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Open-source computational pipeline flags
instances of acute respiratory distress
syndrome in mechanically ventilated adult
patients

Félix L. Morales 1, Feihong Xu 2, Hyojun Ada Lee 1,
Helio Tejedor Navarro 1,3, Meagan A. Bechel4,5, Eryn L. Cameron6, Jesse Kelso6,
Curtis H. Weiss 1,7 & Luís A. Nunes Amaral 1,3,8,9,10

Physicians in critical care settings face information overload and decision
fatigue, contributing to under-recognition of acute respiratory distress syn-
drome, which affects over 10% of intensive care patients and carries over 40%
mortality rate. We present a reproducible computational pipeline to auto-
matically identify this condition retrospectively in mechanically ventilated
adults. This computational pipeline operationalizes the Berlin Definition by
detecting bilateral infiltrates from radiology reports and a pneumonia diag-
nosis from attending physician notes, using interpretable classifiers trained on
labeled data. Here we show that our integrated pipeline achieves high per-
formance—93.5% sensitivity and 17.4% false positive rate—when applied to a
held-out and publicly-available dataset from an external hospital. This sub-
stantially exceeds the 22.6% documentation rate observed in the same cohort.
These results demonstrate that our automated adjudication pipeline can
accurately identify an under-diagnosed condition in critical care and may
support timely recognition and intervention through integration with elec-
tronic health records.

Physicians, especially intensivists, process large amounts of dispersed
information from many patients1. This potential information overload
poses serious risks to patient safety. Several studies have estimated
that hundreds of thousandsof fatalities per yearmaybedue tomedical
errors2–4. While information overload is a challenge for humans, vast
amounts of information become advantageous if used as input for
machine learning (ML) approaches. Recent advances in artificial
intelligence, ML, and data science are enabling the development of

protocols to extract knowledge from large datasets. However, some of
those approaches lack interpretability and have been shown to be
fragile (e.g., recent re-analysis of attempts to diagnose COVID-19 from
chest X-ray images5).

In this study, we report on the development and evaluation of a
computational pipeline to help physicians retrospectively adjudicate
acute respiratory distress syndrome (ARDS). ARDS, a syndrome of
severe acute hypoxemia resulting from inflammatory lung injury6, is an
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ideal case for the development of a diagnostic aid tool. ARDS recog-
nition requires physicians to synthesize information from multiple
distinct data streams and determine whether it fits a standard defini-
tion. The clinically based Berlin Definition of ARDS criteria include
quantitative data (PaO2/FiO2 ≤ 300mm Hg), unstructured data (bilat-
eral opacities on chest imaging), and subjective data (assessing for the
presence of ARDS risk factors and heart failure)6. Despite ARDS’ high
prevalence, morbidity, and mortality, prior research has shown that
many patients with ARDS are not recognized by their treating
physicians7,8. The poor recognition rate of ARDS7 is at least partially
due to the difficulty in evaluating and integrating all the Berlin Defi-
nition criteria, which requires the physician to access laboratory data,
chest images or radiology reports, other physicians’ notes, and echo-
cardiographic data or reports, before they can apply the criteria to
determine whether ARDS is present.

Under-recognition of ARDS plays an important role in under-
utilization of evidence-based ARDS treatment (e.g., low tidal volume
ventilation andpronepositioning), evenwhenphysicians believe these
interventions are warranted9. An automated approach to the adjudi-
cation of the ARDS diagnostic criteria has the potential to be a pow-
erful aid to physician decision-making, leading to improved ARDS
recognition and therefore improved ARDS management. We pursue a
retrospective adjudication approach as a first step in addressing the
ARDS under-recognition problem.

Previous studies have demonstrated some success in automating
the recognition of individual ARDS diagnostic components using
electronic health record (EHR) screening sniffers10–12. In addition, an
MLalgorithm to risk-stratify patients forARDSusing structured clinical
data derived from the EHR was shown to have good discriminative
performance13. Regarding automating the entire ARDS diagnostic
algorithm, two studies have recently reported the implementation of
keyword search (i.e., rule-based approach) in the EHR with validation
conducted for 100 intensive care unit admissions from a single period
and from a single institution14,15. A third study recently reported on a
computable Berlin Definition which employed a previously developed
neural network approach to adjudicate chest imaging reports restric-
ted to patients with a single, known ARDS risk factor (COVID-19), with
promising performance (93% sensitivity, 92% specificity)16. However,
no study has so far succeeded in simultaneously automating the entire
sequence of steps required by the Berlin Definition of ARDS repro-
ducibly, and evaluating the discriminative performanceof the tool on a
multi-hospital population of critically ill patients who received invasive
mechanical ventilation. Our study addresses this gap.

Results
Adjudication of bilateral infiltrates
Figure 1a shows the receiver operating characteristic (ROC) curves for
the eXtreme Gradient Boosting (XGBoost) model applied to chest
imaging reports from the development set. We quantify model pre-
dictive performance using the areas under the ROC curves (AUROCs).
We observe that once hyperparameters for eachmodel are optimized,
all models trained on chest imaging reports from the development set
achieve AUROCs of at least 0.85 (decision tree: AUROC=0.87, 95%CI =
[0.86, 0.89]; logistic regression: AUROC=0.91, 95%CI = [0.90, 0.92];
random forest: AUROC=0.93, 95%CI = [0.93, 0.94]; XGBoost:
AUROC=0.94, 95%CI = [0.93, 0.94]) (Fig. 1b).

We calculated the importance that each model assigned to the
200 tokens used as features. For decision trees and random forests,
feature importance corresponds to the mean decrease in Gini impur-
ity; for logistic regression, importances correspond to the mean
value of coefficients in the fitted linear equation; and for XGBoost, the
importance corresponds to the mean gain in predictive performance
obtained by including a particular feature in the trees. Reassuringly,
we find that the four models consistently identify tokens such as
edema, bilateral, clear, and atelectasis as the most predictive (Fig. 1c).

These tokens correspond closely to the inclusion/exclusion language
we developed to address Berlin Definition shortcomings8, which we
also observed when implementing Shapley-additive explanations
(SHAP) values to assess feature importancewhen applying theBilateral
Infiltrates Model (see methods, and below) on chest imaging reports
fromMIMIC (2001-12) (Fig. S2). For example, the presenceof the terms
bilateral or edemahas a positive impact on classification as positive for
bilateral infiltrates. In contrast, the presence of the terms clear, left, or
right has a negative impact on classification as positive for bilateral
infiltrates.

We then assessed how calibrated the model output probabilities
were by comparing model output probabilities after training to the
actual rate of occurrence of positive labels in chest imaging reports
from the development set. Figure 2 suggests that logistic regression
and XGBoost predicted probabilities are well calibrated, which is
expected given their use of similar loss functions for fitting (log-loss).
In contrast, random forest produces poorly calibrated probabilities,
being over-confident when forecasting with confidence levels lower
than 50%, and under-confident with confidence levels greater than
50%. We thus select XGBoost as the implemented classifier for our
pipeline as it offers the highest predictive performance (AUROC=
0.94, 95%CI = [0.93, 0.94]) and well-calibrated forecasts on the
development set (Durbin-Watson statistic = 1.68, 95%CI = [1.32–2.09]).

To assess how an XGBoost model developed for a specific cohort
generalizes to different health systems datasets, we tested the dis-
criminative performance of an XGBoost model trained on Hospital A
(2013) on chest imaging reports from Hospital B (2017-18) and MIMIC
(2001-12), separately (Fig. S3a). We also trained a second XGBoost
model on chest imaging reports fromHospital A (2016) and tested this
model against chest imaging reports from Hospital B (2017-18) and
MIMIC (2001-12), separately (Fig. S3b). In general, we found both
XGBoost models performing at a mean AUROC of 0.85 or higher
(lowest 95%CI of 0.82, highest 95%CI of 0.93). These results show that
XGBoost could stably generalize well regardless of which available
hospital system we chose to use for training.

To assess generalizability, we tuned hyperparameters and trained
an XGBoost model, which we name the Bilateral Infiltrates (BI) model,
using the entire development set. We tested this BI model on 975
labeled chest imaging reports fromMIMIC (2001-12), achieving amean
AUROC of 0.88 (95% CI: [0.86-0.91]), consistent with cohort-specific
XGBoost models mentioned previously (Fig. 3a). However, calibration
indicated the BI model was generally overconfident, except at prob-
abilities below 10% (Fig. 3b). In addition, since evaluations are at the
report level, we also assessed performance at the encounter level by
randomly selecting one report per encounter and applying the BI
Model to those reports. Results were comparable to the per-report
analysis, though with a wider 95% confidence interval due to the
smaller sample size (100 vs. 975 reports, Fig. S4).

The calibration results prompted us to test whether the output
probabilities by the BI model could be associated with the inter-rater
disagreement rates of the test set. To this end, we grouped MIMIC
(2001-12) chest imaging reports into three groups: reports where both
physician raters agreed on the No label, reports where both physician
raters agreed on the Yes label, and reports where physician raters
disagreed. For each of these groups, we calculated the mean BI Model
output probability. As seen on Fig. 3d, we reassuringly find that: (1)
when physicians agree that a report should be adjudicated as No for
bilateral infiltrates, the BI model typically outputs 21.8% (95%CI =
[20.1%, 23.4%]); (2) when physicians agree that a report should be
adjudicated as Yes for bilateral infiltrates, the BI model typically out-
puts 76.4% (95%CI = [72.4%, 80.4%]); (3) when physicians disagree on
their bilateral infiltrate adjudication, the BI Model typically outputs
50.0% (95%CI = [42.2%, 57.8%]). This suggests that despite the BImodel
yielding uncalibrated probabilities for the test set, these probabilities
still strongly align with expectation.
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Finally, we evaluated how the BI model fared adjudicating bilateral
infiltrates on individual chest imaging reports. We observed that, at the
50% probability threshold for binarizing probabilities into yes/no deci-
sions, the BI model exhibited a 75.1% sensitivity (24.9% false negative, or
missed, rate), a 13.2% false positive rate, a precision or positive

predictive value of 62%, and a 92.4% negative predictive value in adju-
dicating bilateral infiltrates at the single report level (Fig. 3c). This results
in an F1 score of 0.679 and an accuracy of 0.842.We also tried a sweepof
different probability cutoffs to find which threshold maximizes the
above metrics for the BI model. These can be found on Table S1.
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Fig. 1 | Machine learning (ML) models achieve high-performance in adjudicat-
ing the presence of bilateral infiltrates from chest imaging reports. Error bars
and bands show 95% confidence intervals for estimates of themean obtained using
bootstrapping (n = 10). a Receiver operating characteristic (ROC) curve for the
eXtreme Gradient Boosting (XGBoost) model trained on chest imaging reports

from the development set. b Bootstrapped mean area under the ROC (AUROC)
shows that all four ML approaches yield accuracies greater or equal to 0.85.
c Feature importances for the four differentML approaches considered. Features in
bold are highly ranked in importance in all 4 approaches.
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Extracting ARDS risk factors in attending physician notes
We first developed regular expression (regex) patterns to match key-
words for risk factors and heart failure language (see SI Regular
expression list 1 for a full list of regular expressions). As shown in Fig. S5,
most of the developed regex patterns capture 100% of the notes that
were labeled yes for a particular risk factor in Hospital A (2013). When
we count the total number of notes labeled as either yes or no, themost
prevalent matches were sepsis (744 notes labeled vs. 748 notes regex-
captured), pneumonia (636 notes labeled vs. 955 regex-captured), and
shock (604 notes labeled vs. 607 regex-captured). For the heart failure
criteria, the relevant matches were the cardiogenic keyword (176 notes
labeled vs. 725 regex-captured) to qualify the matching of shock, and
congestive heart failure (254 notes labeled vs. 352 regex-captured). We
thus feel confident that the built regex patterns can match nearly the
entirety of Hospital A (2013) notes labeled as yes for specific risk factors.

Next, we trained separate XGBoost models on attending physician
notes from Hospital A (2013) to adjudicate pneumonia, aspiration,
congestive heart failure (CHF), and sepsis. We attempted an ML
approach for these because at least 100 attending physician notes were
labeled for them, and their labels have relatively balanced yes/no pro-
portions after regex-matching (between 33% and 66%, except for sepsis;
see Table S2). We observed that the XGBoost model trained for

pneumonia yielded the best discriminative performance during
cross-validation (Pneumonia: AUROC=0.92, 95%CI = [0.89, 0.94]; CHF:
AUROC=0.79, 95%CI = [0.68, 0.85]; Aspiration: AUROC=0.61, 95%CI =
[0.47, 0.75]; Sepsis: AUROC=0.74, 95%CI = [0.61, 0.83]; Fig. 4a, b),
assigned the greatest and most stable importance to tokens
that align with clinical expectations (Fig. 4c), and exhibited the best
calibration (DW= 1.64, 95%CI = [1.14-2.28]; CHF: DW= 1.25, 95%CI = [0.75,
1.71]; Aspiration: DW=0.67, 95%CI = [0.10, 1.42]; Sepsis: DW= 1.01, 95%
CI = [0.41, 1.82]; Fig. 4d). These results reveal a stark contrast between
the XGBoost models trained to adjudicate pneumonia and the XGBoost
models trained to adjudicate CHF, aspiration, and sepsis. Thus, we
decided against integrating these threeMLmodels into our pipeline and
only use the XGBoost approach to adjudicate pneumonia.

We then evaluated our approach for adjudicating pneumonia by
training an XGBoost classifier on 955 attending physician notes, regex-
captured for pneumonia. The resulting Pneumonia Model was tested
on 790 regex-captured notes fromMIMIC (2001-12), achieving a mean
AUROCof0.88 (95%CI = [0.85–0.91]) (Fig. 5a). Themodel reliedheavily
on the pneumonia token for classification (Fig. 5b). Calibration analysis
indicated general under-confidence, except at probabilities above 80%
(Fig. 5c), in contrast to the overconfidence observed in the Bilateral
Infiltrates model.
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Finally, we evaluated the Pneumonia Model’s performance on
individual attending physician notes. At a 50% probability threshold, it
achieved 62.6% sensitivity (37.4% false negative rate), 4.2% false posi-
tive rate, 88.5% precision, and 83.1% negative predictive value, yielding
an F1 score of 0.733 and an accuracy of 0.844 (Fig. 5d). We also
explored various probability cutoffs to optimize these metrics
(Table S3). Notably, the 20.6% cutoff emerged as optimal for the F1
score, accuracy, and Youden’s J statistic.

For other risk factors and heart failure criteria, we used regex
adjudication via two approaches. In the first, if a factor was labeled yes
in >80% of captured notes, we adjudicated it using the same regex
pattern used for capturing it, including shock, cardiogenic, inhalation,
pulmonary contusion, vasculitis, drowning, and overdose (Table S2
and Fig. S5). In the second, to reduce false positives, we applied
exclusion terms after regex capture (SI Regular expression list 2). This
method, used for sepsis and shock, significantly lowered false positive
rates compared to regex alone (Fig. S6).

We then applied these regex approaches to adjudicate risk factors or
heart failure criteria in MIMIC (2001-12) attending physician notes,
focusingon factorswith available labels to validate patterns developed for
Hospital A (2013). These regex patterns demonstrated strong perfor-
mance, particularly for burns, pancreatitis, sepsis, and aspiration (Fig. 6).

Based on the overall results, we incorporated regex patterns to
the pipeline to adjudicate the following risk factors or heart failure
language: pneumonia, sepsis, shock, and its cardiogenic qualifier,
aspiration, inhalation, pulmonary contusion, pancreatitis, burns, vas-
culitis, drowning, and overdose.

Adjudication of heart failure from echocardiogram (echo)
reports
The criteria for the objective assessment of heart failure rely on the
following six factors: left ventricular ejection fraction, cardio-
pulmonary bypass, left atrial diameter, left atrial volume index, left
ventricular hypertrophy, and grade II or III diastolic dysfunction.
Because echo reports are highly standardized, it is possible to extract
these factors from the reports using regex.Moreover,we had access to
echo reports from Hospital A (2013), which were previously text-
matched, enabling us to validate our regex approach.

Using the regex patterns listed in the SI, we analyze Hospital A
(2013)’s echo reports for the presence or absence of each of the six
factors of interest. Fig. S7 demonstrates that not all six factors were
present in every echo report. For three of the six factors — left ven-
tricular ejection fraction, left atrial dimension/diameter, and left atrial
volume index—we found excellent agreement between regex and text-
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matching. Two of the other three, cardiopulmonary bypass and dia-
stolic function,were not text-matched, sono comparison canbemade.
For left ventricular hypertrophy, the regex-matching procedure
correctly captured the desired language, indicating that the original

text-matching procedure failed to identify 13 echo reports. In addition,
we validated the numerical values extracted through this regex
approach by randomly selecting 10% of echo reports for visual
inspection of values and comparing against values extracted through
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regex. We found 100% concordance between values extracted and
those retrieved manually (Table S4).

Adjudication of ARDS for Hospital A (2013) cohort
We are now ready to compare the performance of our complete pipe-
line against the previously reported ARDS adjudication8. We use a
threshold of 50% to map output probabilities into binary yes/no deci-
sions for both the Bilateral Infiltrates model and the Pneumonia Model.

We conduct the evaluation of our pipeline for the 943 encounters
in the Hospital A (2013) ARDS adjudication cohort who were 18 years
and older, received invasive mechanical ventilation, and had acute
hypoxemic respiratory failure (Fig. 7). A total of 143 encounters had no
chest imaging report available and were adjudicated as negative for
ARDS. The remaining 800 encounters had at least one chest imaging
report available. The BI model adjudicated bilateral infiltrates within
48 h of a hypoxemic episode for 507 encounters. Of these 507
encounters, 442 had at least one of the qualified hypoxemic events
occurringpost-intubation, and335hada risk factorwithin 7daysof the
qualified hypoxemia event and were adjudicated as being positive
for ARDS.

The remaining 107 encounters were then evaluated for heart
failure. For 8 encounters, the physician notes indicated heart failure,
and they were adjudicated as negative for ARDS. The last 99

encounters were then adjudicated using the objective heart failure
assessment step; 57 were adjudicated to have heart failure and thus
negative for ARDS, and the remaining 42 were adjudicated as positive
for ARDS. In total, the pipeline adjudicated 377 encounters as positive
for ARDS and 566 as negative for ARDS.

To summarize, using a standard 50% probability cutoff for both
ML models, our pipeline yields close agreement with the physician
adjudication of ARDS for this cohort8 (Fig. 7a). Specifically, the pipeline
yields a sensitivity or true positive rate of 95.4% on this cohort, which
compares favorably to the 12.2% ARDS documentation rate we found
on this cohort17. Importantly, this high sensitivity is achieved while
maintaining a low 13.5% rate of false positives.

As a sensitivity analysis, we explored different probability
thresholds for the BI model to identify optimal metrics for both the
model and the overall adjudication pipeline (Table S5). A BI model
cutoff of 63.1% yielded the best overall accuracy (0.900), F1 score
(0.860), with a false positive rate of 12.1% and a precision of 78.9%).
However, thresholds optimizing the BI model’s accuracy, F1 score, or
Youden’s J statistic resulted in a lower false negative rate (4.6%) and
higher negative predictive value (97.5%) for the overall pipeline.

Finally, we compared the clinical characteristics of encounters
adjudicated as ARDS-positive or negative by both the pipeline and
critical care physician adjudication8 (Table 1). Both consistently

Fig. 5 | Evaluation of the Pneumonia Model on attending physician notes from
MIMIC (2001-12). Error bands show 95% confidence intervals for estimates of the
mean obtained using bootstrapping (n = 100). a Receiver operating characteristic
(ROC) curve for the Pneumonia Model tested on 790 bootstrapped attending
physician notes from MIMIC (2001-12) that were regex-captured for pneumonia.
b Shapley-additive explanations (SHAP) values for the top 15words in termsof their

impact on Pneumonia Model’s output probabilities. c Calibration of probabilities
by the Pneumonia Model when applied on 790 bootstrapped attending physician
notes from MIMIC (2001-12). d Confusion matrix comparing MIMIC (2001-12)
attending physician notes, pneumonia labels by the critical care physician (ground
truth) against PneumoniaModel adjudications done at a 50% probability threshold.
Notice that the numbers add up to 790.
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identified a clinically distinct population. Encounters adjudicated with
ARDS had lower PaO2/FiO2 (PF) ratios, higher rates of low tidal volume
ventilation, and worse mortality and length of stay outcomes.

Adjudication of ARDS for MIMIC (2001-12) labeled subset
We applied our automated ARDS adjudication to 100 randomly
selected balanced encounters in MIMIC (2001-12) and then compared
a critical care physician’s adjudication against the pipeline’s (Fig. 8). As

for Hospital A (2013), we used a 50% probability threshold for the ML
models within the pipeline. Reassuringly, we find that the overall
performance of our pipeline onMIMIC (2001-12) is strikingly similar to
its performance on the Hospital A (2013) cohort (Fig. 8b). Specifically,
the pipeline yields a sensitivity or true positive rate of 93.5% onMIMIC
(2001-12), which compares favorably to the 22.6% ARDS documenta-
tion rate we found in this subset (see SI for discussion relating to a
classification difference for mild ARDS in this cohort). This high
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sensitivity is achieved while maintaining a relatively low 17.4% false
positive rate. Moreover, the false negative rate of the pipeline adjudi-
cation (6.5%) is lower than thatof a physician not trained in critical care
medicine (16.1%), highlighting the pipeline’s potential to aid physicians
recognize ARDS.

We also explored probability thresholds for the BI and Pneumonia
Models to identify optimal metrics for each model and the overall
pipeline (Table S6). A BI Model cutoff of 87.4% to 87.9% and a Pneu-
moniaModel cutoff of 12.8% to 83.9% yielded the best overall accuracy
(0.91), F1 score (0.857), and Youden’s J statistic (0.798). Like Hospital
A (2013), this range also optimized the false positive rate (7.2%) and
precision (84.4%). However, thresholds maximizing each model’s
Youden’s J statistic individually resulted in a lower false negative rate
(6.5%) and higher negative predictive value (96.3%) for the pipeline.

Finally, we assessed the clinical characteristics of encounters
classified as ARDS-positive or negative by both the pipeline and the
critical care physician (Table 2). As seen in Hospital A (2013), both
methods identified a clinically distinct population. ARDS-positive
encounters had lower PF ratios, a higher proportion receiving low tidal
volumeventilation, and longer hospital stays. However,mortality rates
were similar, likely due to the small sample size (100 encounters) and

only 11 deaths. We also found that diagnosis occurred within 48 hours
of intubation for most encounters (see the SI for details).

Discussion
In this study, we developed and validated a computational pipeline to
automate acute respiratory distress syndrome (ARDS) retrospective
adjudication per the Berlin Definition using electronic health record
(EHR) data. Our approach combined high-performing eXtreme Gra-
dient Boosting (XGBoost) models for analyzing chest imaging reports
and physician notes with regular expressions and structured data to
assess ARDS risk factors and rule out heart failure. The pipeline
achieved excellent test characteristics on Hospital A (2013), with false
negative and false positive rates of 4.3% and 12.4%, respectively, at the
optimal probability cutoff for accuracy and F1 score. Validation on a
MIMIC-III subset showed generalizability, yielding false negative and
false positive rates of 12.9% and 10.1%, respectively, at optimal prob-
ability cutoffs for accuracy and F1 score.

A question that readers may ask is why we pursued this approach
instead of using increasingly popular large language models (LLMs).
We believe that in this and many other health-related contexts, using
an interpretablemodel that can be easily versioned offers benefits that
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would be lost even if an LLM could hypothetically produce higher
accuracy. Specifically, we believe that computational pipelines aiding
complex diagnoses should follow two principles. First, they should
assist, not replace, physicians, flagging potential diagnoses rather than
mandating them. Second, they should provide interpretable insights.
Others have pointed out18 that machine learning (ML) should only
serve as a final decision-maker for deterministic tasks (e.g., distin-
guishing a dog from a cat). In contrast, for tasks with overlapping class
characteristics and significant consequences, such as medical diag-
nosis, ML should estimate probabilities rather than make definitive
decisions. Consequently, the tree-based methods we consider esti-
mate probabilities, the first stage of any classification problem, and
enable physicians to optimize the false positive vs. false negative tra-
deoff by adjusting the probability cutoff. In addition, our XGBoost
implementations allow language-level interpretation of probabilities,
which can enhance physician trust in ML models.

We present our pipeline here as a tool to assist healthcare quality
reviewers during retrospective reviews. Its greatestpotential, however,
lies in clinical decision support, providing timely ARDS alerts to critical
care physicians. Importantly, any live implementation must consider
the precepts of decision theory, as our XGBoost models generate
probabilities that require binarization into yes or no based on a chosen
threshold, balancing false positives and negatives. Our perspective is
that given ARDS’s under-recognition, prioritizing low false negative
rates is crucial for life-saving interventions like low tidal volume ven-
tilation or prone positioning19. However, over-recognition carries risks,
such as unnecessary treatments (e.g. placing a non-ARDS patient in
prone position or treating a non-ARDS patient with low tidal volume
ventilation or neuromuscular blockade20,21) or alert fatigue22–24.
Nevertheless, eachprovider or health systemshoulddetermine its own
threshold according to their own preferences or policies, guided by
decision theory frameworks like Youden’s J statistic (for equal
weighting of false positives and negatives)25,26, or the Net Benefit
method (which uses the probability cutoff as a false positive to true
positive ratio to assess clinical utility)27,28. Future studies on critical care
physicians’ perspectives on this tradeoff could further inform
implementation.

Our study advances efforts to automate ARDS diagnosis in key
ways. First, it demonstrates automation of ARDS adjudication for
intubated adult ICU patients. Second, it demonstrates that integrating
open-source ML and rules-based methods enhances applicability
across cohorts. Third, it demonstrates how the inclusion of

multi-center and multi-timepoint data to develop ML approaches
increases model robustness and generality for adjudicating chest
imaging reports. Fourth, it provides a benchmark making use of a
publicly available dataset, thus enabling future comparisons of per-
formance across pipelines.

The latter advance is particularly critical since prior studies relied
on single-center EHR data or non-reproducible methods. For example,
Afshar et al. used text features in chest imaging reports for ARDS
identification, reporting an area under the receiver operator character-
istic of 0.8029. However, our work identifies ARDS by considering data
beyond chest imaging reports. Sathe et al. developed EHR-Berlin, eval-
uating the Berlin Definition usingML and rules-basedmethods, but their
focus was limited to COVID-19 patients16; by using a cohort of patients
who were already defined as having an ARDS risk factor, they effectively
eschewed the need to identify ARDS risk factors or heart failure. In
contrast, our pipeline evaluates all Berlin Definition components for
mechanically ventilated adult patients. Song and Li developed a fully
rules-based Berlin Definition tool, both achieving identical high
performance14,15. However, their methods were constructed within a
single hospital over a single period, which limits generalizability.

Machine learning enables efficient analysis of large volumes of
data that would otherwise require extensive human effort. As an
example, a recent study that combined natural language processing
techniques with manual chart abstraction reduced retrospective
review time from 2000h to just 34.3 hours30. Similarly, our pipeline
adjudicates ARDS for hundreds of encounters in under fiveminutes by
training XGBoost models at runtime, with even faster inference using
pre-trained models. This automation can help mitigate ARDS under-
recognition in clinical practice by consistently applying the Berlin
Definition diagnostic algorithm, reducing reliance on limited human
cognitive resources, especially in the demanding environment of cri-
tical care1. However, enabling clinical use of the pipeline presented
here will entail changing the design of the data input and output
components; from having all data from a completed hospital stay
available, to receivingnewdata in real timeas thehospital stay unfolds.
Ideally, the pipeline could also incorporate chest images rather than
chest imaging reports, which would help with the timeliness of a
diagnosis.

Limitations
Our computational pipeline achieved >90% sensitivity in identifying
acute respiratory distress syndrome (ARDS) in Hospital A (2013) and

Table 1 | Clinical characteristics of Hospital A (2013) encounters adjudicated as yes/no ARDSby the pipeline and a critical care
physician

Characteristic ARDS Not ARDS

Pipeline Intensivist Pipeline Intensivist

Age at 1st ICU stay (years), median
[IQR]
number of encounters

62
[51–71]
377

62
[50–70]
305

63
[52–73]
852

63
[52–73]
924

PF ratio (mm Hg),
median [IQR]
total number of entries

201.3
[132–280]
2604

207.5
[140–286.7]
2077

272.5
[178–355.4]
1593

242.9
[152.5–340]
2120

Encounters that received Low Tidal Volume Ventilation at any time, n/N
(%)

76/370
(20.5%)

63/302
(20.9%)

21/743
(2.8%)

34/811
(4.2%)

Encounters with plateau pressure >30 cm H2O at any time, n/N
(%)

64/367
(17.4%)

55/301
(18.3%)

16/686
(2.3%)

25/752
(3.3%)

In-hospital mortality, n/N
(%)

143/377
(37.9%)

120/305
(39.3%)

83/852
(9.7%)

106/924
(11.5%)

ICU Length of Stay (days), median
[IQR]
total number of ICU stays

9
[4–17]
414

9
[5–17]
334

2
[1–4]
875

2
[1–4]
955

We take the age of hospital encounters as the age at the start of the 1st intensive care unit (ICU) stay, and the total number of PF ratio measurements and ICU stays across all encounters in each
category
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MIMIC (2001–12) cohorts. However, this alone does not reflect its
clinical impact without comparison to clinician recognition rates. We
benchmarked our pipeline against ARDS documentation rates by
treating physicians, though our prior work suggests documentation
may underestimate true recognition17. Clinicians may recognize ARDS
without recording it in notes or applying specific treatments. Notably,
even the highest clinician recognition rate estimate we have found in
the literature—78.5% for severe ARDS in LUNG SAFE7—remains below
our pipeline’s >90% sensitivity, underscoring its potential to enhance
ARDS recognition in clinical practice.

A limitation of our approach is its focus on intubated patients,
potentially reducing applicability to mild ARDS cases, where non-
invasive ventilation is now included under the updated Berlin
Definition. The pipeline excludes PaO2/FiO2 ratios unless they are
confirmed to have been collected post-intubation, since it was devel-
oped before the 2024 Berlin Definition update, which expanded
inclusion to patients on high-flow oxygen31. However, our pipeline
could adapt to include these patients if nasal cannula flow rates and
pulse oximetry values are available, despite challenges with non-
invasive FiO2 delivery

32. Future work will expand the inclusion criteria
accordingly.

Another limitation is the variability in ARDS diagnosis among
critical care physicians, particularly in the interpretation of chest
imaging33. Since chest images were unavailable, we relied on radi-
ologist reports, using previously developed Berlin Definition-based
inclusion and exclusion language to guide critical care physicians'
labeling and reduce interrater disagreement8. This language also
facilitated natural language processing for our machine learning
approach, improving the signal-to-noise ratio in model development.
While our approachmitigates variability fromphysician labeling of the
reports, it assumes that radiologists—as the most trained in image
interpretation—provide the most reliable clinical terminology
description of an image. This is a common assumption, since radi-
ologist reports are currently used to label images for computer vision
models34. However, radiologists may also disagree in their
interpretations35,36, which could limit our pipeline’s reliability since we
had access to only one report per imaging study. Specifically, the
physician-adjudicatedARDS status of patients, and the performanceof
the pipeline in performing this adjudication hinge on one radiologist’s
interpretation of each chest image. Changes to this interpretation
could completely change the results shown in this study. To enhance
reliability, future work could incorporate computer vision for direct
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chest image interpretation when available, using reports as a fallback.
Integrating imaging will require careful preprocessing to remove
clinically irrelevant artifacts from images5, and a labeling process
involving at least three radiologists, ideally assigning confidence rat-
ings rather than binary classifications37.

Nevertheless, we examined the relationship between interrater
disagreement and the Bilateral Infiltrates (BI) model’s confidence.
Surprisingly, lower disagreement among our raters correlated with
lowermodel confidence in a yes prediction, while higher disagreement
occurred when the model was highly confident in a yes prediction.
Considering the results we show in Fig. 3d, we speculate this may
stem from differences in how physician raters labeled reports.
Comparing individual raters to the BI model (Fig. S8), we found that
the internal medicine physician rater had the highest rate of dis-
agreement with the BI model when the BI model was highly confident
in the yes choice. In contrast, the critical care physician rater had
the highest rate of disagreement with the BI model when the BI
model was most uncertain. This suggests the internal medicine
physician was more cautious in labeling reports as positive, having
adjudicated 196 reports as positive compared to 217 by the critical care
physician.

Our study is limited by the absence of lung ultrasound data. This
modality was included in the 2024Berlin Definitionupdate31, later than
when data collection for the cohorts studied occurred. Nonetheless,
our data includes chest X-ray and CT scan reports, which align with
standard clinical practice at study institutions. Notably, the 2024
update does not equate lung ultrasound with these modalities but
recommends it only when X-ray or CT is unavailable, such as in low-
resource settings31,38. Thus, our pipeline may be less applicable in such
settings.

Another limitation of our approach is the adjudication of ARDS
risk factors.We faced a significant challenge in implementingmachine
learning for attending physician notes due to the lack of clear inclu-
sion/exclusion language. In addition, we had only 744 labeled notes for
sepsis, the most common ARDS risk factor, compared to over 12,000
labeled chest imaging reports. Fortunately, a standard regular
expression (regex) approach performed well in practice, with high
accuracy and few false negatives.

Finally, our study had a relatively small number ofmedical centers
and time periods from which we obtained data. While our approach
proved robust across different models and datasets for adjudicating
bilateral infiltrates, the same level of validation is lacking for risk factor
determination and echocardiogram report adjudication. Implement-
ing our pipeline in additional centers may require new regex patterns

for echocardiogram reports, though the standardized nature of the
required information mitigates this concern.

In summary, this study presents a computational pipeline for
automating the Berlin Definition in retrospective adjudication of
ARDS. Our pipeline performs excellently on both the development
cohort and a subset ofMIMIC-III encounters, highlighting the potential
of computational techniques to address ARDS under-recognition.
Future work will focus on clinical implementation.

Methods
Cohort data collection
The study was not registered but was approved by the Institutional
Review Boards of Northwestern University (STU00208049) and
Endeavor Health (EH17-325)with awaiver of informed consent. Since it
was a retrospective study that occurred years after the study subjects’
ICU admissions, subjects were not contacted for any purpose related
to the study. The study compliedwith theUnited StatesDepartment of
Health and Human Services Office of Human Research Protections,
Common Rule Code of Federal Regulations, Subpart A, Section
46.116(d) for a waiver of informed consent. This includes the following
criteria: 1) the research involves no more than minimal risk to the
subjects, 2) thewaiverwill not adversely affect the rights andwelfare of
the subjects, and 3) the research could not practicably be carried out
without the waiver. The Institutional Review Boards found that the
study met these criteria and therefore approved it with a waiver of
informed consent.

We collected data from three patient cohorts for model training
and evaluation: Hospital A (2013), Hospital A (2016), and Hospital B
(2017-18), where A and B refer to two distinct and unaffiliated hospitals
from the Chicago-area and the number in parentheses refers to the
period over which data was collected. In addition, we obtained data
from the Medical Information Mart for Intensive Care (MIMIC-III)
database39–41. MIMIC-III is a large, single-center database of critically ill
patients at a tertiary care medical center in Boston. It includes all the
components necessary to identify acute respiratory distress syndrome
(ARDS)—and therefore apply our pipeline—, and it is freely available.
For naming consistency, wedenote the subset ofMIMIC-III patients we
consider as MIMIC (2001-12).

For all four cohorts, patient admissions (i.e., healthcare encoun-
ters, hereafter denoted encounters) were included if they were at least
18 years old; were admitted to an adult ICU; and had acute hypoxemic
respiratory failure requiring intubation and invasive mechanical ven-
tilation (at least one recorded PaO2/FiO2 ≤ 300mmHg while receiving
positive-endexpiratory pressure ≥5 cm H2O)

8. The sex of patients,

Table 2 | Clinical characteristics of MIMIC (2001-12) encounters adjudicated as yes/no ARDS by the pipeline and a critical care
physician

Characteristic ARDS Not ARDS

Pipeline Intensivist Pipeline Intensivist

Age at 1st ICU stay (years), median
[IQR]
number of encounters

64
[56–75]
41

62
[55–74]
31

66
[53.5–77]
59

67
[57–77]
69

PF ratio (mm Hg), median
[IQR]
total number of entries

215
[160–254]
8661

214
[160–252.5]
8003

296
[208.4–400]
1120

248.6
[207.6–340]
1778

Encounters that received Low Tidal Volume Ventilation at any time, n/N
(%)

16/36
(44.4%)

14/26
(53.8%)

6/41
(14.6%)

8/51
(15.7%)

Encounters with plateau pressure >30cm H2O at any time, n/N
(%)

9/38
(23.7%)

9/28
(32.1%)

1/49
(2.0%)

1/59
(1.7%)

In-hospital mortality, n/N
(%)

4/41
(9.8%)

4/31
(12.9%)

7/59
(11.9%)

7/69
(10.1%)

ICU Length of Stay (days),
[IQR]
total number of ICU stays

6.8
[3.1–12.8]
47

7.8
[5.1–14.1]
36

2.3
[1.2–3.3]
65

2.3
[1.2–3.3]
76

We take the age of hospital encounters as the age at the start of the 1st ICU stay, and the total number of PF ratio measurements and ICU stays across all encounters in each category.
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which was self-reported for all sites, was not considered in the study
design since the Berlin Definition does not use patient sex to influence
the ARDS determination. However, we used sex to determine stan-
dardized tidal volume for Tables 1 and 2, since the equations to cal-
culate this number are different depending on the sex of the patient.

Hospital A (2013). We previously characterized a cohort of 943
encounters, which we denote here as Hospital A (2013), who met the
above inclusion criteria at a single academic medical center between
June and December 20138. We collected the following data: all PaO2/
FiO2 ratios (hereafter, PF ratios); the unstructured text of all radiologist
reports for chest imaging (radiographs and CT scans), critical care
attending physician notes, and echocardiogram reports; and B-type
natriuretic peptide (BNP) values obtained from hospital admission to
the earliest of extubation, death, or discharge. Data were reviewed by
study personnel to determine whether each individual Berlin Defini-
tion criterion was present, and whether all criteria taken together were
consistent with a diagnosis of ARDS8.

We collected 5958 chest imaging reports from 800 Hospital A
(2013) encounters. Study personnel adjudicated whether these chest
imaging reports described bilateral infiltrates consistent with the
Berlin Definition. In case of disagreement, a senior critical care physi-
cian served as tiebreaker. At the end of this process, 57% of these chest
imaging reports were labeled as describing bilateral infiltrates con-
sistent with the Berlin Definition6. We only had access to this tie-
breaking label. We developed our machine learning (ML) approach to
bilateral infiltrate adjudication using these Hospital A (2013) reports.

For 790 of the 800 Hospital A (2013) encounters with a chest
imaging report, we also had at least one attending physician note. We
collected 12,582 attending physician notes for these encounters, of
which 2034 notes from a subset of 400 encounters were labeled by
study personnel for the presence of ARDS risk factors (e.g., pneumo-
nia, sepsis, aspiration, etc.)6. We used this labeled subset of 2034 notes
to develop ourMLand regular expression (regex) approach for finding
ARDS risk factors and heart failure language in attending
physician notes.

We collected 1006 echocardiogram (echo) reports from 681
Hospital A (2013) encounters. Study personnel from a prior analysis8

text-matched and adjudicated each echo report for the presence or
absence of left ventricular ejection fraction <40%, cardiopulmonary
bypass at time of echo, left ventricular hypertrophy, left atrial
dimension > 4 cm or left atrial volume index > 28mL/m2, and Grade II
or III diastolic dysfunction. We also included 35 BNP values for 32
encounters in Hospital A (2013).We used echo reports and BNP values
to develop our objective heart failure rule-out approach8.

Since identifying Berlin Definition-consistent bilateral infiltrates is
the most challenging task12,33 in our computational pipeline, we ana-
lyzed the chest imaging reports from twoadditional cohorts to testour
computational pipeline, Hospital A (2016) and Hospital B (2017-18).

Hospital A (2016). The Hospital A (2016) cohort comprises 749
encounters admitted during 2016 at the same medical center as the
Hospital A (2013) cohort and meeting the same inclusion criteria. We
collected 6040 chest imaging reports (radiographs and CT scans) for
these encounters. Like Hospital A (2013), we only had access to the tie-
breaking labels for these reports, adjudicated 44% of Hospital A (2016)
reports as describing bilateral infiltrates. We developed our machine
learning (ML) approach to bilateral infiltrate adjudication using these
Hospital A (2016) reports.

Hospital B (2017-18). The Hospital B (2017-18) cohort comprises 90
encounters admitted to a different, unaffiliated, medical center in
2017–2018 andmeeting the same inclusion criteria asHospital A (2013)
and Hospital A (2016). We collected 625 chest imaging (radiographs
andCT scans) reports for these90encounters. The tie-breaking critical

care physician adjudicated 34% of these chest imaging reports as
describing bilateral infiltrates. Depending on the experiments (see
below),we used these reports fromHospital B (2017-18) to developour
ML models for bilateral infiltrate adjudication, or to evaluate the
robustness of eXtreme Gradient Boosting (XGBoost) to changes in the
training data.

MIMIC (2001-12). We identified the set of encounters in the MIMIC-III
dataset who satisfied the inclusion criteria used to develop Hospital A
(2013). This resulted in a set comprising 3712 encounters.We thenused
our pipeline to adjudicate the presence or absence of ARDS for all
those encounters, and randomly selected a balanced cohort com-
prising 100 encounters, which we denote as the MIMIC (2001-12)
cohort. Each of the encounters in MIMIC (2001-12) was adjudicated by
one experienced critical care physician and one internal medicine
physician for whether each Berlin Definition criterion was present, and
whether all criteria taken together were consistent with a diagnosis of
ARDS. We note that both reviewers were blinded to the individual
encounter adjudications by the pipeline, although they did know that
the ARDS split among the 100 encounters was balanced. A list of
encounters and their blind ARDS physician adjudications is publicly
available at Northwestern’s Arch repository42.

The records of MIMIC (2001-12) encounters included 975
chest imaging (radiographs and CT scans) reports, 887 attending
physician notes, and 89 echocardiogram (echo) reports. The cri-
tical care physician adjudicated 22.3% of these chest imaging
reports as describing bilateral infiltrates consistent with the Ber-
lin Definition6. The same individual also labeled 887 attending
physician notes for the presence of ARDS risk factors6, heart
failure language, and whether ARDS was mentioned in the note
(alongside mentions of Acute Lung Injury given that this dataset
predates the publication of the Berlin Definition). The critical care
physician also labeled 89 echo reports for the presence or
absence of left ventricular ejection fraction <40%, cardio-
pulmonary bypass at time of echo, left ventricular hypertrophy,
left atrial dimension > 4 cm or left atrial volume index >28mL/m2,
and Grade II or III diastolic dysfunction8. We used these adjudi-
cated datasets to evaluate: (1) the performance of our imple-
mented ML models, and (2) the performance of the entire
pipeline on a publicly available dataset.

Statistics and Reproducibility
No statistical method was used to predetermine sample sizes. No
patients or members of the public were involved in the design, con-
duct, reporting, interpretation, or dissemination of this study.

Adjudication of bilateral infiltrates from chest imaging reports
Overview. We used labeled chest imaging reports from Hospital A
(2013), Hospital A (2016), and Hospital B (2017-2018) to develop a ML
approach to adjudicating bilateral infiltrates in chest imaging reports.
We will refer to this data as the development set — it comprises a total
of 12623 chest imaging reports of which 6272 (49.7%) reports were
labeled positive for bilateral infiltrates.

In addition, we tested the robustness of the XGBoost classifier to
changes in the training data by training two separate models: one
trained on chest imaging reports from Hospital A (2013), and another
on chest imaging reports from Hospital A (2016). We did not carry
these models forward for use in the ARDS adjudication pipeline.
Finally, we used all the 975 chest imaging reports from MIMIC (2001-
12) as our test set for the Bilateral Infiltrates Model.

Feature engineering. We preprocessed chest imaging reports by
removing patient and clinician identification information, irrelevant
sections (e.g. technique, indication, history, etc.), and non-informative
words. In selecting informative vs. non-informative words, we used the
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same inclusion and exclusion language criteria we previously devel-
oped to address limitations in Berlin Definition specificity8. We then
tokenized the remaining sections — i.e., separated the text into sets of
unigrams and bigrams — and prepared the data for use of a bag of
words approach — i.e., vectorized these tokens according to their
counts in the imaging reports. When training an ML model on a given
corpus, we used the 200most frequently appearing tokens across the
imaging reports from a given corpus as model features.

Training of models for the adjudication of bilateral infiltrates. We
compared the performance of four different classifiers — decision
trees, logistic regression, random forest, and XGBoost43 — on the
development set (see Overview). We implemented a nested cross-
validation strategy where the outer loop consisted of a 5-fold cross-
validation and, within each inner loop, each fold’s training setwas used
to tune that model’s hyperparameters using a 3-fold cross-validation
strategy.We chose a 3-fold cross validation strategy for the inner loop,
instead of the 5-fold used for the outer loop, due to the computational
cost of running nested cross-validation on 12 thousand records.

Preventing data leakage. Unless otherwise noted, all cross-validation
strategies used encounters, not individual reports.We split the reports
this way to avoid data leakage — that is, having chest imaging reports
from the same encounter appear in both the training and validation
data. Thus, we ensured all reports from a given encounter can only be
found on either the training or validation data (but not both). We also
used nested cross-validation to prevent data leakage, as this avoids
tuning hyperparameters on validation data.

Hyperparameter tuning. We used the Bayesian optimization imple-
mented in hyperopt package (v.0.2.7)44 for Python (v.3.10.12) to per-
form hyperparameter tuning. For each model trained, we performed
cross-validation to obtain the mean log loss for each hyperparameter
combination considered.We then selected the optimal combination of
hyperparameters as the one yielding the lowest cross-validation mean
log loss after at least 100 iterations. However, we employed an early-
stopping rule to avoid fruitless iterations.

Model comparison and feature importance. Weused 95%confidence
intervals to compare receiver operating characteristic (ROC) curves,
areas under the ROC curves (AUROCs), and calibration curves across
different models. For obtaining feature/token importance during
training, we employed the default importance method that version
1.1.3 of the scikit-learn package implements for decision tree, logistic
regression, and random forest, and version 1.7.4 of xgboost package
for XGBoost. For decision trees and random forests, feature impor-
tance corresponds to the mean decrease in Gini impurity; for logistic
regression, importances correspond to the mean value of coefficients
in the fitted linear equation; and for XGBoost, the importance corre-
sponds to the mean gain in predictive performance obtained by
including a particular feature in the trees. We additionally used
Shapley-additive explanations (SHAP; v.0.42.0) values to obtain the
feature/token importance on test sets.

Model testing for adjudication of bilateral infiltrates. Model selec-
tion resulted in XGBoost being chosen as the best performing classifier
for the task of adjudicating bilateral opacities in chest imaging reports.
To assess the robustness of XGBoost to different training sets, we
tuned hyperparameters and then trained XGBoost models on all chest
imaging reports from Hospital A (2013) and Hospital A (2016), sepa-
rately. We then tested each of the two models on the two other chest
imaging corpora the model had not yet seen by comparing the mean
AUROC values after 5-fold cross validation. We used 100 resamples
with replacement (bootstrap) to obtain 95% confidence intervals for

the estimates of the mean AUROC values. This test also allowed us to
scope out the generalizability of our approach.

However, we finally tested XGBoost’s generalization by tuning its
hyperparameters and then training it on the full development set. We
then applied this model to the 975 chest imaging reports fromMIMIC
(2001-12), employing a similar cross-validation and bootstrapping
approach as described above for testing XGBoost’s robustness. It is
thismodel that we carried forward for use in the adjudication pipeline,
and that we refer to as the Bilateral Infiltrates (BI) model.

We also evaluated the inter-rater disagreement rate for chest
imaging reports fromMIMIC (2001-12). For this purpose, we obtained
two independent adjudications (one critical care physician and one
internal medicine physician) for the 975 reports, and split imaging
reports into three groups according to whether both physician raters
agreed on aNo, agreed on a Yes, or disagreed. For each group, we then
calculated the mean output probability by the BI model. In addition,
we also split imaging reports into three groups according to the BI
model’s output probabilities. For each group, we then calculated the
fraction of imaging reports for which each independent rater dis-
agreed with the BI model’s adjudications.

Adjudication of risk factors from physician notes
Overview. We used 2,034 adjudicated or labeled attending physician
notes fromHospital A (2013) to develop our approaches to adjudicate
ARDS risk factors and/or heart failure. However, not every one of the
2034 noteswas labeled for every risk factor. For a full list of risk factors
and heart failure language available for Hospital A (2013) notes, as well
as how many notes were labeled for each, see SI: Regular expressions
list 1 and Table S1. We did not have labeled attending physician notes
available for Hospital A (2016) or Hospital B (2017-2018). However, we
had 887 labeled attending physician notes from MIMIC (2001-12)
available, and we used them as our test set. Unlike notes fromHospital
A (2013), every note fromMIMIC (2001-12)was labeledby a critical care
physician for the following criteria: pneumonia, aspiration, burns,
pancreatitis, pulmonary contusion, sepsis, trauma, vasculitis, and
cardiac surgery.

Capturing risk factors with regular expressions. The Berlin Defini-
tion of ARDS requires the presence of at least one risk factor — e.g.,
pneumonia, sepsis, shock, inhalation, pulmonary contusion, vasculitis,
drowning, drug overdose — within seven days of non-cardiogenic
acute respiratory failure.Wepreprocessed labeled attending physician
notes from Hospital A (2013) to remove identifiable information from
the text of these notes. We then used regular expressions (regex
v2022.10.31) to match keywords related to risk factor and heart failure
language that had labels available in Hospital A (2013) (see SI: Regular
expression list 1, for a complete list of risk factors and regex patterns
used to capture them). To validate this strategy, we ensured that this
regex approach captured 100%of thenotes thathad apositive label for
a particular risk factor (or close to 100% as possible).We also corrected
common spelling errors on important keywords, such as pneunonia,
spetic or cardigenic.

Adjudication of risk factors with XGBoost - Feature engineering.
Adjudicating risk factors requiresmore than simple keywordmatching
in physician notes. For instance, the sentence 'patient is unlikely to
have pneumonia' should not be interpreted as indicating pneumonia.
To address this, we applied an XGBoost approach for risk factors that
had sufficient data (see below), mirroring our method for bilateral
infiltrates unless specified otherwise. Lacking predefined inclusion/
exclusion criteria for physician notes, we extracted a 200-character
window around matched keywords (100 characters before and after)
using regex. These text segments were then tokenized and vectorized
into token frequency matrices, as done for the BI model.
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Adjudication of risk factors with XGBoost - Risk factor/model
selection. Using the vectorized tokens, we trained XGBoost models
for a select group of risk/heart failure factors. We only used a select
group since not all risk factors were amenable to ML approaches: we
chose risk factors that had more than 100 notes adjudicated in Hos-
pital A (2013)'s labeled attending physician notes corpus and had
relatively balanced yes/no proportions after regex-matching (between
33% and 66%, see SI Table 1). This resulted in the use of 1409 labeled
attending physician notes from 337 encounters for XGBoost model
development. It also resulted in only trying an XGBoost approach for
the following risk factors or heart failure language: pneumonia,
aspiration, congestive heart failure (CHF), and sepsis. In other words,
we did not use all 2,034 labeled records fromHospital A (2013) to train
each of the models since not every record had an annotation or a
keyword for a given risk factor. For instance, only 636 notes inHospital
A (2013) included an annotation for pneumonia, whereas we were able
tomatch 955 notes for pneumonia using regex. Therefore, our training
dataset for each of the four models consisted of all notes that were
regex-captured for that particular risk factor (e.g. 955 notes for the
Pneumonia Model; see SI Table 1 for number of notes used to train
each model). For notes that were regex-captured but did not have a
label, we imputed the label as No, or zero (see SI Table 1 for label
proportions after this imputation step).

We employed a similar nested cross-validation strategy to the one
pursued for the adjudicationof chest imaging reports. Notably, we also
split the adjudicated notes into train and test sets by encounter, not
note, to prevent data leakage. However, since we only had up to 1,409
notes for training, this task was not as computationally expensive as it
was for adjudicating chest imaging reports. Therefore, we used 100
resamples instead of 10 and always employed 5-fold cross validation
for hyperparameter tuning.

Adjudication of risk factors with XGBoost - model testing. Model
selection yielded pneumonia as the risk factor best suited to be adju-
dicated by an XGBoost classifier. Therefore, we tested this Pneumonia
Model by tuning XGBoost’s hyperparameters and then training it on
the 955 attending physician notes that were captured by the pneu-
monia regex pattern.We then tested this PneumoniaModel on the 790
attendingphysician notes fromMIMIC (2001-12) thatwere capturedby
the same pneumonia regex pattern, employing a similar cross-
validation and bootstrapping approach as described above for test-
ing the BI model. It is this model which we carried forward for use in
the pipeline.

Adjudication of risk factors with regular expressions. We used an
XGBoost model only for adjudicating pneumonia, applying a regex
approach for other risk factors and heart failure criteria. We imple-
mented two criteria to guide the use of regex: first, if a risk factor or
heart failure criterion was labeled yes in over 80% of notes, we applied
the same regex pattern. Second, for more balanced labels, we refined
the regex by adding exclusion words or phrases to reduce false posi-
tives (SI Regular expression list 2). This set of exclusions was devel-
oped fromnotes at Hospital A (2013) and targeted risk factors suitable
for refinement.

Finally, we tested both regex approaches on MIMIC (2001-12)
notes labeled for the same risk factors and heart failure criteria avail-
able in Hospital A (2013): aspiration, burns, pancreatitis, pulmonary
contusion, sepsis, trauma, and vasculitis. Only regex patterns meeting
the predefined criteria for any hospital cohort were incorporated into
the pipeline.

Design of ARDS adjudication pipeline: chaining Berlin
Definition steps. Each of the steps outlined above automates the
adjudication of specific criteria in the Berlin Definition, with
the modifications specified previously8. We integrate these

criteria to build a single, automated ARDS adjudication pipeline.
The ARDS adjudication pipeline first flags encounters with at least
one hypoxemia measurement (i.e., one instance of PF ratio ≤
300mm Hg while positive end-expiratory pressure ≥ 5 cm H20).
These PF ratios were precalculated for Hospital A (2013) and
MIMIC (2001-12), see the Supplementary Information for more
details.

After flagging hypoxemic entries, the pipeline uses the predic-
tions of the BI model to adjudicate presence of bilateral infiltrate lan-
guage in chest imaging reports. Upon settling these two criteria, the
pipeline flags whether the hypoxemia record and the report consistent
with bilateral infiltrates have timestamps within 48 h of each other
(which we term qualified hypoxemia). In addition, at this step the
pipeline ensures that the hypoxemia record was taken at or after
intubation.We chose a 48-hour window to be consistent with previous
choices for manually adjudicating ARDS on Hospital A (2013)8. Since
the Berlin Definition does not prescribe a time window, prior work
settled on 48 h to maximize recognition of ARDS retrospectively.
Nevertheless, we observe that 75% of chest imaging reports from
MIMIC (2001-12) had timestamps that were within 15.2 h of a hypox-
emia timestamp (Fig. S1).

Next, the pipeline uses the predictions of the Pneumoniamodel to
adjudicate pneumonia, and applies regex to attending physician
notes to flag presence of other ARDS risk factors, heart failure lan-
guage, and indicators of cardiogenic and noncardiogenic language.
While we developed regex patterns for all risk factors and heart failure
language available, we only included risk factors and heart failure
language whose regex patterns fulfilled the criteria laid out in the
previous section. As a result, for Hospital A (2013), we used a regex
approach to only adjudicate sepsis, shock and its cardiogenic qualifier,
inhalation, pulmonary contusion, burns, vasculitis, drowning, and
overdose. In addition, for MIMIC (2001-12), we used a regex approach
to also adjudicate aspiration and pancreatitis. Finally, the pipeline
flags whether an attending physician note has a timestamp that
falls between one day prior to and seven days after the later timestamp
of any of the qualifying hypoxemia-bilateral infiltrates pairs.

Once these annotations are integrated, the pipeline proceeds to
adjudicate whether an ARDS adjudication is warranted. If any risk
factor is identified in this time window for an encounter, regardless of
whether heart failure is identified, the pipeline adjudicates the
encounter as positive for ARDS. If no risk factors are identified, but
only heart failure is identified, the pipeline adjudicates the encounter
as negative for ARDS.

If an encounter does not meet the risk factor or heart failure
language criteria described above, the pipeline sends the encounter
for objective heart failure assessment8. This assessment is done
sequentially instead of by flagging: If for any encounter there was a
record of a BNP greater than 100pg/mL (an indicator of heart fail-
ure), the pipeline adjudicates the encounter as negative for ARDS.
The pipeline then considers the remaining encounters for each
subsequent criteria, adjudicating them as negative for ARDS if the
encounter had any of the following: left ventricular ejection fraction
<40%, cardiopulmonary bypass found in echocardiogram report, or
at least two of the following present in the echocardiogram report: (i)
left atrial diameter > 4 cm or left atrial volume index >28mL/m2, (ii)
left ventricular hypertrophy, or (iii) Grade II or III diastolic
dysfunction.

Any encounter that is not adjudicated negative for ARDS after the
objective heart failure assessment step is then adjudicated as positive
for ARDS. That is, the pipeline adds these encounters to those adju-
dicated as positive for ARDS via risk factor identification.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
MIMIC-III is publicly available on PhysioNet (https://doi.org/10.13026/
C2XW26), but requires both CITI training and credentialing before
access is granted (https://mimic.mit.edu/docs/gettingstarted/). We
deposited a list of encounter IDs (HADM_ID) identifying the subset of
the MIMIC (2001-12) dataset we studied, alongside their physician
labels for each Berlin Definition step, and final ARDS adjudication, at
the Arch repository hosted by Northwestern University (https://doi.
org/10.21985/n2-3y30-th04)42. Original source data from Hospital A
(2013), Hospital A (2016), and Hospital B (2017-18) contain Protected
Health Information (PHI) and are therefore HIPAA-protected and
protected by the Institutional Review Boards (IRBs) at Northwestern
University and Endeavor Health. We deposited restricted de-identified
data from these cohorts needed to reproduce figures at another Arch
repository. We will provide access to those data for academic research
to individuals who have completed CITI training and are credentialed
for human subjects’ research through an IRB. The reasons for
restricting access are twofold. First, the original source data contains
PHI data. Second, current de-identification approaches cannot provide
assurances that the data will not be re-identifiable in the future.
Request for data access should be directed to the corresponding
authors and will be adjudicated within 30 days from the date the
request is acknowledged. Data will be accessible through a link to the
Arch repository to approved requesters for periods of at most 1 year
but can be renewed if conditions for access are still being satisfied.

Code availability
The Python code to reproduce the reported results is available at the
Amaral lab GitHub repository (https://github.com/amarallab/ARDS_
diagnosis). The version of this repository at the time of publication can
be found here: https://doi.org/10.5281/zenodo.1528439045.

References
1. Park, J., Zhong, X., Dong, Y., Barwise, A. & Pickering, B. W. Investi-

gating the cognitive capacity constraints of an ICU care team using
a systems engineering approach. BMC Anesthesiol. 22, 1–13 (2022).

2. James, J. T. A new, evidence-based estimate of patient harms
associated with hospital care. J. Patient Saf. 9, 122–128 (2013).

3. Makary, M. A. & Daniel, M. Medical error—the third leading cause of
death in the US. BMJ 353, https://doi.org/10.1136/bmj.i2139 (2016).

4. Landrigan, C. P. et al. Temporal trends in rates of patient harm
resulting frommedical care.N. Engl. J. Med. 363, 2124–2134 (2010).

5. DeGrave, A. J., Janizek, J. D. & Lee, S. I. AI for radiographic COVID-19
detection selects shortcuts over signal. Nat. Mach. Intell. 3,
610–619 (2021).

6. Ranieri, V. M. et al. Acute respiratory distress syndrome: The berlin
definition. JAMA 307, 2526–2533 (2012).

7. Bellani, G. et al. Epidemiology, patterns of care, and mortality for
patients with acute respiratory distress syndrome in intensive care
units in 50 countries. JAMA 315, 788–800 (2016).

8. Weiss, C. H. et al. Low tidal volume ventilation use in acute
respiratory distress syndrome. Crit. Care Med 44, 1515–1522 (2016).

9. Weiss, C. H. et al. A critical care clinician survey comparing atti-
tudes and perceived barriers to low tidal volume ventilation with
actual practice. Ann. Am. Thorac. Soc. 14, 1682–1689 (2017).

10. Koenig, H. C. et al. Performance of an automated electronic acute
lung injury screening system in intensive care unit patients. Crit.
Care Med 39, 98–104 (2011).

11. Herasevich, V., Yilmaz, M., Khan, H., Hubmayr, R. D. & Gajic, O.
Validation of an electronic surveillance system for acute lung injury.
Intensive Care Med 35, 1018–1023 (2009).

12. Laffey, J. G., Pham, T. & Bellani, G. Continued under-recognition of
acute respiratorydistress syndrome after the Berlin definition:What
is the solution? Curr. Opin. Crit. Care 23, 10–17 (2017).

13. Zeiberg, D. et al. Machine learning for patient risk stratification for
acute respiratory distress syndrome. PLoS One 14, e0214465 (2019).

14. Song, X., Weister, T. J., Dong, Y., Kashani, K. B. & Kashyap, R. Deri-
vation and validation of an automated search strategy to retro-
spectively identify acute respiratory distress patients per berlin
definition. Front Med (Lausanne) 8, 614380 (2021).

15. Li, H. et al. Rule-based cohort definitions for acute respiratory dis-
tress syndrome: A computable phenotyping strategy based on the
berlin definition. Crit. Care Explor 3, E0451 (2021).

16. Sathe, N. A. et al. Evaluating construct validity of computable acute
respiratory distress syndromedefinitions in adults hospitalizedwith
COVID-19: anelectronic health recordsbasedapproach.BMCPulm.
Med 23, 1–10 (2023).

17. Bechel, M. A. et al. A quantitative approach for the analysis of
clinician recognition of acute respiratory distress syndrome using
electronic health record data. PLoS One 14, e0222826 (2019).

18. Van Den Goorbergh, R., Van Smeden, M., Timmerman, D. & Ben, V.
C. The harm of class imbalance corrections for risk prediction
models: illustration and simulation using logistic regression. J. Am.
Med. Inform. Assoc. 29, 1525–1534 (2022).

19. Petrucci, N. &De Feo, C. Lung protective ventilation strategy for the
acute respiratory distress syndrome. Cochrane Database of Sys-
tematic Reviews 2013, CD003844 (2013).

20. Neto, A. S. et al. Association between use of lung-protective ven-
tilation with lower tidal volumes and clinical outcomes among
patients without acute respiratory distress syndrome: a meta-
analysis. JAMA 308, 1651–1659 (2012).

21. Determann, R. M. et al. Ventilation with lower tidal volumes as
compared with conventional tidal volumes for patients without
acute lung injury: A preventive randomized controlled trial. Crit.
Care 14, 1–14 (2010).

22. Ancker, J. S. et al. Effects of workload, work complexity, and
repeated alerts on alert fatigue in a clinical decision support sys-
tem. BMC Med Inf. Decis. Mak. 17, 1–9 (2017).

23. Lee, E. K., Wu, T. L., Senior, T. & Jose, J. Medical alert management:
A real-time adaptive decision support tool to reduce alert fatigue.
AMIA Annu. Symp. Proc. 2014, 845 (2014).

24. Cvach, M. Monitor alarm fatigue: An integrative review. Biomed.
Instrum. Technol. 46, 268–277 (2012).

25. Youden, W. J. Index for rating diagnostic tests. Cancer 3, 32–35
(1950).

26. Smits, N. A note on Youden’s J and its cost ratio. BMC Med Res
Methodol. 10, 1–4 (2010).

27. Vickers, A. J. & Elkin, E. B. Decision curve analysis: A novelmethod for
evaluating prediction models.Med. Decis. Mak. 26, 565–574 (2006).

28. Vickers, A. J., Van Calster, B. & Steyerberg, E. W. Net benefit
approaches to the evaluation of prediction models, molecular
markers, and diagnostic tests. BMJ 352, https://doi.org/10.1136/
bmj.i6 (2016).

29. Afshar, M. et al. A computable phenotype for acute respiratory
distress syndrome using natural language processing andmachine
learning. AMIA Annu. Symp. Proc. 157, 165 (2018).

30. Lee, R. Y. et al. Assessment of natural language processing of
electronic health records tomeasure goals-of-care discussions as a
clinical trial outcome. JAMA Netw. Open 6, e231204–e231204
(2023).

31. Matthay, M. A. et al. A new global definition of acute respiratory
distress syndrome. Am. J. Respir. Crit. CareMed 209, 37–47 (2024).

32. Fuentes, S. & Chowdhury, Y. S. Fraction of Inspired Oxygen. Stat-
Pearls (2022).

33. Sjoding, M. W. et al. Interobserver reliability of the berlin ards
definition and strategies to improve the reliability of ARDS diag-
nosis. Chest 153, 361–367 (2018).

34. Irvin, J. et al. CheXpert: A Large Chest Radiograph Dataset with
Uncertainty Labels and Expert Comparison. 33rd AAAI Conference

Article https://doi.org/10.1038/s41467-025-61418-5

Nature Communications |         (2025) 16:6787 16

https://doi.org/10.13026/C2XW26
https://doi.org/10.13026/C2XW26
https://mimic.mit.edu/docs/gettingstarted/
https://doi.org/10.21985/n2-3y30-th04
https://doi.org/10.21985/n2-3y30-th04
https://github.com/amarallab/ARDS_diagnosis
https://github.com/amarallab/ARDS_diagnosis
https://doi.org/10.5281/zenodo.15284390
https://doi.org/10.1136/bmj.i2139
https://doi.org/10.1136/bmj.i6
https://doi.org/10.1136/bmj.i6
www.nature.com/naturecommunications


on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of
Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2019
590–597 https://doi.org/10.1609/aaai.v33i01.3301590 (2019).

35. Benchoufi, M., Matzner-Lober, E., Molinari, N., Jannot, A. S. & Soyer,
P. Interobserver agreement issues in radiology. Diagn. Inter. Ima-
ging 101, 639–641 (2020).

36. Loeb, M. B. et al. Interobserver Reliability of radiologists’ inter-
pretations of mobile chest radiographs for nursing home–acquired
pneumonia. J. Am. Med Dir. Assoc. 7, 416–419 (2006).

37. Hagens, L. A. et al. Improvement of an interobserver agreement of
ARDS diagnosis by adding additional imaging and a confidence
scale. Front Med (Lausanne) 9, 950827 (2022).

38. Riviello, E. D. et al. Hospital incidence and outcomes of the acute
respiratory distress syndrome using the Kigali modification of the
Berlin definition. Am. J. Respir. Crit. Care Med 193, 52–59 (2016).

39. Johnson, A. E. W. et al. MIMIC-III, a freely accessible critical care
database. Sci. Data 3, 1–9 (2016).

40. Johnson, A., Pollard, T. & Mark, R. MIMIC-III Clinical Database v1.4.
PhysioNet https://physionet.org/content/mimiciii/1.4/10.13026/
C2XW26 (2016).

41. Goldberger, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic
signals. Circulation 101, (2000).

42. Morales, F. L., Xu, F., Cameron, E. L.,Weiss, C. H. &Nunes Amaral, L.
A. Physician labels for MIMIC (2001-12) encounters. https://arch.
library.northwestern.edu/concern/datasets/3197xm58v?locale=en
(2025).

43. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System.
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining https://doi.org/10.1145/
2939672 (2016).

44. Bergstra, J., Yamins, D. & Cox, D. Making a science ofmodel search:
Hyperparameter optimization in hundreds of dimensions for vision
architectures. In Proceedings of the 30th International Conference
on Machine Learning vol. 28 115–123 (Proceedings of Machine
Learning Research, 2013).

45. Morales, F. L., Xu, F. & Nunes Amaral, L. A. amarallab/ARDS_diag-
nosis: ARDS diagnosis v1.0.0 – Initial Public Release. https://doi.
org/10.5281/ZENODO.15284391 (2025).

Acknowledgements
The authors thank Catherine Gao for insightful discussions and sugges-
tions. FXwas supported inpart by theNational InstitutesofHealth Training
Grant (T32GM008449) through Northwestern University’s Biotechnology
Training Program. CHW was supported by the National Heart Lung and
Blood Institute (R01HL140362 and K23HL118139). LANAwas supported by
the National Heart Lung and Blood Institute (R01HL140362). LANA and FX
are supported by the National Institute of Allergy and Infectious Diseases
(U19AI135964).

Author contributions
F.M. -Methodology, Software, Validation, DataCuration,Writing –Original
Draft, Writing – Review & Editing, Visualization. H.A.L. - Methodology,

Software, Validation, Data Curation, Writing – Review & Editing. H.T.N. -
Software, Validation, Data Curation. M.B. - Methodology, Validation, Data
Curation, Writing – Review & Editing. F.X. - Methodology, Software, Vali-
dation, Data Curation, Writing – Review & Editing, Visualization. J.K. - Data
Curation. E.L.C. - Data Curation, Writing – Review & Editing. C.H.W. -
Conceptualization, Methodology, Validation, Data Curation, Resources,
Writing – Original Draft, Writing – Review & Editing, Visualization, Super-
vision, Project Administration, Funding Acquisition. L.A.N.A. - Con-
ceptualization, Methodology, Software, Validation, Formal Analysis,
Resources, Writing – Original Draft, Writing – Review & Editing, Visualiza-
tion, Supervision, Project Administration, Funding Acquisition.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-61418-5.

Correspondence and requests for materials should be addressed to
Curtis H. Weiss or Luís A. Nunes Amaral.

Peer review information Nature Communications thanks Lieuwe Bos,
Rahul Kashyap, Tai Phamwho co-reviewed with Christopher Lai and the
other anonymous reviewer(s) for their contribution to the peer review of
this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-61418-5

Nature Communications |         (2025) 16:6787 17

https://doi.org/10.1609/aaai.�v33i01.3301590
https://physionet.org/content/mimiciii/1.4/10.13026/C2XW26
https://physionet.org/content/mimiciii/1.4/10.13026/C2XW26
https://arch.library.northwestern.edu/concern/datasets/3197xm58v?locale=en
https://arch.library.northwestern.edu/concern/datasets/3197xm58v?locale=en
https://doi.org/10.1145/2939672
https://doi.org/10.1145/2939672
https://doi.org/10.5281/ZENODO.15284391
https://doi.org/10.5281/ZENODO.15284391
https://doi.org/10.1038/s41467-025-61418-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Open-source computational pipeline flags instances of acute respiratory distress syndrome in mechanically ventilated adult patients
	Results
	Adjudication of bilateral infiltrates
	Extracting ARDS risk factors in attending physician notes
	Adjudication of heart failure from echocardiogram (echo) reports
	Adjudication of ARDS for Hospital A (2013) cohort
	Adjudication of ARDS for MIMIC (2001-12) labeled subset

	Discussion
	Limitations

	Methods
	Cohort data collection
	Hospital A (2013)
	Hospital A (2016)
	Hospital B (2017-18)
	MIMIC (2001-12)

	Statistics and Reproducibility
	Adjudication of bilateral infiltrates from chest imaging reports
	Overview
	Feature engineering
	Training of models for the adjudication of bilateral infiltrates
	Preventing data leakage
	Hyperparameter tuning
	Model comparison and feature importance
	Model testing for adjudication of bilateral infiltrates

	Adjudication of risk factors from physician notes
	Overview
	Capturing risk factors with regular expressions
	Adjudication of risk factors with XGBoost - Feature engineering
	Adjudication of risk factors with XGBoost - Risk factor/model selection
	Adjudication of risk factors with XGBoost - model testing
	Adjudication of risk factors with regular expressions

	Design of ARDS adjudication pipeline: chaining Berlin Definition steps

	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




