach for automatic organization of collections of 
documents8. One contentious pre-processing step in topic model-
ling is the removal of semantically uninformative words such as ‘the’. 
The most common approach, which goes back more than 50 years, is 
to curate a “dictionary of insignificant words”9, commonly referred 
to as a stopword list10. While some stopword lists can appear to 
practitioners as standard due to being the default choice in popular 
applications (such as Mallet11), there is no consensus among experts 
on which words should be excluded12.

Indeed, the use of a ‘standard’ stopword list is problematic 
because it ignores the domain-knowledge specificity of stopwords13 
and because it is language-specific14. The limitation of static lists 
has motivated the development of other heuristic approaches based 
on factors such as the number of occurrences (most and least fre-
quent words), document frequency, and term frequency and inverse 
document frequency (TFIDF)15, and other, often ill-specified, pro-
cedures. The state of uncertainty in the field is illustrated by the 
fact that the seminal paper on latent Dirichlet allocation “removed 
a standard list of 50 stop words ... [and] ... words that occurred only 
once”16, but other works by the same author subsequently removed 

“standard stop words and those that appear too frequently or too 
rarely”17 or “all words not in a pruned vocabulary of 4,253 words”18, 
or chose “1,539 terms that occurred in more than five documents”19 
or a “5,000-term vocabulary according to tfidf ”20. Even when using 
the same method, such as TFIDF, different authors use different 
thresholds; for example, ref. 21 removes words “that have tfidf greater 
than 0.8”. The inconsistency in filtering approaches poses severe 
challenges to the comparison of results across different studies, 
rendering it nearly impossible to obtain a coherent picture on the 
state of the field. This is exacerbated by the fact that the removal of 
stopwords in topic modelling and text-based unsupervised learning 
more generally is not well understood22, leading to a sterile debate 
on the usefulness of such approaches.

Model
Inspired by the formulation of Montemurro and Zanette23, we define 
a metric that quantifies how uninformative a word is in a corpus by 
using the framework of information theory.

Conditional entropy. Consider a corpus C with D documents in 
total. We denote by n w d( , ) the number of occurrences (tokens) of 
a word w in document d such that the number of tokens in docu-
ment d is = ∑n d n w d( ) ( , )w , and = ∑n w n w d( ) ( , )d  is the frequency 
of word w. It follows that the total number of tokens in the entire 
corpus is = ∑N n w d( , )w d, . For each word w, we consider its distri-
bution over documents as:

∣ = =p d w
p w d
p w

n w d
n w

( )
( , )
( )

( , )
( )

(1)

where = ∕p w n w N( ) ( )  is the relative frequency of a word. Using the 
Shannon entropy, we can quantify how ‘uneven’ this distribution is:
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C ∑∣ = − ∣ ∣H w p d w p d w( ) ( ) log ( ) (2)
d

This conditional entropy can be interpreted as a dispersion mea-
sure24 quantifying in bits the amount of uncertainty a randomly 
drawn token of word w provides about which document d it occurs 
in. Thus, a more informative word will have a lower conditional 
entropy. For example, for an extremely topical word that occurs 
in only one document d*, we have δ∣ =p d w( ) d d, * and we obtain 

C∣ = =H w H( ) 0 min. Here δ is the Kronecker delta: δ = 1i j,  if =i j and 
0 otherwise. In contrast, an idealized stopword would be evenly dis-
tributed, yielding C ∑∣ = ∕ ∕ = =H w D D D H( ) 1 log 1 log

d max.

Random null model. In reality, the last term provides only an 
upper bound for the entropy of idealized stopwords due to finite-
size effects. In particular, Zipf ’s law for word frequencies25 tells us 
that most words occur with a very low frequency and we will, thus, 
be expected to undersample ∣p d w( ).

To correct for undersampling, we construct a null model to esti-
mate the expected entropy of randomly distributed words, C∣H͠ w( ). 
Specifically, by shuffling all tokens across documents, we obtain a 
random distribution of words across documents ñ w d( , ) while pre-
serving the marginal counts n w( ) and n d( ). Note that an alternative 
random null model in which each word is used with fixed relative 
frequency p w( ) yields indistinguishable results (see Supplementary 
Notes A and Supplementary Fig. 1). As expected, we find that 

C∣H͠ w( ) depends strongly on n w( ) (Fig. 1a); its functional form can 
be roughly approximated by

C∣ ∝ −͠ − ∕H w( ) log(1 e ) (3)n w D( )

(see Supplementary Notes B and Supplementary Fig. 2). An impli-
cation of this result is that using a fixed threshold entropy value 

to determine stopword lists will inevitably eliminate informative 
words and include uninformative ones.

For the most common words, such as ‘the’ in English corpora, the 
observed entropy approaches the null model value ( ≲ ͠H H ), but still 
remains slightly smaller than Dlog . Moreover, there are many words 
with medium or low frequency n w( ) whose occurrence is indistin-
guishable from chance. In fact, some words have > ͠H H  (that is, they 
are more equally distributed than we would expect from chance), 
which can be attributed to a highly regular usage across documents 
(for example, ‘thanks’). Significantly, words that have ≪ ͠H H , such 
as ‘cancer’ in an English corpus, can be statistically distinguished 
from words that are used randomly across all documents.

Importantly, we observe very similar results for corpora from 
other languages (Fig. 1b–d). High-frequency function words do 
display only small deviations from the expected entropy (for exam-
ple, ‘de’ in Portuguese, 的 in Chinese or ‘der’ in German). However, 
many words with medium or low frequency appear in the corpus in 
a manner indistinguishable from the prediction of the null model. 
Yet, we also observe a substantial set of words that have smaller than 
expected entropies such as ‘inflação’ in Portuguese, 球 in Chinese 
or ‘gott’ in German.

Information content. Prompted by these findings, we define 
the information content of a word as the difference between the 
observed and the expected values of the conditional entropy

C C C∣ ≡ ∣ − ∣͠I w H w H w( ) ( ) ( ) (4)

where C∣H͠ w( )  is the average over different realizations of the null 
model. A word with C∣ ≈I w( ) 0 is statistically indistinguishable from 
a word that is used at random. Thus, low values of C∣I w( ) can be 
used to identify stopwords.

Remarkably, for the studied corpora, the vast majority of words 
turn out to be uninformative, which can be rationalized by the fact 
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Fig. 1 | using entropy as a universal measure to quantify the information content of a word. The conditional entropy C∣H w( ) as a function of the frequency 
n w( ) for each word (blue dots) and the expected entropy C∣∼

H w( )  from a random null model averaged over 1,000 realizations (orange line) for different 
languages (see Supplementary Methods A for details on the datasets). The error bars represent five s.d. a, English (20 newsgroups). b, Portuguese. c, Chinese. 
d, German. The maximum entropy =H Dlogmax  (for example, ≈14.2 for English) is shown as a dotted line. Individual words are shown as examples (crosses).
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that most words occur very rarely (Fig. 2a). The joint distribution 
over I w( ) and n w( ) reveals a more intricate pattern (Fig. 2a and 
Supplementary Fig. 3). For the 77% of the words that occur fewer 
than 10 times, we have a typical information content close to 0. Only 
for words occurring more than ten times do we find a substantial 
fraction of words with non-zero information content. Yet, even in 
this case, the peak of the distribution of C∣I w( ) is typically located 
near 0. This indicates that uninformative words can be found across 
the full spectrum of word frequencies. Interestingly, words with a 
large number of occurrences usually deemed uninformative can 
show small deviations from random usage ≈ .I w( ) 0 2 (meaning that 
they are in fact informative) or negative values (indicating a more 
regular usage than would be generated by chance).

We deem a deviation from the null expectation statistically sig-
nificant if it exceeds a threshold value (Supplementary Fig. 4). In 
general, this threshold depends on n w( ). However, we found that 
it was smaller than 0.1 bits across all word frequencies (one-sided 
P value = 0.05). While this selection imposes that the information 
content is significantly larger than 0, it does not guarantee the mag-
nitude of the information content.

Therefore, our approach to defining stopwords is any word with 
an absolute information content smaller than > .I 0 1* . Interestingly, 
scanning of I * does not reveal an obvious optimum as the number of 
remaining tokens decays exponentially (Fig. 2b and Supplementary 
Fig. 5). Thus, the choice of I * can be based on the desired reduction 

in the size of the data—a moderate threshold =I 1*  removes more 
than 80% of the data in both the number of words and tokens.

experiments
Next, we benchmark our principled approach against currently 
popular stopword identification approaches (Supplementary 
Methods B).

Overlap with other heuristics. We start by quantifying the overlap 
between different stopword lists using the correlation score as well as 
the Jaccard index (Supplementary Methods C). While both calcula-
tions appear to show a significant overlap between our approach and 
TFIDF (Fig. 2c), a subtler analysis reveals large differences (Fig. 2d). 
Indeed, taking into account the uneven distribution of words (Zipf ’s 
law), our approach is the only one that does show a non-monotonic 
U-shape removing mostly words with high and low frequency.

Topic model inference. While the pragmatic reason to remove stop-
words is to reduce the computational cost of the topic model infer-
ence (Supplementary Fig. 6), the most exciting potential of stopword 
removal in topic modelling is an improvement in the quality of the 
inferred topics. A major challenge in the evaluation of topic models 
in this context is that common metrics such as perplexity and coher-
ence are ill-suited to assess the effect of removing stopwords as they 
require unchanged data (Supplementary Notes C). In fact, it has 
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been observed empirically that “traditional topic quality metrics are 
not robust to stopwords”26 because they are implicitly biased by, for 
example, the size of the vocabulary27 (Supplementary Figs. 13–15).

As a first proxy for the quality of the inferred topics, we assess 
their accuracy by quantifying how much the inferred topic distri-
butions correlate with category labels from the document meta-
data. Specifically, we calculate the normalized mutual information 
(NMI) between the documents’ topic (that is, the topic with high-
est propensity) and their category labels. For the case of synthetic 
data—the only case in which we have access to a well-defined 
ground-truth topic structure—this measure has been shown to 
correlate strongly with measures quantifying the overlap between 
planted and inferred topics28. While for real corpora, metadata can 
and should not be treated as a ground truth in absolute terms29, an 
increase or decrease in the NMI can highlight a positive or negative 
effect on the quality of topic model inference when removing stop-
words, avoiding the biases observed for traditional measures. As a 
second proxy for the quality of the inferred topics, we quantify the 
reproducibility of the inferred topic distributions across different 
realizations of the optimization algorithm given the same data. In 
practice, the inferred topics can vary due to different initial condi-
tions (in the case of variational Bayes) or stochasticity in the infer-
ence algorithm (in the case of Gibbs sampling), leading to different 
local maxima in the likelihood landscape. While this effect is not 
well understood, it has been shown that the different local maxima 
can correspond to substantially different solutions30. Therefore, a 
high overlap between different solutions would mitigate such issues, 
and corroborate the robustness of the inferred topics.

Our information theoretic approach leads to substantial 
improvements, both in accuracy and in reproducibility, across dif-
ferent corpora (Fig. 3), while at the same time reducing the amount 
of data by as much as 80%. Remarkably, manually curated and 
TFIDF’s stopword lists perform almost as well as our information 

theoretic approach when removing only a small fraction of the data, 
indicating that these historically grown lists constitute a good heu-
ristic. However, the information theoretic approach typically yields 
the maximum performance compared to alternatives when remov-
ing a very large fraction of data (between 60% and 80%), a range 
that is inaccessible to manual approaches and in which performance 
substantially deteriorates for TFIDF. Interestingly, the effect of stop-
word heuristics can vary dramatically for different topic model 
algorithms (Supplementary Figs. 7–9). While individual heuristics 
work well in a specific scenario, our information theoretic approach 
is the only approach that consistently displays high performance 
across different evaluation metrics, corpora and topic models. For 
example, the ‘Top–bottom’ heuristic (removing high- and low-
frequency words) highly outperforms our information theoretic 
approach for some corpora in combination with the LDAVB topic 
model. However, even then, LDAVB yields weaker overall perfor-
mance than the other topic model algorithms (HDP or LDAGS).

Next, we investigate the potential of applying our approach to 
corpora from different languages. While manual stopword lists 
for English are readily available, it is not only time-consuming but 
also challenging to compile such lists for an arbitrary language14. 
Our approach offers a scalable alternative as it automatically  
identifies words that do not contain any informative content in a 
statistical sense.

Considering annotated corpora from three different languages 
(Portuguese, Chinese and German), we largely reproduce the results 
obtained for English (Fig. 4 and Supplementary Figs. 10–12 for other 
topic model algorithms). For these three corpora, removal of stop-
words according to our proposed measure leads to topics that are 
both more accurate and more reproducible. Similarly to the results 
for English corpora, the information theoretic approach yields the 
maximum performance when removing large fractions of the data. 
In particular, for the Chinese and German corpora, it leads to a large 
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across all corpora and topic models and, importantly, corpus size reductions are greatest.

NAture MAcHiNe iNteLLiGeNce | www.nature.com/natmachintell

http://www.nature.com/natmachintell


ArticlesNATure MACHiNe iNTelligeNCe

improvement in the overlap between topic distributions obtained 
from different runs of the topic model.

Generalizablity to other bag-of-words models. The information 
theoretic approach to the identification of stopwords introduced 
here is not only advantageous in applications of topic modelling, but 
it also has high potential for bag-of-words approaches in general. To 
support this claim, we consider here two case studies.

First, we consider the problem of document classification in 
information retrieval31. Specifically, we follow the approach in 
ref. 32 and investigate the performance of stopword removal for the 
supervised classification of document labels using support vec-
tor machines with word counts n w d( , ) as document features. In 
Fig. 5, we show the prediction accuracy (the fraction of correctly 
classified documents; normalized by the maximum accuracy 
across all different stopwords) in a held-out test set with tenfold 
cross-validation. The removal of stopwords does not increase 
accuracy, but allows for a substantial reduction in the size of the 
corpus with little decrease in accuracy for small and intermedi-
ate fractions of removed data (<60%). Even without any filtering, 
accuracy is close to 1, showing that supervised classification of 
category labels is a much easier problem than unsupervised infer-
ence such as topic modelling. The differences between different 
stopword lists become amplified if the fraction of removed data 
is large (>60%). Surprisingly, among the traditional stopword 
lists, performance can vary strongly across corpora. Most impor-
tantly however, the information theoretic stopword list is the only 
approach that yields the maximum performance across corpora 
from any domain or language.

Second, we show that our method can be generalized to cases 
beyond language by applying it to data from single-cell RNA-
sequencing (scRNA-seq)33, where one counts the number of times a 
gene (equivalent to a word) is expressed in individual cells (equiva-
lent to a document), or more precisely the number of gene-specific 
RNA molecules. In analogy to the bag-of-words model for texts, 
computational analysis of data from scRNA-seq experiments aims to 

automatically identify different cell types34. Different pre-processing 
heuristics are employed to filter stopwords (that is, so-called house-
keeping genes that are required for basic cell functioning and are 
consistently expressed across all cells35). In Fig. 6a we quantify the 
informativeness of 17,467 genes based on their expression pro-
files across 713 individual cells taken from a single human donor 
(Supplementary Methods A). Inspection of the conditional entropy 
(H) and its expected value from a random null model (H͠) reveals the 
same patterns we observed for textual data (Fig. 1). The expression 
counts of most genes across cells are indistinguishable from chance. 
In particular, for the most common genes such as MALAT1, we find 
that ≈ ͠H H  and thus they are deemed uninformative. In contrast, 
genes such as GNLY36 or PTGDS37 with an intermediate overall num-
ber of counts exhibit ≪ ͠H H  and thus constitute the most informa-
tive genes. Curated annotations on the biological role of genes are 
consistent with our classification: whereas uninformative genes are 
vital for basic cell functioning (for example, scaffolds), examples of 
informative genes are associated with more specific contexts in par-
ticular cell types such as T cells (Fig. 6b).

These examples offer a new view on the effect of stopword removal 
according to our information theoretic approach. While a gene might 
be considered uninformative for cell type identification, that gene is 
probably important for the survival of the cell. Similarly, words that 
are uninformative for the topic identification are nonetheless vital for 
the readability of a text (Fig. 6c).

Discussion
In contrast to other heuristics, our proposed method substantially 
reduces the total amount of data as well as the size of the vocabulary 
and it can be applied without any fine-tuning in corpora originating 
from different knowledge domains or languages. While our analysis is 
confined to bag-of-words approaches, the formulation grounded on 
information theory allows for straightforward extensions that take into 
account additional structural features such as sentences, paragraphs 
or the context windows used in, for example, word2vec approaches38. 
Given the wide use of ‘topic model’ approaches in biology39 or image 
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analysis40 facing similar issues in pre-processing, our method could 
be applicable beyond the analysis of texts and it can be seen as a prin-
cipled approach to the common problem of thresholding41.

Data availability
The text data are available in the public repository https://github.
com/amarallab/stopwords.

code availability
The code for this Article, along with an accompanying computa-
tional environment, is available in the public repository https://
github.com/amarallab/stopwords and is executable online as a Code 
Ocean capsule. Code for the calculation of the information theo-
retic measure I and for the experiments with topic models can be 
found at https://doi.org/10.24433/CO.6204149.v142.
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document classification (using support vector machines in a bag-of-words model with word counts as document features) as a function of the fraction of 
removed stopwords, using different stopword lists for corpora from different knowledge domains (top row) and languages (bottom row). The curves show 
the average and ±2 s.d. from tenfold cross-validation. The shaded areas indicate the regions in which the information theoretic approach yields the best 
results across all corpora.
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THE STROBOSCOPIC METHOD APPLIED TO THE STELLAR 3-BODY
PROBLEM - THE KEPLERIAN OUTER ORBIT APPROXIMATION.
This article discusses the stellar three-body problem using an
approximation in which the outer orbit is assumed to be Keplerian.
The equations of motion are integrated by the stroboscopic
method, i.e., basically at successive periods of a rapidly changing
variable (the eccentric anomaly of the inner orbit). The theory is
applied to the triple-star system xi Ursae Majoris.
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Fig. 6 | Application to data from scrNA-seq reveals ‘stopgenes’. a, The conditional entropy C∣H w( ) as a function of the frequency n w( ) for each gene 
(blue dots) and the expected entropy C∣∼

H w( )  from a random null model averaged over 1,000 realizations (orange line) for a dataset from scRNA-seq 
that measures the number of times a gene is expressed in a cell (see Supplementary Methods A for details on the datasets). The error bar represents two 
s.d. b, A description of the function of four example genes as stated in https://www.ncbi.nlm.nih.gov/gene, showing the consistency with our classification 
as informative and uninformative. c, The effect of stopword removal for an example text (the abstract of a scientific paper from the Web of Science) 
when removing 70% of word tokens with the information theoretic approach (Infor). Although the filtered text is not readable, its content is reduced to 
keywords that highlight the differences to all other texts contained in the corpus.
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