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Abstract

In spite of its relevance to the origin of complex networks, the interplay between form and function and its role during
network formation remains largely unexplored. While recent studies introduce dynamics by considering rewiring processes
of a pre-existent network, we study network growth and formation by proposing an evolutionary preferential attachment
model, its main feature being that the capacity of a node to attract new links depends on a dynamical variable governed in
turn by the node interactions. As a specific example, we focus on the problem of the emergence of cooperation by
analyzing the formation of a social network with interactions given by the Prisoner’s Dilemma. The resulting networks show
many features of real systems, such as scale-free degree distributions, cooperative behavior and hierarchical clustering.
Interestingly, results such as the cooperators being located mostly on nodes of intermediate degree are very different from
the observations of cooperative behavior on static networks. The evolutionary preferential attachment mechanism points to
an evolutionary origin of scale-free networks and may help understand similar feedback problems in the dynamics of
complex networks by appropriately choosing the game describing the interaction of nodes.
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Introduction

In the last few years, it has been increasingly realized that there

are many situations which are not well described by well-mixed

(mean-field) models, lattices and uniformly distributed spatial

models. This is the case with the majority of the so called complex

systems, that are better characterized by what is generally known

as complex networks [1,2]. In many of these networks, the

distribution of the number of interactions, k, that an individual

shares with the rest of the elements of the system, P(k), is found to

follow a power-law, P(k),k2c, with 2,c,3 in most cases. The

ubiquity in Nature of these so-called scale-free (SF) networks has

led scientists to propose many models aimed at reproducing the SF

degree distribution [1,2]. Most of the existing approaches are

based on growth rules that depend on the instantaneous

topological properties of the network and therefore neglect the

connection of the structural evolution and the particular function

of the network. This is the case with the celebrated ‘‘preferential

attachment rule’’ [3], that posits that new nodes attach to the

existing ones with probability proportional to their degree.

However, accumulated evidence suggests, moreover, that form

follows function [4] and that the formation of the network is also

related to the dynamical states of its components through a

feedback mechanism that shapes its structure.

On the other hand, a paradigmatic case study of the structure

and dynamics of complex systems is that of social networks. In

these systems, it is particularly relevant to understand how

cooperative behavior emerges. The mathematical approach to

model the (cooperative versus defective) interactions is usually

tackled under the general framework of evolutionary game theory

through diverse social dilemmas [5]. In the general case it is the

individual benefit rather than the overall welfare what drives the

system evolution. The emergence of cooperation in natural and

social systems has been the subject of intense research recently [6–

17]. These works are based either on the assumption of an

underlying, given static network (or two static, separate networks

for interaction and imitation [18]) or a coevolution and rewiring

starting from a fully developed network that already includes all

the participating elements. The results show that if the well-mixed

population hypothesis is abandoned, so that individuals only

interact with their neighbors, cooperation is often promoted on

heterogeneous networks, specifically on SF networks. However,

the main questions remain unanswered: Are cooperative behavior

and structural properties of networks related or linked in any way?

If so, how? Moreover, if SF networks are best suited to support

cooperation, then, where did they come from? What are the

mechanisms that shape the structure of the system?

To contribute to answering those questions, in this paper we

analyze the growth and formation of complex networks by

coupling the network formation rules to the dynamical states of the

elements of the system. As we have already mentioned, many

mechanisms have been proposed for constructing complex scale-

free networks similar to those observed in natural, social and

technological systems from purely topological arguments (for
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instance, using a preferential attachment rule or any other rule

available in the literature [1,2]). As those works do not include

information on the specific function or origin of the network, it is

very difficult to discuss the origin of the observed networks on the

basis of those models, hence motivating the question we are going

to address. The fact that the existing approaches consider

separately the two directions of the feedback loop between the

function and form of a complex system calls for a new mechanism

where the network grows coupled to the dynamical features of its

components. Our aim here is to introduce for the first time an

attempt in this direction, by linking the growth of the network to

the dynamics taking place among its nodes.

Thus, our model combines two ideas in a novel manner:

preferential attachment and evolutionary game dynamics. Indeed,

with the problem of the emergence of cooperation as a specific

application in mind, we consider that the nodes of the network are

individuals involved in a social dilemma and that newcomers are

preferentially linked to nodes with high fitness, the latter being

proportional to the payoffs obtained in the game. In this way, the

fitness of an element is not imposed as an external constraint

[19,20], but rather it is the result of the dynamical evolution of the

system. At the same time, the network is not exogenously imposed

as a starting point but instead it grows from a small seed and

acquires its structure during its formation process. Finally, we

stress that this is not yet another preferential attachment model in

so far as the quantity that favors linking of new nodes has no direct

relation with the instantaneous topology of the network. In fact, as

we will see, the main result of this interplay is the formation of

homogeneous and heterogeneous networks that share a number of

topological features with real world networks such as a high

clustering and degree-degree correlations. Remarkably, the set of

nodes sustaining the observed aggregate behavior is very different

from that arising in a complex but otherwise static network. As a

particular but most relevant conclusion, we find that the

mechanism we propose not only explains why heterogeneous

networks are tailored to sustain cooperation, but also provides an

evolutionary mechanism for their origin.

Evolutionary Preferential Attachment model

Our model naturally incorporates an intrinsic feedback between

dynamics and topology. The growth of the network starts at time

t = 0 with a core of m0 fully connected nodes. New elements are

incorporated to the network and attached to m existing nodes with

a probability that depends on the dynamics of each node. In

particular, we consider that the dynamics is dictated by the

Prisoner’s Dilemma (PD) game. In this two-players game, every

node initially adopts with the same probability [21] one of the two

available strategies, cooperation C or defection D. At equally

spaced time intervals (denoted by tD) each node i of the network

plays with its ki(t) neighbors and the obtained payoffs are

considered to be the measure of its evolutionary fitness, fi(t). There

are three possible situations for each link in the network: (i) if two

cooperators meet both receive R, when (ii) two defectors play both

receive P, while (iii) if a cooperator and a defector compite the

former receives S and the latter obtains T. The four payoffs are

ordered as T = b.R = 1.P = S = 0. After playing, every node i

compares its evolutionary fitness (payoff) with that corresponding

to a randomly chosen neighbor j. If fj(t).fi(t) node i adopts the

strategy of player j with probability [22]

Pi~
fj tð Þ{fi tð Þ

b:max ki tð Þ,kj tð Þ
� � : ð1Þ

The growth of the network proceeds by adding a new node with

m links to the preexisting ones at equally spaced time intervals

(denoted by tT). The probability that any node i in the network

receives one of the m new links is

Pi tð Þ~ 1{ezefi tð Þ
PN tð Þ

j~1 1{ezefj tð Þ
� � , ð2Þ

where N(t) is the size of the network at time t. The parameter e M
[0,1) thus controls the weight of the fi(t)’s during the growth of the

network. When e.0, nodes with fi(t)?0 are preferentially chosen.

The growth of the network as defined above is thus linked to an

evolutionary dynamics and controlled by the parameter e and the

two associated time scales (tT and tD). When e.0, referred to as

the weak selection limit [14], the network growth is independent of

the evolutionary dynamics as all nodes are basically equiprobable.

Alternatively, in the strong selection limit, eR1, the fittest players

(highest payoffs) are much more likely to attract the newcomers.

Therefore, Eq. (2) can be viewed as an ‘‘evolutionary preferential

attachment’’ mechanism. We have carried out numerical simulations

of the model exploring the (e, b)-space. In what follows, we focus

on the results obtained when tD/tT.1, namely, the network

growth is faster than the evolutionary dynamics [23]. Taking

tT = 1 as the reference time, networks are generated by adding

nodes every time step, while they play at discrete times given by

tD. As tD.tT, the linking procedure is done with the payoffs

obtained the last time the nodes played [24]. All results for each

value of b and e reported have been averaged over at least 103

realizations and the number of links of a newcomer is taken to be

m = 2, whereas m0 = 3. The reader can find a code used to generate

the networks (Text S1) as well as information about how to use it

(Text S2) in the Supporting Information material. Three of the

generated networks are depicted in Fig. 1 for three different values

of the temptation to defect. The heterogeneous character of these

networks is evident from the figure.

Results

The dependence of the degree distribution on e is shown in

Fig. 2 for b = 1.5. As can be seen, the weak selection limit produces

homogeneous networks characterized by a tail that decays

exponentially fast with k. Alternatively, when e is large, scale-free

networks arise. Although this might a priori be expected from the

definition of the growth rules, this needs not be the case: Indeed, it

must be taken into account that in a one-shot PD game defection is

the best strategy regardless of the opponent strategy. However, if

the network dynamics evolves into a state in which all players (or a

large part of the network) are defectors, they will often play against

themselves and their payoffs will be reduced. The system’s

dynamics will then end up in a state close to an all-D configuration

rendering fi(t) = 0 ;i M [1, N(t)] in Eq. (2). From this point on, new

nodes will attach randomly to other existing nodes [see Eq. (2)]

and therefore no hubs can come out. This turns out not to be the

case, which indicates that for having some degree of heterogeneity,

a nonzero level of cooperation is needed. Conversely, the

heterogeneous character of the system provides a feedback

mechanism for the survival of cooperators that would not

outcompete defectors otherwise.

The degree of heterogeneity of the networks in the strong

selection limit depends slightly on b. The results indicate that when

eR1, networks with the highest degree of heterogeneity,

corresponding to the largest values of b, are not those with

maximal cooperation levels. In Fig. 3, we have represented the

average level of cooperation, Æcæ, as a function of the two model

Complex Cooperative Networks
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parameters e and b. The figure shows that as e grows for a fixed

value of b.1, the level of cooperation increases. In particular, in

the strong selection limit Æcæ attains its maximum value. This is a

somewhat counterintuitive result as in the limit eR1, new nodes

are preferentially linked to those with the highest payoffs, which

for the PD game, should correspond to defectors. However, the

population achieves the highest value of Æcæ. On the other hand,

higher levels of cooperation are achieved in heterogeneous rather

than in homogeneous topologies, which is consistent with previous

findings [6–8].

The interplay between the local structure of the network and the

hierarchical organization of cooperation is highly nontrivial.

Contrary to what has been reported for static scale-free networks

[6,8], Fig. 4 shows that as the temptation to defect increases, the

likelihood that cooperators occupy the hubs decreases. Indeed,

during network growth, cooperators are localized neither at the

hubs nor at the lowly connected nodes, but in intermediate degree

classes. It is important to realize that this is a new effect that

originates in the competition between network growth and the

evolutionary dynamics. In particular, it highlights the differences

between the microscopic organization in the steady state for the

PD game in static networks with that found when the network is

evolving. We will come back to this question in the Discussion

section below.

To confirm the robustness of the networks generated by

evolutionary preferential attachment, let us consider the realistic

situation that after incorporating a (possibly large) number of

participants, network growth stops when a given size N is reached,

and that afterward only evolutionary dynamics takes place. In

Fig. 5, we compare the average level of cooperation Æcæ when the

Figure 2. Degree distributions obtained for several values of e
for b = 1.5. A transition from homogeneous to SF networks is evident.
The networks are made up of 103 nodes with Ækæ = 4 and tD = 10tT.
doi:10.1371/journal.pone.0002449.g002

Figure 3. In the bottom panel, we have depicted the (color-
coded) average level of cooperation, Æcæ, as a function of the
temptation to defect b and the selection pressure e. The
networks are those of Fig. 2.
doi:10.1371/journal.pone.0002449.g003

Figure 4. Probability that a node with connectivity k plays as a
cooperator for different values of b in the strong selection limit
(e = 0.99) at the end of the growth of a network with N = 1000
nodes.
doi:10.1371/journal.pone.0002449.g004

Figure 1. Examples of the networks generated using the evolutionary preferential attachment algorithm. The networks shown
correspond to values of b equal to 1 (a), 2 (b) and 3 (c) in the strong selection limit. Red nodes stand for cooperators and blue ones represent
defectors.
doi:10.1371/journal.pone.0002449.g001
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network ceased to grow with the same quantity, but computed

after allowing the evolutionary dynamics to evolve many more

time steps Æcæ‘ (without attaching new nodes). The green area

indicates the region of the parameter b where the level of

cooperation increases with respect to that at the moment the

network stops growing. On the contrary, the red zone shows that

for b.2.5, cooperative behavior does not survive and the system

dynamics evolves to an all-D state. The increment of Æcæ when

going from the steady state reached during network growth to the

stationary regime attained once the underlying structure is static,

has its roots on the fixation of cooperation in high degree classes,

thus recovering the picture described in [8]. On the other hand,

when b.2.5, the few cooperators present in the growing network

are not able to invade the hubs and finally, after a few more

generations, cooperation is extinguished yielding Æcæ‘ = 0. This

result highlights the phenomenological difference between playing

simultaneously to the growth of the underlying network and

playing on fixed, static networks.

Another striking feature emerging from the interaction between

network growth and the evolutionary dynamics is captured in

Fig. 6, where the clustering coefficient, CC, has been represented

as a function of the nodes degrees in the strong selection limit for

several values of b. This coefficient measures the ratio of the

number of triangles existing on the network over the total possible

number of triangles, which relates to the possibility that a node

connecting to a neighbor of another is also connected to this last

one. Specifically, we will look at CC(k), i.e., the way this coefficient

depends on the degree of the node. Interestingly enough, the

dependence of CC(k) is consistent with a hierarchical organization

expressed by the power law CC(k),k2b, a statistical feature found

to describe many real-world networks [2]. The behavior of CC(k) in

Fig. 6 can be understood by recalling that in scale-free networks,

cooperators are not extinguished even for large values of b if they

organize into clusters of cooperators that provide the group with a

stable source of benefits [8].

Discussion

Having presented our main simulation results, we now discuss

them in detail and provide an interpretation of our observations

that allows an understanding of the model behavior. To begin

with, let us consider the emergence of cooperation in the resulting

network in the strong selection limit (eR1). The organization of

the cooperator nodes explains why cooperation survives and

constitutes a unique positive feedback mechanism for the survival

of cooperation. For simplicity, let us focus on how cycles of length

3 (i.e., those contributing to CC) arise and grow. When a new node

j enters the network, it will preferentially attach to m (recall we are

using m = 2) nodes with the highest payoff. Two situations are

likely. On the one hand, it may link to a defector hub with a high

payoff. As the newcomer receives less payoff than the hub, it will

sooner or later imitate its strategy and therefore will get trapped

playing as a defector with fj = 0. Subsequently, node j will not

attract any links during network growth. On the other hand, if the

new node attaches to a cooperator cluster, the other source of high

payoff, and forms a triad with the cluster elements, two outcomes

are possible depending on its initial strategy. If the newly attached

node plays as a defector, the triad may eventually be invaded by

defectors and may end up in the long run in a state where the

nodes have no capacity to receive new links. Conversely, if it plays

as a cooperator, the group will be reinforced, both in its robustness

against defector invasion and in its overall fitness to attract new

links, i.e., playing as a cooperator while taking part in a successful

(high fitness) cooperator cluster reinforces its future success, while

playing as a defector undermines its future fitness and leads to

dynamically (and topologically) frozen (fi = 0) structures, so that

defection cannot take long-term advantage from cooperator

clusters. Therefore, cooperator clusters that emerge from cooper-

ator triads to which new cooperators are attached can then

continue to grow if more cooperators are attracted or even if

defectors attach to the nodes whose connectivity verifies k.mb.

Moreover, the stability of cooperator clusters and its global fitness

grow with their size, specially for their members with higher

degree, and naturally favors the formation of triads among its

components. Note, additionally, that it follows from the above

mechanism that a node of degree k is a vertex of (k21) triangles

and then CC kð Þ~ k{1ð Þ
k 1{1ð Þ=2

~2=k, the sort of functional form for

the clustering coefficient reported in Fig. 6.

Another interesting phenomenon arising from our model is the

fact, previously unobserved, that cooperators occupy the nodes

with intermediate degree and the hubs are defectors, in contrast

with the simulations on static networks [8,9]. To address this issue

we have developed a simple analytical argument. Let kc
i be the

Figure 5. Degree of cooperation when the last node of the
network is incorporated, Æcæ, and the average fraction of
cooperators observed when the system is time-evolved Æcæ‘

after the network growth ends. Both magnitudes are shown as a
function of b for tD = 10tT. See the text for further details.
doi:10.1371/journal.pone.0002449.g005

Figure 6. Dependence of the clustering coefficient CC(k),k2b

with the nodes’ degrees for different values of b in the strong
selection limit. The straight line is a guide to the eye and corresponds
to k21.
doi:10.1371/journal.pone.0002449.g006
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number of cooperator neighbors of a given node i. Its fitness is

f d
i ~bkc

i , if node i is a defector, and f c
i ~kc

i , if it is a cooperator.

The value of kc
i is expected to change due to both network growth

(node accretion flow, at a pace of one new node each time unit tT)

and imitation processes that take place at a pace tD. We will focus

on the case in which tD is much larger than tT. The expected

increase of fitness is

Dfi~DflowfizDevol fi, ð3Þ

where Dflow means the variation of fitness in node i due to the

newcomers flow, and Devol stands for the change in fitness due to

changes of neighbors’ strategies. The above expression would lead

to an expected increase in kc
i given by

kc
i tztDð Þ{kc

i tð Þ~Dkc
i ~Dflowkc

i zDevolk
c
i : ð4Þ

On the other hand, the expected increase of degree in the

interval (t,t+tD) only has the contribution from newcomers flow

and takes the form (recall that new nodes are generated with the

same probability to be cooperators or defectors)

Dki~Dflowki~2Dflowkc
i : ð5Þ

If the fitness (hence connectivity) of node i is high enough as to

attract a significant part of the newcomers flow, the first term in

Eq. (3) dominates at short time scales, and then the hub degree ki

increases exponentially. Connectivity patterns are then dominated

by the growth by preferential attachment, ensuring as in the

Barabási-Albert [3] model that the network will have a SF degree

distribution. Moreover, the rate of increase

Dflowkc
i ~

1

2
mtD

fiP
j fj

ð6Þ

is larger for a defector hub (by a factor b) because of its larger

fitness, and then one should expect hubs to be mostly defectors, as

confirmed by the results shown in Fig. 4. This small set of most

connected defector nodes attracts most of the newcomers flow.

On the contrary, for nodes of intermediate degree, say of

connectivity m%ki%kmax, the term Dflowfi in Eq. (3) can be

neglected, i.e., the arrival of new nodes is a rare event, so that for a

large time scale, k̇i = 0. Note that if k̇i(t) = 0 for all t in an interval

t0#t#t0+T, the size of the neighborhood is constant during the

whole interval T and thus the evolutionary dynamics of strategies

through imitiation is the exclusive responsible for the strategic field

configuration in the neighborhood of node i. During these stasis

periods the probability distribution of strategies approaches that of

a static network in the neighborhood of node i. It is clear that this

scenario can be occasionally subject to sudden (avalanche-type of)

perturbations following ‘‘punctuated equilibrium’’ patterns in the

rare ocasions in which a new node arrive. Recalling that the

probability for this node i of intermediate degree to be a

cooperator is large in the static regime [8] we then arrive to the

conclusion that for these nodes the density of cooperators must

reach a maximum, in agreement with Fig. 4. Furthermore, our

simulations show that these features of the shape of the curve are

indeed preserved as time goes by, giving further support to the

above argument based on time scale separation and confirming

that our understanding of the mechamisms at work in the model is

correct.

Conclusions

In summary, we have presented a model in which the rules

governing the formation of the network are linked to the dynamics

of its components. The model provides an evolutionary explana-

tion for the origin of the two most common types of networks

found in natural systems: When the selection pressure is weak,

homogeneous networks arise, whereas strong selection pressure

gives rise to scale-free networks. A remarkable fact is that the

proposed evolution rule gives rise to complex networks that share

many topological features with those measured in real systems,

such as the power law dependence of the clustering coefficient with

the degree of the nodes. Interestingly, our results make it clear that

the microscopic dynamical organization of strategists in evolu-

tionarily grown networks is very different from the case in which

the population evolves on static networks. Furthermore, as we

have seen, the generated networks are robust in the sense that after

the growth process stops, the dynamical behavior keeps its

character.

Thinking of the specific application we are discussing here, the

emergence of cooperation, it is particularly remarkable the special

role of individuals with an intermediate number of connections. As

we have reasoned above, as time proceeds and the network grows,

cooperation increases by invading those intermediate nodes, and

on the other hand the range of intermediate degrees grows as well,

leading to further increase of cooperation. On the contrary, hubs

or well connected nodes, which on the static scenario are the

supporters of cooperation, in the evolutionary process are

defectors that thrive and accumulate new nodes by being so, only

to fall eventually in the class of intermediate degree nodes and

become cooperators. The analogy with the effect of a well-doing

middle class in a western-like society is tempting but would of

course be too far-fetched to push it beyond a general resemblance.

Nevertheless, one particular situation in which models like this,

based on the evolutionary preferential attachment mechanism,

may prove very relevant is in the formation of social networks of

entrepreneurs or professionals, such as those studied in Silicon

Valley [25,26]. The way these networks grow upon arrival of new

individuals and subsequent cooperative interactions made them a

natural scenario to apply these ideas in detail. Finally, another

important conclusion is the resilience of the cooperative behavior

arising in these networks, in so far as it does not decrease for a

wide range of parameters upon stopping the growth process, and,

in most cases it even exhibits a large increase of the cooperation

level.

On more general theoretical grounds, figuring out why scale-

free networks are so ubiquitous in Nature is one of the most

challenging aspects of modern network theory. At variance with

previous hypotheses, the evolutionary preferential attachment

mechanism of Eq. (2) naturally incorporates a competition

between structural and dynamical patterns and hence it suffices

to explain why SF networks are optimized to show both structural

and dynamical robustness. The former is given by the scale-free

nature of the resulting topology, while the latter is based on the

high levels of cooperation attained in the grown networks. Note

that this optimization acts at a local level since individuals search

their own benefit rather than following a global optimization

scheme [27], to be compared with the fact that the resulting

network has a very good cooperation level as a whole. Finally, we

let for future research the question of whether Eq. (2) can be

applied to other sort of dynamics by appropriately defining the

dynamical variable fi(t) and adjusting the growth rules. It is

however reasonable to assume that the functional form in Eq. (2)

may render general for generating optimized SF networks.

Complex Cooperative Networks
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TXT)
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5. Szabó G, Fáth G (2007) Evolutionary Games on Graphs. Phys Rep 446: 97–216.

6. Santos FC, Pacheco JM (2005) Scale-Free Networks Provide a Unifying

Framework for the Emergence of Cooperation. Phys Rev Lett 95: 098104.
7. Lieberman E, Hauert C, Nowak MA (2005) Evolutionary Dynamics on Graphs.

Nature 433: 312–316.
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