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Forecasting the evolution of fast-changing
transportation networks using machine learning
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Transportation networks play a critical role in human mobility and the exchange of goods, but

they are also the primary vehicles for the worldwide spread of infections, and account for a

significant fraction of CO2 emissions. We investigate the edge removal dynamics of two

mature but fast-changing transportation networks: the Brazilian domestic bus transportation

network and the U.S. domestic air transportation network. We use machine learning

approaches to predict edge removal on a monthly time scale and find that models trained on

data for a given month predict edge removals for the same month with high accuracy. For the

air transportation network, we also find that models trained for a given month are still

accurate for other months even in the presence of external shocks. We take advantage of this

approach to forecast the impact of a hypothetical dramatic reduction in the scale of the U.S.

air transportation network as a result of policies to reduce CO2 emissions. Our forecasting

approach could be helpful in building scenarios for planning future infrastructure.
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Transportation networks are critical infrastructures and one
of the foundations of modern globalized societies. The air
transportation network alone is responsible for the mobi-

lity of millions of people every day across the world1,2. However,
transportation networks are also responsible, indirectly, for the
propagation of diseases, such as influenza and, recently, severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)3–5. In
addition to their role in enabling pandemics, transportation is
also a significant contributor to greenhouse gas emissions,
accounting for about 29% of the total U.S. greenhouse gas
emissions and 14% of the total global greenhouse gas
emissions6,7. Among all transportation sectors, air transportation
contributes 9% of U.S. greenhouse gas emissions and 10.6% of
global greenhouse gas emissions6,7. Even more concerning, at a
time when global greenhouse gas emissions must be reduced,
emissions from the transportation sector are on the rise8,9.
However, as the consequences of climate change become
inescapable9, it is inevitable that dramatic changes in how
transportation networks are organized will occur10. Thus, it is
crucial for planners to be able to forecast how transportation
networks could evolve in the coming decades.

The study of connection dynamics in networked systems,
including transportation networks, has yielded significant
insights11–15. However, the study of the temporal dynamics of the
edges in transportation networks remains underdeveloped. A
significant challenge for transportation networks is that their edge
dynamics are the outcome of concurrent actions of businesses
motivated by competition and profit, governments motivated by
national interests, and historical contingencies.

Recently, machine learning (ML) approaches have been suc-
cessfully applied in the study of human mobility16,17, sustain-
ability of transportation infrastructure18, and the impact of
COVID-19 on gasoline demands19. Here, we take a similar
approach to probe the dynamics of the edges in transportation
networks. For mature transportation networks, structure changes
are primarily due to the addition and removal of edges, the
addition and removal of nodes being much less significant. In the
past, the addition of edges has been studied mainly in the context
of missing link prediction20,21 and network growth models22,
whereas the removal of edges has been studied in contexts, such
as network percolation23,24, attack and error tolerance25, dis-
mantling strategies26, catastrophic failures27, synchronization and
phase-transitions28, pruning processes based on removal of
underutilized links29, and cascading failures30, to name a few.

However, edge removals in real-world temporal networks do not
grow unbound as in percolation or dismantling processes and the
mechanism determining the removal of edges is not well
understood. To address this knowledge gap and because of the
practical implications of the problem, we apply machine learning
algorithms to the challenge of predicting edge removals on
transportation networks.

We investigate the edge dynamics of two large mature but
fast-changing transportation networks: the Brazilian inter-cities
bus transportation network (Brazil Bus net)31,32 and the U.S.
domestic air transportation network (U.S. Air net)33. We do not
consider here rail transportation networks because they tend to
change very slowly. Using ML algorithms to classify edges by
their topological properties, we find statistically significant dif-
ferences between features of edges retained and features of edges
removed. Further, we develop an ML model that enables us to
forecast removed edges. We also test the robustness of our
model to large external shocks, such as COVID-19 travel
restrictions. We use this model to simulate the effect of a
reduction in the number of connections in the U.S. domestic air
transportation network and discuss the implications of our
findings on building alternative scenarios for planning future
infrastructure.

Results
Transportation networks. We collected data for the Brazilian
inter-city bus transportation network (Brazil Bus net) and the
United States domestic air transportation network (U.S. Air net)
at a monthly temporal resolution. In the Brazil Bus net, the nodes
represent cities with bus stops on a bus route. An undirected edge
emij connects nodes i and j if there is at least one bus route con-
necting them at some point during the month m. The number of
buses during the month m is used as the weight for edge emij . We
construct both a weighted and an unweighted undirected tem-
poral network {G1→G2→ . . .→GT}, where Gm represents the
network snapshot constructed with data from month m.

In the U.S. Air net, the nodes represent U.S. cities with airports.
An edge indicates that at least one airline directly connected the
two cities during the monthly observation window (Fig. 1a). In
the weighted network, the weight of an edge is the number of
flights during the monthly observation window. Figure 1b shows
that a significant fraction of existing edges is removed from the
network from one snapshot to another.

a

b

Fig. 1 Edge dynamics in two countrywide transportation networks. a January 2014 snapshots of the Brazilian inter-city bus transportation network and the
United States domestic air transportation network (only mainland shown). The size of each circle is proportional to the degree of the node representing the
city at that location. b Fraction of edges removed monthly for the two networks. The maps were generated using the Python package cartopy version 0.20.0.
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Machine learning prediction. We formulate the question of how
to predict which edges will be removed as a supervised classifi-
cation problem. In a network snapshot Gm, we assign to edges one
of three states: ‘added’, ‘retained’, or ‘removed’. Added edges were
not present at the beginning of the monthly observation window
but are present at the end. Retained edges are present at the
beginning and end of the monthly observation window. Removed
edges are present at the beginning but not at the end of the
monthly observation window. To achieve the goal of predicting
removed edges, we only need to consider edges already present in
Gm. Those edges can only be ‘retained’ or ‘removed’. Therefore,
our problem is reduced to a binary classification where the task is
to determine if an edge is retained or removed in a given snap-
shot. The features of an edge can be extracted from Gm and
represented as a feature vector Xm

ij . Thus, we can write the
probability of an edge emij being removed as:

Prob emij ¼ removed
� �

¼ f Xm
ij

� �
: ð1Þ

To test our hypothesis that removed edges are significantly
different in their topological features from those of retained
edges, we randomly select 70% of retained and removed edges in
a selected snapshot for inclusion in the training set. As illustrated
in Fig. 2a, if a model is trained with Gm, one can perform two
different tests depending on whether the testing edges are selected
from the same snapshot as the training edges. In the simultaneous
test, we test on edges from the same snapshot as the training
edges. In the non-simultaneous test, we test on edges from
snapshots that come after the training snapshot. This test
evaluates the similarity of removal dynamics for different
snapshots.

Features. Numerous features could be used to characterize an
edge in a network. In much of the literature, it is assumed that
edge weights are not available20. Thus we separately study the
impacts of edge weight and edge topological features on the
predictability of edge removals. We consider a subset of possible
unweighted topological features used widely in the link prediction
literature (Table 1). Most are local properties34. Therefore, one
could make predictions even without knowing the structure of the
entire network.

To illustrate the differences between the features of retained
and removed edges, we use data from the January 2014 snapshot
for both transportation networks and present the distributions of
those 11 unweighted topological features and the weight for both
retained and removed edges. We compared the feature samples of
retained and removed edges using the Kolmogorov-Smirnov
statistics, a test for the null hypothesis that two samples are drawn
from the same continuous distribution. Because we make
multiple comparisons, we used Bonferroni corrections on the
significance level, i.e. α= 0.05/12, where 12 is the number of
comparisons. We can reject the hypothesis that the features of
retained and removed edges come from the same distribution,
with p value < 3 × 10−4 for all cases.

In order to select a classification model, we performed a
stratified 10-fold cross-validation on the balanced training set
with 27 widely used classification algorithms available in the
scikit-learn Python library35 and in the eXtreme Gradient Boost
package36. We calculate the balanced accuracy, the F1 score, and
the area under the receiver operating characteristic curve (ROC-
AUC) to compare the classification performance of the 27
algorithms (see Methods for implementation details and
Supplementary Fig. S1 for the performance of all algorithms).
For 8 of the 27, we obtain high and stable accuracies (Fig. 2c). The
results suggest that those algorithms have consistent and similar
prediction accuracies ranging from 0.6 to 0.8. We select a single

algorithm with high accuracy and low error variance, XGBClas-
sifier, for all subsequent analyses.

Prediction. We consider four separate models using unweighted
topological features, weighted topological features (Table.S1),
edge weights, unweighted topological features & edge weights as
the feature vectors for the XGBClassifier.

Simultaneous prediction. Considering only unweighted topologi-
cal features, for the Brazil Bus net, the balanced accuracies using
the XGBClassifier in simultaneous tests have an average of 0.65
(Fig. 3a). For the U.S. Air net, XGBClassifier yields an average
balanced accuracy of 0.70. These results suggest that with this ML
approach we can differentiate the retained edges from the
removed edges in a given network snapshot using their topolo-
gical features.

Considering weighted topological features marginally increases
the balanced accuracy to 0.69 for the Brazil Bus net and 0.71 for
the U.S Air net. In contrast, edge weights alone improve the
predictive power of the model by 10% to 0.82 for the U.S. Air net.
Including both unweighted topological features and edge weights
does not significantly improve the models’ performance com-
pared with the model that only uses edge weights to classify
removals.

Nonsimultaneous prediction. A more general and useful test,
however, is achieved by using a model trained on a single snap-
shot to predict edge removals in latter snapshots. Surprisingly, the
prediction of the XGBClassifier for the non-simultaneous tests in
the Brazil Bus net is no better than random guessing (Fig. 3b). For
the U.S. Air net, the model yields an average balanced accuracy of
0.70 using topological features and 0.82 using edge weights,
similar to what was observed for simultaneous prediction. See
Fig. 3c for confusion matrices.

It is not surprising that weights are the most predictive feature
of the model for the US Air net. Connections with more flights
are likely to include services from different airlines, and thus
unlikely to suddenly drop to zero. Surprisingly, the same
argument does not hold for the Brazil Bus net.

Model interpretation. Next, we investigate why our predictions
fail for the Brazil Bus net in the non-simultaneous tests. To this
end, we use the SHapley Additive exPlanations (SHAP)
values10,37,38. Figure 4a shows the SHAP values summary of the
feature importance as well as how their values affect the outputs
of the model for the simultaneous test in a particular snapshot
considering the model with edge weights and topological features.
The SHAP values summary for a particular snapshot reveals that
the Adamic-Adar index, edge weights, and the local path index
are the most important feature for the bus network. For the U.S.
Air net, the most important features for predicting edge removals
are edge weights, the hub promoted index and the local path
index.

Figure 4b shows the same SHAP values summary for the model
considering only the unweighted topological features. For the U.S.
Air net, the most important unweighted topological features for
predicting edge removals are the hub promoted index and the
resource allocation index. Specifically, edges with low values of
the hub promoted index and the resource allocation index are
more likely to be removed. The ranking of feature importances
remains quite stable for different time snapshots.

While edge weight does not unveil the dynamics of the network
and is on average ranked the most important feature at all
snapshots (Fig. 4c), the hub promoted index and the resource
allocation index are consistently the most important features in
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determining which edges are removed (Fig. 4d) in the U.S. Air net.
This implies that the U.S. Air net has consistent removal dynamics
over time, whereas, the Brazil Bus net shows no such stability.

For the bus network, features such as the local path index are
important in some snapshots but not in others. This variability in
the ranking of feature importance explains why non-
simultaneous predictions fail for the Brazil Bus net: The model
over-fits the current snapshot and performs well on the
simultaneous test but fails to generalize when predicting edge
removals on different snapshots.

For the U.S. Air net, the primacy of edge weights as the most
important feature is not surprising. Edges tend to maintain their
weights over time, so edges with low weights are less likely to be
retained. However, this is tautological because it does not advance

our knowledge about how edge weight is determined. The weight of
an edge can be predicted using unweighted topological features (Fig.
S3). To this end, we look at the unweighted topological features.

To the predictions of edge removals, the large predictive power
of the hub promoted index and the resource allocation index can
be understood if one considers that they capture the importance
to a city of maintaining connections to hubs34,39,40. The hub
promoted index is defined as

hp ¼
Γu \ Γv
�� ��
minðku; kvÞ

: ð2Þ

If ku < kv, hp can be seen as the fraction of node u’s neighbors that
are connected to node v. A large value suggests node v is likely a
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Fig. 2 Performance of machine learning models for predicting retained and removed edges in a snapshot of a transportation network. a Illustration of
the process for creating training and testing sets in a transportation network. Edges shown in black are retained during the observation window, whereas
edges shown in red are removed. We select a fraction of edges for inclusion in the training set (grey-shaded subgraph in the figure). We identify a
simultaneous testing set (blue-shaded subgraph) by considering all edges that were present at month Gm but were not included in the training set.
Additionally, we identify a non-simultaneous testing set (green-shaded subgraph includes edges in dashed bold line that are added after the training graph)
by considering all edges that exist at snapshot Gn where n >m, and that were not included in the training set. b We calculate a broad range of features for
each edge and compare the distributions of said features for retained and removed sets of edges in the training set. For clarity, feature values are
transformed into the range from zero to one using their 10 quantiles. It is visually apparent, for most features, that the distributions for retained and
removed edges are different. c We evaluate the performance of 27 common supervised classification algorithms using tenfold cross-validation. We show
box plots of the estimated model balanced accuracies, F1 scores, and area under the receiver operating characteristic curve (ROC-AUC) for the Brazil Bus
net and the U.S. Air net. We order the algorithms by their average balanced accuracy for each network and show results for the top 8 algorithms. In the
following, we focus on one of those algorithms, XGBClassifier, because it has the lowest error variance among high-performing algorithms.
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Table 1 Considered features: Γi refers to the set of neighbors of node i. ki= ∣Γi∣ is the degree of node i40.

Feature Definition Description

Common Neighbors (CN) Γi \ Γj
�� �� The number of common neighbors of nodes i and j

Salton Index (SA) Γi\Γjj jffiffiffiffiffiffiffiffi
ki ´ kj

p The number of common neighbors normalized by the geometric average degree of both nodes

Jaccard Index (JA) Γi\Γjj j
Γi ∪ Γjj j The number of common neighbors normalized by the union of neighbors of both nodes

Sørensen Index (SO) 2 Γi\Γjj j
kiþkj

The number of common neighbors normalized by the average degree of the two nodes

Hub Promoted Index (HPI) Γi\Γjj j
minðki ;kjÞ

The number of common neighbors normalized by the smaller degree of the two nodes

Hub Depressed Index (HDI) Γi\Γjj j
maxðki ;kjÞ

The number of common neighbors normalized by the larger degree of the two nodes

Leicht-Holme-Newman
Index (LHNI)

Γi\Γjj j
ki ´ kj

The number of common neighbors normalized by the product of degrees of the two nodes

Preferential Attachment Index (PA) ki × kj The product of the degrees of the two nodes
Adamic-Adar Index (AA) ∑wn2Γi\Γj

1
log kn

The number of common neighbors with each of them normalized by the logarithm of their degree

Resource Allocation Index (RA) ∑wn2Γi\Γj
1
kn

The number of common neighbors with each of them normalized by their degree

Local Path Index (LPI) Sij,2+ ϵSij,3 The first term represents the number of paths of length equal to 2 between the node i and j. The
second term is the number of paths of length equal to 3 between the node i and j damped by
parameter ϵ. We set ϵ= 0.01.

Brazil Bus
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Fig. 3 Comparison of different models’ performances against appropriate null models. The box plots show the balanced accuracies for (a) simultaneous
tests and (b) nonsimultaneous tests on all time steps for bus transportation network and air transportation network using unweighted topological features,
weighted topological features, edge weights, and unweighted topological features+ edge weights. c Confusion matrices for the model's non-simultaneous
predictions for a snapshot of the Brazil Bus net and a snapshot of the U.S. Air net. Even though the model of the Brazil Bus net is able to perform well on the
simultaneous test, its performance on the non-simultaneous test is poor.
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hub (compared with non-hubs, node u shares more common
neighbors with hubs) thus a direct connection between u and v is
important (Fig. 4e). The resource allocation index is defined as

ra ¼ ∑
wn2Γu\Γv

1
kn

; ð3Þ

where kn is the degree of the common neighborhood node wn. As
Fig. 4f illustrates, larger kn means greater redundancy of short
paths from u to v. However, not all redundancy is the same.

Redundancy through highly connected nodes (ra is small) would
suggest that a direct connection could be replaced by a 2-step
path through hubs, but redundancy through poorly connected
nodes (ra is large) would mean u and v are likely hubs and that
their connection is important.

Model performance during the COVID-19 pandemic period.
The U.S. economy was strongly affected by the COVID-19 pan-
demic. Coupled with travel restrictions, the economic downturn

a

c

Hub Promoted Resource Allocation

d

b

e f
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produced a strong reduction in airline traffic. Between February
2020 and April 2020, the number of monthly passengers on US
domestic flights collapsed from 70 million to 2.87 million. This
extraordinary situation provides us with a natural experiment
with which to test the ability of our approach to continue making
accurate predictions in the face of external shocks.

We downloaded the data needed to construct the U.S. air
transportation network for the period January 2019 to March
2021. We found that despite the sharp reduction in the number of
passengers, the fractions of edges removed monthly from the air
transportation network were similar to those observed in the pre-
pandemic period (Fig. 5a).

To test the accuracy of our model in predicting edge removals
during the period of travel restrictions, we first considered the
simultaneous test. We obtained very similar balanced accuracy
results for this period when compared to the period before the
travel restrictions, suggesting that the considerations used to
make decisions about which connections to remove remained
consistent during the later period (Fig. 5b). We also found that
the ranking of feature importance was also consistent after the
travel restrictions were in place, making our model suitable for
predictions even under this exogenous shock (Fig. 5c). Finally, we
investigated our model using the non-simultaneous test to
compute the prediction accuracy during the travel restriction
period (Fig. 5d). Despite the small reduction in the accuracy for
the months after the travel restrictions, the balanced accuracies
obtained are very similar.

Long-term stability of forecast. Using edge weights as a feature
in our classification model yields higher accuracy. Whereas pre-
dicting whether edges are going to be removed or not suffices to
build sensible scenarios for the future of transportation networks,
the higher accuracy of the model using edge weights imposes the
challenge of predicting the weights of future snapshots. A
shortcoming to such a model is that it needs another model to
predict edge weights, increasing the overall complexity of the
approach. To test the feasibility of such an approach, we take
steps in this direction and check the stability of a model that uses
only weights as features for long-term predictions. To compute
the edge weights in future snapshots, we first fit a regression
model that uses the weights of the current snapshot to predict the
weights of the next snapshot, this is, wij(t)= f(wij(t− 1)). For
edges that are added in future snapshots, we input the weights
directly from the data so that we do not need to introduce an
additional model to predict edge additions.

We simulate long-term forecast for the U.S. Air net for a model
considering only unweighted topological features and a model
considering only edge weights (Fig. 6a). Starting from a given
snapshot network Gm, the model is trained to predict the edges
removed in the next snapshot Gm+1. Then, the model uses the
prediction Gm+1 to predict Gm+2 and so on and so forth. To
evaluate the performance of the predictions at each time step, we
compare the structure of the predicted network with the structure
of the actual network using the Jaccard similarity

J ¼
Edata \ Epredicted

��� ���
Edata ∪Epredicted

��� ��� ð4Þ

where Edata is the edge set from the actual network and Epredicted is
the edge set of the predicted network.

Our analysis suggests that unweighted topological features have
more stable predictions independently of the initial conditions of
the network, that is, which month was chosen to train the model.
In contrast, models considering only the edge weights yield about
13% of trajectories with very large errors, suggesting that this
model could become unexpectedly poor for long-term predic-
tions. In fact, at the end of the simulation, models using only edge
weights can, at times, have a performance similar to a model
where edges are removed randomly from one month to another
(Fig. 6a).

Forecasting changes to the U.S. Air net. Encouraged by the
ability of our approach to forecast the edge removal dynamics of
the U.S. Air net over long periods, we next use the model con-
sidering unweighted topological features to simulate the effect of
hypothetical air travel restrictions aiming to reduce CO2 emis-
sions. We use the model trained on a known snapshot to predict
the probability that a given edge is removed and remove it
according to that probability. We take the December 2018 snap-
shot of the U.S. Air net as the initial state of the network. In each
simulation, we assume that there is a target Nf for the total
number of edges in the network and that at each time step we
remove a fraction of existing edges

δNm ¼ �γðNm � Nf Þ; ð5Þ
where m is the number of months from the start of the simulation
and Nm is the number of edges in the current snapshot.

Figure 6 b shows ensembles, each including 30 simulations
starting on December 2018 and removing (Rf= 2/3, 4/5, where

Fig. 4 Edge weight, the hub promoted index and the resource allocation index consistently have the largest predictive power for whether edges will be
removed or retained across different snapshots for the U.S. Air net. a Summary of SHAP values for the simultaneous test of the January 2008 Brazil Bus
net and the January 2008 U.S. Air net. We use SHAP values to quantify the importance of features and how they affect the prediction. The feature
importance is ranked by the sum of SHAP value magnitudes from top to bottom. For every feature, each point represents a data observation and the color
shows its corresponding value. The impact on model output is shown on the x-axis. Positive values correspond to the removed edges, and negative values
correspond to the retained edges. In the model with both unweighted topological features and edge weights, Adamic and weight are the most important
features in the Brazil Bus net. For the US Air net, the weight is the most dominant feature and the unweighted topological features are less significant. b In
the model with only unweighted topological features, the most predictive features are the local path index and Salton index for the Brazil Bus net. The hub
promoted index and the resource allocation index are the most predictive features for the U.S Air net. It means edges with low values of the hub promoted
index and the resource allocation index are more likely to be removed. c Ranking of features importance for all snapshots according to their SHAP values.
The darker the bar, the more important a feature is for that snapshot. If the ranking changes over time, then a predictive model is accurate only for the time
for which it was fitted. Feature rankings are quite stable for the U.S. Air net, but not for the Brazil bus net. Weight is consistently the most important feature
for the U.S. Air net. d The results are similar when edge weights are not included. e Calculating the hub promoted index hp of the edge connecting u to v. If
ku < kv, hp can be seen as the fraction of node u's neighbors that are connected to node v. A large fraction suggests node v is likely a hub thus a direct
connection between u and v is important. f Calculating the resource allocation index ra of the edge connecting u to v, kn is the degree of their common
neighbor node wn. Larger n means greater redundancy of short paths from u to v. However, not all redundancy is the same. Redundancy through highly
connected nodes (ra is small) would suggest that a direct connection is not important, but redundancy through poorly connected nodes (ra is large) would
mean u and v are likely hubs and their connection is important.
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Rf= 1−Nf/N0) of edges at two different rates (γ= 0.02, 0.04).
Based on the predicted edge removals, we project the estimated
carbon emissions relative to the emissions in 2018 (see Fig. 6c and
the SI for details of the estimations)41. To better quantify the
likelihood of removal, we calculate the average time an edge is
retained and rank edges from the shortest survival time to the
longest survival time (Fig. 6d). We find that edges connecting
hubs (e.g. Chicago, IL, and Boston, MA) are the least likely to be
removed. Of practical importance, we find that an edge’s survival

time depends on the values of the two parameters, γ and Rf
(Fig. 6e).

Daily global CO2 emissions decreased by 17% during the early
stages of the COVID-19 pandemic. A reduction in carbon
emissions this dramatic could help many countries achieve the
goals of the Paris Climate Agreement10. An important compo-
nent of such reduction would be decreasing the number of air
connections among cities such as the one we explored above. An
important question, thus, is the extent to which our model may
be of use to planners.

As Fig. 6f makes clear, many Midwestern cities are likely to lose
air connections if there is a large reduction in the size of the U.S.
domestic air transportation network. Only a fraction of those
cities have or will host new rail connections. For the most part,
the existing or proposed rail connections will not be served by
high-speed trains. In practical terms, this means that most
travelers between those cities will do so by automobile.

The removal of a large fraction of air connections could thus
lead to an increase in automotive traffic for trips in the 3-8 hours
range. Such an increase could result in increased CO2 emissions
due to the construction, expansion, and maintenance of roads
and due to increased miles traveled by car. This might be a missed
opportunity. High-speed rail is a scalable, and a more
environmentally sound approach to transportation than adding
cars to the roads, and building and expanding roadways.

A complicating factor is the time scale for the planning of new
U.S. rail lines. Amtrak has advertised its plans under the name
“2035 Amtrak”42. Much can and will change in the U.S. between
now and 2035. For instance, climate change is likely to force
migrations from the South and West of the U.S. areas of the
Midwest. Thus, our model cannot provide the answer to how to
plan a rail system that will anticipate population and air
transportation changes. However, our model can help planners
build additional scenarios for future changes in the U.S. domestic
air transportation network.

Discussion
We show that edge removal processes in transportation networks
are not random and that it is possible to make accurate predictions
based on local network structures. Even though those features are
able to differentiate edges removed and retained, a model trained in
a single time snapshot is not able to correctly predict removed edges
in different time snapshots for the Brazil Bus net. In contrast, for
the U.S. Air net, the non-simultaneous tests show that the features
of the edges removed are similar in all snapshots.

For the U.S. Air net, we find that edge weight, the hub promoted
index, and the resource allocation index consistently have the lar-
gest predictive power for the aggregate network. This finding is not
surprising since it simply highlights the fact that direct connections
between hubs are very important while connections to a city already
connected to a hub are not. Remarkable, when considering indi-
vidual airlines, we find that the hub promoted index is still very
important for accurate prediction, but its importance varies over
time and by the airline. That is, predicting the removed edges for
the aggregate network is actually simpler than the prediction for an
individual airline (see Supplementary Fig. S4 and Fig. S5).

Our study has several limitations. First, the number of topo-
logical features tested in our work is limited. The predictive power
could be improved by including additional features. However, we
did test the impact of some global features such as the edge
betweenness centrality, edge current flow betweenness centrality,
and demographic features such as the intercity gravitation flow43,
but did not see any improvement in predictive power (see Sup-
plementary Fig. S6 and Fig. S7). We also compared our model to
a purely physical model that removes edges according to the rank

a

c

d

b

Non-simultaneous test

Simultaneous test

Fig. 5 Forecasting edge removals in the U.S. air transportation network
during a large external shock. a Fraction of edges removed monthly
remains similar to the pre-pandemic period, despite the sharp reduction in
the number of passengers flying during the COVID-19 pandemic47. The
grey shaded area highlights the new data obtained for this analysis. The red
bar indicates the period under the travel restrictions. b The balanced
accuracy of simultaneous tests as a function of time shows that the model
is able to identify removed edges under the external shock caused by the
travel restrictions. c Ranking of feature importance according to their SHAP
values for each snapshot in the period of travel restrictions. Similar to the
pre-pandemic period, the hub promoted index and the resource allocation
index remain the most predictive features. d Results for the non-
simultaneous tests are consistent for both pre- and postpandemic's travel
restrictions. The box plot shows the balanced accuracy for the periods
before and during the travel restrictions.
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of inter-city gravitation flow (see Supplementary Fig. S8). Our
analyses thus suggest that the local features can predict edge
removals better than global and demographic factors.

Second, we left the interplay of the multilayer structure of the
air transportation networks unexplored44. For example, it would
be very interesting to use machine learning approaches to explore

the interplay between the removal of edges in one network (e.g.,
air transportation network) and the growth of edges in another
transportation network (e.g., high-speed rail systems).

Third, the crucial role of airline strategy and route network
optimization is not explicitly included in our approach. None-
theless, we note that many events concerning airline strategy that

b c

d e
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is arguably impossible to predict – governmental regulation,
airport expansions, mergers and acquisitions, bankruptcy pro-
tection, epidemics, natural disasters, and so on – would also affect
the decision to drop routes. It is thus remarkable that our
approach is able to achieve such accuracy when predicting
changes in the aggregate network.

Finally, it is widely accepted that exogenous shocks to the
economy or from the environment can dramatically change the
topology of the network as airline companies try to adapt to the
new market conditions. Surprisingly, the fact that local topolo-
gical features alone can enable accurate predictions about edge
removals in the air transportation network highlights the
importance of our results to the literature on transportation
networks. Nonetheless, an interesting question for further
research would be the investigation of possible market scenarios
where removals of airline connections are not only a function of
topological features but also of other external factors such as
large-scale migration patterns due to climate change.

Methods
Data. The Brazilian inter-cities bus data was collected from the Brazilian National
Land Transportation Agency (ANTT)31. The dataset contains all inter-cities bus
transportation from January 2005 to December 2014 with monthly resolution. The
data is represented as a temporal unweighted undirected network, where nodes are
individual bus stops (cities) and edges represent bus routes between the two cities
within that monthly snapshot. The network has 120 snapshots with about 1734
nodes and 18781 edges on average.

We obtained United States domestic air transportation data from the Bureau of
Transportation Statistics (BTS)33. The data is in the period from January 2004 to
December 2018. We later obtained data for the period from January 2019 to March
2021 for the analysis of the impact of the COVID-19 pandemic’s travel restrictions.
Using the same approach we used in Brazil inter-cities bus data, each snapshot of
the network is constructed from data of the corresponding month. The nodes are
airports (cities) and an edge represents that there is at least one airline connecting
the two cities within that monthly snapshot. The networks have 192 snapshots with
about 819 nodes and 6547 edges on average.

Class balancing. Most machine learning classification algorithms favor the
majority class in an imbalanced dataset. In the two transportation networks we
study, the number of removed edges is much smaller than the edges that are
retained. To mitigate this issue in our highly imbalanced data, we balanced the
training data by keeping the same number of the majority class data samples
(retained edges) as the minority class data samples (removed edges) using random
under-sampling.

Performance metrics. The performance metrics are calculated using Scikit-learn
(version: ‘0.21.3’) built-in functions35. For binary classifications, the results fall into
true positive/TP (removed edges predicted to be removed), false positive/FN
(retained edges predicted to be removed), true negative/TN (retained edges pre-
dicted to be retained), and false negative/FN (removed predicted to be retained).

For a binary case, precision is defined as:

precision ¼ TP
TP þ FP

ð6Þ

and recall is defined as:

recall ¼ TP
TP þ FN

ð7Þ
The balanced accuracy is defined as the arithmetic mean of true positive rate

and true negative rate:

balanced� accuracy ¼ 1
2

recallþ TN
TN þ FP

� �
ð8Þ

The F1 score is defined as the harmonic mean of precision and recall:

F1 ¼ 2 ´
ðprecision � recallÞ
ðprecisionþ recallÞ ; ð9Þ

The area under the receiver operating characteristic curve (AUC-ROC) is a
performance measurement for the classification problems at various threshold
settings. It measures the area under the curve of the plot of true positive rates vs.
false positive rates. The higher the AUC-ROC, the better the model is in predicting
the correct classes.

Hyperparameter tuning. For XGBClassifier, we performed a brute force grid
search hyperparameter tuning. For the sake of computational time, we tested on
a predefined hyperparameter space. That is learning rate 0.01–0.4; gamma
0.0–0.2; maximum tree depth 0–10; number of boosting rounds 0–200. All
default hyperparameters are outside the region of overfitting and underfitting
(see Supplementary Fig. S2). For all analyses, we report our results using the
default hyperparameters.

Those hyperparameters are: learning rate= 0.3; number of boosting rounds= 100;
maximum tree depth= 3; objective= binary:logistic; booster= gbtree; gamma= 0;
min child Weight= 1; max delta step= 0; subsample= 1; colsample bytree= 1;
colsample bylevel= 1; colsample bynode= 1; reg alpha= 0; reg lambda= 1; scale pos
Weight= 1; base Score= 0.5.

Null model. To justify that the predictability comes from the non-trivial section of
removed edges, we construct a null model to estimate the fraction of correct
predictions that XGBClassifier would make if edge features were not correlated
with removals. To do so, we shuffle the labels (retained and removed), destroying
any correlation between features and labels. Then, we split the data as we did for
the original model and train the XGBClassifier algorithm on the training set and
test the predictions on the testing set.

If features are not correlated with labels and the null model produces
predictions similar to the original model on the non-shuffled data, the predictions
observed in non-shuffled data is likely a result of overfitting. If the null model
produces predictions that are no better than chance, our ML approach is capturing
the functional relationship between edge features and edge removals on the non-
shuffled data.

SHAP (SHapley Additive exPlanation) values. The computation of SHAP values
is a suitable approach to quantify feature importance45. To assess the importance of a
feature, one calculates the change in the expected model prediction by withholding
that feature. Mathematically, this method retrains the model on all subset of features
S⊂ F, where F is the set of all features. Since multiple subsets satisfied S � F n if g, the
importance of the feature is computed using all possible permutations.

Fig. 6 Forecasting the impacts of a hypothetical reduction of the scale of the U.S. Air net. a Simulations of long-term forecast for the unweighted
topological features model (blue line) edge weights (green line), and random removals (red line). The edge weight model shows better performance but
larger variability (green line). The good results of the edge weights model are called into question, because predictions produced by this model can be no
better than random removals at the end of the simulation (see red lines). Despite the lower performance of the model that only uses unweighted
topological features (blue line), this model is preferable for long-term predictions because predictions are consistent independent of the month chosen to
train the model. b Starting with the most recent network in our data set (December 2018), we remove edges at a constant rate. Fraction of edges retained
in the network for four different scenarios. c Estimated change in CO2 emissions. The lines show the averages of estimations and the shaded areas show
the 95% confidence intervals. d Susceptibility of an edge to removal for a simple scenario: Rf= 2/3 and γ= 0.02. The edges are ranked by their average
survival time obtained from 30 simulations. The grey envelope shows the 95% confidence intervals. Note that hub-to-hub connections like (Chicago, IL -
Boston, MA) have a greater survival time. e Comparison for two scenarios: Rf= 2/3 and γ= 0.02 (scenario 1) v.s. Rf= 4/5 and γ= 0.04 (scenario 2). We
find a Pearson's correlation coefficient of 0.7 between the average survival time in the two scenarios. While this correlation is quite high, it nonetheless
means that actual survival time cannot be a priori predicted perfectly. f A possible scenario for air and rail transportation in 2035. Air connections are
predicted using scenario 1 from above. Rail connections are from the “Amtrak 2035” plan and are represented by the dashed gray lines. Air connections are
represented by the orange lines. Red hollow circles represent cities that would be left without air or rail connections. Green circles represent cities that
would be connected by rail. Only four cities would have both air and rail connections. Note that since none of the rail connections are planned to be high-
speed, rail travel would not be competitive against automobile travel. The map was generated using the Python package cartopy version 0.20.0.
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Mathematically, the SHAP value for a particular feature i (out of F total features),
given a prediction x is:

ϕiðxÞ ¼ ∑
S�Fn if g

Sj j! Fj j � Sj j � 1ð Þ!
Fj j! f S∪ if g xS∪ if g

� 	� f S xS
� 	h i

ð10Þ

where f S∪ if g is a model trained with feature S∪ if g, and fS is a model trained on S
without feature i. Thus, the rank of feature importances are given by the sum of the
SHAP value magnitudes ϕi over all predictions.

Estimate the CO2 emission reduction. To estimate the CO2 emissions from the
U.S. domestic air transportation, we use the average fuel efficiency of U.S. airlines
in 2018. The methodology to calculate the CO2 emission associated with a specific
route can be done as follows46:

Monthly CO2 emissions (in tons) = 3.16 × 32.5 (gram fuel per km) × trip
distance (in km) × number of flights each month × 10−6 (tons per gram).

Where 3.16 is the constant representing the number of tonnes of CO2 produced
by burning a tonne of aviation fuel. 32.5 g fuel per km was the average fuel
efficiency of U.S. airlines in 201841.

Data availability
The Brazilian bus transportation network and U.S. air transportation network are freely
available for download at http://antt.gov.br/ and https://www.transtats.bts.gov/TableInfo.
asp, respectively.

Code availability
Our code is available for download at https://github.com/amarallab/transportation_
network_evolution.
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