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Abstract
The comb model is a simplified description for anomalous diffusion under
geometric constraints. It represents particles spreading out in a two-dimensional
space where the motions in the x-direction are allowed only when the y co-
ordinate of the particle is zero. Here, we propose an extension for the comb
model via Langevin-like equations driven by fractional Gaussian noises (long-
range correlated). By carrying out computer simulations, we show that the
correlations in the y-direction affect the diffusive behavior in the x-direction in a
non-trivial fashion, resulting in a quite rich diffusive scenario characterized by
usual, superdiffusive or subdiffusive scaling of second moment in the x-direc-
tion. We further show that the long-range correlations affect the probability
distribution of the particle positions in the x-direction, making their tails longer
when noise in the y-direction is persistent and shorter for anti-persistent noise.
Our model thus combines and allows the study/analysis of the interplay between
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different mechanisms of anomalous diffusion (geometric constraints and long-
range correlations) and may find direct applications for describing diffusion in
complex systems such as living cells.

Keywords: anomalous diffusion, comb model, fractional Brownian motion,
long-range correlations

1. Introduction

Understanding diffusive motions is a long standing problem on the physicists’ agenda. Since
the works of Einstein, Smoluchowski and Langevin, we have known that one of the most
striking patterns of classical (usual) free diffusion is the linear growth with time of the second
moment of the particle positions. While this feature is ubiquitous in nature, many other patterns
have been also observed for the second moment, both from analytical calculations and
experimental data [1]. These deviant behaviors are often called anomalous diffusion.

Nowadays, efforts are mainly focused on understanding the underlying physical
mechanisms that lead to such deviations, since the classification of the diffusive behaviors of
a given system alone is not enough to fully characterize it. In this context, two common
pathways for anomalous diffusion are long-range correlations in the particle positions and
geometric constraints related to the structural complexity of the environment where the particles
are moving. The former may be related to memory effects and an example is fractional
Brownian motion [2, 3], where the second moment has a power-law dependence with time, that
is, 〈 〉 ∝x t t( ) h2 2 . For this case, the Hurst exponent h classifies the anomalous diffusion in
subdiffusion ( < <h0 1 2) or superdiffusion ( >h 1 2) [4, 5] and also recovers usual ( =h 1 2)
and ballistic (h = 1) diffusions as limiting cases. Anomalous diffusion due to geometric
constraints is well exemplified by the comb model. In this model, diffusive particles walk on a
two-dimensional space; however, motions in the x-direction are only allowed when the y
coordinate of the particle positions is zero. The result of this simple constraint is a subdiffusive
motion (precisely, 〈 〉 ∼ αx t t( )2 with α = 1 2) and the appearance of a backbone (at y = 0) and
teeth (along the y-axis direction), which were originally proposed to mimic the quasilinear
structure and dangling ends of percolation clusters [6–8].

Mainly due to its simplicity and ability to mimic diffusive aspects of highly disordered
systems, the comb model has been extensively studied and extended by means of analytical
calculations [9–15] and also employed as a simplified description of natural phenomena such as
cancer proliferation [16, 17], transport of spiny dendrites [18] and diffusion of ultra cold atoms
[19, 20]. Moreover, as crowded environments tend to slow down the diffusive motion of
particles by obstruction and/or trapping [21], the comb model could also be used as a toy model
for describing diffusion in intracellular processes, where several researchers have reported the
existence of subdiffusion and ergodicity breaking in the random walk of different biochemical
compounds [21–32] by using single particle tracking [33]. In the case of intracellular processes,
the power-law exponents α describing the second moment ranges from α ≈ 0.1 to α ≈ 0.9
(evaluated both from ensemble and time average) and, in the case of ultra cold atoms, α appears
as a function of lattice depth and assumes values larger than one (α > 1, superdiffusion).

In addition to the anomalous scaling of the second moment, the work of Weiss [34] has
also shown that the diffusive processes of intracellular fluids may present long-range
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corrections as in the fractional Brownian motion, an empirical finding that has not been
explored within the comb model framework. Also, recently, Yamamoto et al [35] have
provided evidence (using molecular dynamics simulation) that the anomalous diffusion of water
molecules on a cell membrane surface arises from both divergent mean trapping time and long-
range correlated noises. Here, we extend the comb model by considering a Langevin-like
equation where the noises are long-range correlated. Our model thus combines two of the main
mechanisms of anomalous diffusion: geometric constraints and long-range correlations,
allowing a more complete description of complex diffusive motions and also the study of the
interplay between these two mechanisms. By carrying out computer simulations, we show that
the correlations in the y-direction affect the diffusive behavior in the x-direction in a non-trivial
fashion and that a quite rich diffusive scenario emerges from these long-range correlations. We
report that diffusive process in the x-direction of this generalized version of the comb model can
be usual, superdiffusive or subdiffusive, depending on both corrections in the x and y directions.
We further show that the long-range correlations affect the probability distribution of the
particle positions in the x-direction: the distribution becomes more leptokurtic when the noise in
the y-direction is persistent whereas, for anti-persistent noise, it becomes less leptokurtic and
approaches the Gaussian distribution as a limiting case.

2. Generalized comb and long-range correlations

We start by writing the generalized diffusion equation describing the motion under the comb
structure [36]:

ρ δ ρ ρ∂
∂ = ∂

∂
+ ∂

∂t
x y t y D

x
x y t D

y
x y t( , ; ) ( ) ( , ; ) ( , ; ), (1)x y

2

2

2

2

where ρ x y t( , ; ) is the joint probability of the particle positions (x and y coordinates) as a
function of time t, Dx and Dy are the diffusive coefficients in the x and y directions. Note the
presence of the Dirac delta δ y( ) multiplying the spatial derivative with respect to x and,
consequently, limiting the diffusion in the x-direction only for y = 0. In order to investigate the
role of long-range correlations in this diffusive process, we propose to numerically solve the
following coupled Langevin-like equations
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where βx and βy are constants related to Dx and Dy, η t( )x and η t( )y are fractional Gaussian noises
[2, 3], both with zero mean ( η〈 〉 =t( ) 0x and η〈 〉 =t( ) 0y ), unitary variances ( η〈 〉 =t( ) 1x

2 and
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Notice that the noises η t( )x and η t( )y are power-law correlated with scaling exponents −h(2 1)x
and −h(2 1)y , where hx and hy are the so-called Hurst exponents. For <h 1 2x y, , the
correlation functions have negative signs and the noises are anti-persistent, meaning that
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positive values are followed by negative values (or vice versa) more frequently than by chance;
while for >h 1 2x y, the correlations are positive, meaning that positive values are followed by
positive values and negative values are followed by negative values more frequently than by
chance. Fully persistent noises occur as a limiting case when =h 1x y, , whereas normal
Brownian (white) noises correspond to the limit of =h 1 2x y, .

When running out the simulations of the Langevin equations, we have considered a narrow
band of thickness ε along the x-axis, inside which the diffusion in the x-direction occurs. This
strip mimics the effect of the Dirac delta δ y( ) (that appears multiplying the noise η t( )x in
equation (2)) and we have verified that the value ε has no influence in the diffusive process, as
long as ε and noises amplitudes βx and βy are of the same order of magnitude. This restriction
ensures that the variable y presents no dynamics inside the strip. For our purposes, we have
fixed ε β β= = = 0.1x y . The fractional Gaussian noises η t( )x and η t( )y were generated by
following the Hosking method [37]. Figure 1 shows examples of simulated trajectories for three
different values of hy and keeping hx = 0.5. By visual inspection, we note that depending on
whether the motion in y is anti-persistent (figure 1(a)) or persistent (figure 1(c)), the diffusive
behavior in the x-direction drastically changes. The anti-persistence in y(t) causes the particle to

Figure 1. Simulation of the comb model via a Langevin equation. Examples of
simulated trajectories from the generalized comb model described by equation (2) with
ε β β= = = 0.1x y . We have kept hx = 0.5 and considered three values of the Hurst
exponent hy: (a) hy = 0.3, (b) hy = 0.5 and (c) hy = 0.7. Note that the walker returns less
often to ≈y 0 when the noise is persistent in the y-direction ( >h 0.5y ), whereas, for an
anti-persistent noise ( <h 0.5y ), the walker returns more often to ≈y 0 when compared
with the usual comb ( = =h h 0.5x y ).
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return more often to the strip where the diffusive motion in the x-direction is allowed;
consequently, x(t) covers a larger interval along the x-axis when compared with the usual comb
( = =h h 0.5x y , figure 1(b)). On the other hand, persistence in y(t) causes the particle to return
less often to the strip and, consequently, x(t) covers a small interval along the x-axis.

Before quantifying the effects of the long-range correlations on the variances of x(t) and y
(t), we have first verified whether the Langevin equations [equation (2)] are actually equivalent
to the generalized diffusion equation [equation (1)] when the noises η t( )x and η t( )y are
uncorrelated ( = =h h 0.5x y ). We thus simulate an ensemble of 105 particle positions
considering dt = 1 and = =h h 0.5x y . By using these data, we evaluate the temporal evolution
of the variances

σ
σ

= −
= −

t x t x t

t y t y t

( ) ( ( ) ( ) ) and

( ) ( ( ) ( ) ) , (4)
x

y

2 2

2 2

where 〈 〉... denotes ensemble average. Figures 2(a) and (b) show the behavior of σ t( )x
2 and σ t( )y

2

versus time for several values of the maximum integration time tmax in the Langevin equations,
ranging from 27 to 214 as indicated in these plots. In both cases, we note a finite-size-like effect
characterized by a crossover time ×t where σ t( )x

2 and σ t( )y
2 change their behaviors. Despite that

and also discarding an initial transient regime ( ≲t 10), we observe that the variance profiles of
σ t( )x

2 and σ t( )y
2 are in good agreement with the power laws predicted by the generalized

diffusion equation of the usual comb [equation (1)], that is, σ ∼ αt t( )x
2 x and σ ∼ αt t( )y

2 y with
α = 0.5x and α = 1y [36, 38, 39]. We have also analyzed the behavior of the crossover time ×t
as a function of the maximum integration time tmax. Figure 2(c) and (d) show that ×t grows
linearly with tmax for σ t( )x

2 and σ t( )y
2 , confirming that the simulated power-law regimes prevail

when tmax tends to infinity.
In order to further strengthen the equivalence between our Langevin equation (2) and the

diffusion equation (1), we have also evaluated the marginal probability functions
∫ ρ=P x t x y t dy( ; ) ( , ; ) and ∫ ρ=P y t x y t dx( ; ) ( , ; ) from the simulated data. Figures 3(a)

and 3(b) show these distributions for several values of t where we note the spreading of these
distributions. For a better comparison with the analytical predictions of equation (1), we have
also calculated the marginal distributions considering the normalized positions
ξ σ= − 〈 〉x t x t t[ ( ) ( ) ] ( )x x and ξ σ= − 〈 〉y t y t t[ ( ) ( ) ] ( )y y . Figures 3(c) and 3(d) reveal a
good collapse of the empirical distributions and also a good agreement with the analytical
distributions (dashed lines) predicted by equation (1), which is a standard Gaussian for ξP ( )y
and can be expressed in terms of the Fox H function for P x t( ; ) [36, 38, 39] or by the following
summation [5, 30]

⎛
⎝⎜

⎞
⎠⎟∑ξ
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ξ
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− +=

∞
( )P

n n
1 ( 1)

! [1 ( 1) 4] 4
. (5)x

n

n
x

n

1 4
0
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Thus, for the case where no correlations are present in the noises η t( )x and η t( )y , the results
shown in figure 3 corroborate with the equivalence between our simulations of the Langevin
equations and the diffusion equation for the comb model.

Convinced of the equivalence in the usual case, we now address the role of the long-range
correlations on the diffusive properties of a random walker described by our Langevin
equation (2). We first investigate how the memory effects in the y-direction modify the
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diffusion in the x and y directions. In order to do so, we have built an ensemble of 105 particle
positions considering dt = 1 and hx = 0.5 for each one of nineteen values of hy homogeneously
distributed between 0.05 and 0.95. For each value of hy, we evaluate the temporal evolution of
the variances σ t( )x

2 and σ t( )y
2 . Figures 4(a) and (b) show the variance profiles in the x- and y-

directions, respectively. In these plots, the dashed lines represent the behavior for the usual
comb, that is, when no correlations are present. In the case of σ t( )x

2 , we note that the more the
noise in y is anti-persistent ( <h 0.5y ), the larger the power-law exponent αx describing the
behavior of σ t( )x

2 is; in contrast, persistent noise in y slows down the diffusion and decreases the
power-law exponent αx. The extreme cases where hy = 0.05 and hy = 0.95 are characterized by
α ≈ 0.95x and α ≈ 0.19x , respectively. Thus, as we first noted in figure 1, anti-persistent noise
in y forces the walker to return more frequently to the strip where it can move in the x-direction
and, consequently, the diffusion is enhanced when compared with the case of the usual comb
(hy = 0.5). On the other hand, persistent noise in y drives the walker away from the strip and,
consequently, the diffusion slows down. In the case of σ t( )y

2 , the behavior is straightforward:
anti-persistent noise in y slows down the diffusion while persistent noise enhances it (see

Figure 2. Equivalence between the variances simulated via the Langevin equations and
the analytical results obtained from the generalized diffusion equation in the usual case.
Temporal dependence of the variances (a) σ t( )x

2 in the x-direction and (b) σ t( )y
2 in the y-

direction for several values of the maximum integration time tmax (as indicated in the
plots). The dashed lines represent the predictions of the generalized diffusion equation,
that is, σ ∼ αt t( )x

2 x with α = 0.5x and σ ∼ αt t( )y
2 y with α = 1y [36, 38, 39]. We note a

finite-size-like effect in both plots. In c( ) and d( ), we show the crossover time ×t , where
the variances σ t( )x

2 and σ t( )y
2 start to change their behaviors, as a function of the

maximum integration time tmax. We observe that ×t grows linearly with tmax in both
cases; therefore, in the limit as tmax approaches infinity, the power-law regimes must
prevail.
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figure 4(b)). In order to quantify the role of long-range correlations in y on σ t( )x
2 and σ t( )y

2 , we
have evaluated the dependence of the power-law exponents αx and αy on hy. In figure 4(c), we
observe a monotonic but nonlinear decay of αx as hy increases, while in figure 4(d), we confirm
the straightforward behavior of αy as function of hy (α = h2y y).

Another interesting question is whether the combinations of long-range correlated noises
in the x- and y-directions affect the diffusive behaviors in a nontrivial way. To answer this
question, we have built an ensemble of 105 particle positions for each possible pair of hx and hy
homogeneously distributed between 0.05 and 0.95 with step size of 0.05. For each combination
of hx and hy, we calculate the profile of the variances σ t( )x

2 and σ t( )y
2 and also the power-law

exponents αx and αy describing the main tendency of these curves (by using the same procedure
as in figure 4). Figure 5(a) shows a contour plot of αx as a function of hx and hy and figure 5(b)
represents the same for αy. For the figure 5(a), we note a quite rich diffusive scenery where,

Figure 3. Equivalence between the marginal distributions P x t( ; ) and P y t( ; ) simulated
via the Langevin equations and the analytical results obtained from the generalized
diffusion equation in the usual case. Marginal distributions (a) P x t( ; ) and (b) P y t( ; )
for several values of t, as indicated by color code. We note the spreading of these
distributions and the normality of P y t( ; ). Marginal distributions of normalized
positions (c) ξP ( )x and (d) ξP ( )y for the same values of t of the previous figures. The
gray lines are the marginal distributions for each value of t and the red circles are
window average values over all distributions (the error bars are 95% confidence
intervals obtained via bootstrapping). The dashed lines are the analytical predictions of
equation (1); specifically, in (c) the dashed line is the distribution of equation (5) and in
(d) it is the standard Gaussian ξ π ξ= −P ( ) (1 2 ) exp ( 2)y y

2 . In addition to the good
(visual) agreement between simulations and analytical expressions, we have found that
the p-values of the Kolmogorov–Smirnov test (testing the equality of the empirical and
analytical distributions) are all larger than 0.05, indicating that the hypothesis of the
analytical distributions describing our data cannot be rejected at a confidence level
of 95%.

7

New J. Phys. 16 (2014) 093050 H V Ribeiro et al



depending on the values of hx and hy, we may have subdiffusion slower (α < 0.5x ) or faster
( α< <0.5 1x ) than the usual comb, usual diffusion (α = 1x ) and even superdiffusion (α > 1x ).
We further observe from this figure that αx cannot be written as a linear combination of hx and
hy (which would be represented by straight lines in this plot) and thus, the correlations in x and y
present a nontrivial interplay in the behavior of αx. On the other hand, the case of figure 5(b) is
rather simple because the correlations in x do not affect the diffusive behavior in the y-direction;
this becomes evident by noting that the level curves of αy are horizontal straight lines.

It is also important to investigate whether the long-range correlations affect the distribution
profiles of the particle positions. In order to do so, we first calculate the marginal distributions

ξP ( )x and ξP ( )y for their different values of hy (0.05, 0.50 and 0.95) and keeping hx = 0.50.

Figure 4. The role of the long-range correlated noise in the y-direction on the variances
σ t( )x

2 and σ t( )y
2 . Profile of (a) σ t( )x

2 and (b) σ t( )y
2 for nineteen values of hy

homogeneously distributed between 0.05 and 0.95. In both cases, the dashes lines
represent the behavior of the usual comb: σ ∼ αt t( )x

2 x with α = 0.5x and σ ∼ αt t( )y
2 y

with α = 1y . Here, we have omitted the finite-size-like effect on the variances for better
visualization of the power-law behavior. For σ t( )x

2 , we observe that the diffusion is
enhanced (when compared with the usual comb) for an anti-persistent noise in y
( <h 0.5y ) and that is slowed down when the noise in y is persistent. In the case of
σ t( )y

2 , anti-persistent noise slows down the diffusion while persistent noise enhances it.
In c( ) and d( ), we show the dependence of αx and αy on hy. The values of αx and αy were
obtained by least squares fitting a linear model to the log-log relationships between the
variances and the time t. The error bars (which are very tiny) are the standard errors of
αx and αy. When adjusting the data, we have selected only the values σ t( )x

2 and σ t( )y
2

within the interval ⩽ ⩽t30 1600 in order to avoid the initial transient regime and the
finite-size-like effect. We note the monotonic but nonlinear decay of αx in function of hy
and the straightforward behavior of αy versus hy described by α = h2y y (dashed line).
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Figures 6(a) and 6(b) show these distributions. We note that the distribution ξP ( )x displays tails
longer than those of the usual comb (dark shaded region) when the noise in the y-direction is
persistent (hy = 0.95), whereas for anti-persistent noise (hy = 0.05), the tails are shorter than
those of the usual comb and close to the Gaussian distribution (light shaded region). The
distributions ξP ( )y of the normalized positions ξy are not affected by long-range correlated
noises in the y-direction. We thus confirm that the long-range correlations in y have influence on
the profiles of ξP ( )x . For a better and quantitative characterization of the role of the correlated
noise η t( )y on the shape of ξP ( )x , we evaluate the coefficient of kurtosis κ ξ ξ= 〈 〉 〈 〉x x x

4 2 2 in
function of hx and hy. For κ > 3x the distribution is leptokurtic (peaked) while for κ < 3x the
distribution is platykurtic (flat); also, κ = 3x for a Gaussian distribution and κ ≈ 4.71x for the
usual comb (distribution of equation 5). Figure 6(c) shows a contour plot of κx as a function of
hx and hy, where we observe that the kurtosis ranges from a little more than 3 (κ = ±3.04 0.04x
for = =h h 0.05x y ) up to almost 13 (κ = ±12.55 0.87x for = =h h 0.95x y ). It is worth noting
that, similar to the variance case [figure 5(a)], the kurtosis κx is not a trivial combination of hx
and hy.

3. Summary and conclusions

We have proposed an extension for the comb model via Langevin equations driven by long-
range correlated noises (fractional Gaussian noises). We initially showed that our Langevin
equations are equivalent to the generalized diffusion equation (describing the usual comb)
through the comparison of numerically obtained variances and marginal distributions with the
analytical results predicted by the diffusion equation. Next, we have presented an extensive
characterization of the diffusive properties of the particle positions in function of the Hurst

Figure 5. The interplay between the long-range correlated noises in the x- and y-
directions on the variances σ t( )x

2 and σ t( )y
2 . Contour plots of (a) αx and (b) αy as a

function of hx and hy. We note the rich diffusive scenery in the x-direction where we
may have subdiffusion slower (α < 0.5x ) or faster ( α< <0.5 1x ) than the usual comb,
usual diffusion (α = 1x ) and even superdiffusion (α > 1x ). We further observe that the
power-law exponent αx cannot be expressed as a linear combination of hx and hy,
suggesting a more complex coupling between the Hurst exponents and diffusion in the
x-direction.
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exponents hx and hy defining the correlated noises. Our results show that the noise in the y-
direction affects the variances and marginal distributions along the x-direction. Specifically,
long-range persistence in y slows down the diffusion in x by reducing the power-law exponent
αx and makes the tails of the marginal distribution ξP ( )x longer as >h 0.5y increases; whereas
long-range anti-persistence in y enhances the diffusion in x by increasing the value of αx and
makes the tails of ξP ( )x shorter as <h 0.5y decreases. We have also investigated the interplay
between the long-range correlations in the x- and y-directions, where we found that both αx and

Figure 6. The effect of the long-range correlated noises on the marginal distributions.
Marginal distributions of normalized positions (a) ξP ( )x and (b) ξP ( )y for there values
of hy (indicated in the plots) and hx = 0.5. In both plots, the light shaded regions
represent a standard Gaussian, while the dark shaded region in (a) is the profile of the
marginal distribution for ξx of the usual comb [equation (5)]. For ξP ( )x , we note that the
distribution tails decay slower than those of usual comb when the noise in the y-
direction is persistent (hy = 0.95); whereas for anti-persistent noise (hy = 0.05), the tails
decay faster and approach the Gaussian distribution. In the case ξP ( )y , the long-range
correlations in y have practically no effect on the profile of these distributions. (c)
Contour plot of the coefficient of kurtosis κ ξ ξ= 〈 〉 〈 〉x x x

4 2 2 for the normalized position
ξx as a function of hx and hy. The value of κx is an average over t within the interval

⩽ ⩽t30 1600. We note that, depending on the values of hx and hy, the distribution
ξP ( )x exhibits different profiles, which can be mesokurtic (κ = 3x , as in the Gaussian

case), leptokurtic (κ > 3x ) or platykurtic (κ < 3x ). We also observe that, similarly to
variance case, κx cannot be expressed in terms of linear combination of hx and hy.
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the kurtosis coefficient κx of ξP ( )x are not a trivial (such as a linear combination) function of hx
and hy, but instead our results suggest a more complex coupling between the Hurst exponents
and the diffusion in the x-direction. In summary, a quite rich diffusive scenery emerges from our
model which may be directly applied for describing (at least in a first approximation) some of
the recent empirical findings related to diffusion in complex systems such as living cells.
Furthermore, our model combines and allows the study/analysis of the interplay between
different mechanisms of anomalous diffusion, geometric constraints and long-range correla-
tions, an important factor that had not been explored within the comb model framework and that
may provide a better understanding of these processes as a combination of different
mechanisms.
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