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Abstract

The ability of microbial species to consume compounds found in the environment to generate commercially-valuable
products has long been exploited by humanity. The untapped, staggering diversity of microbial organisms offers a wealth of
potential resources for tackling medical, environmental, and energy challenges. Understanding microbial metabolism will
be crucial to many of these potential applications. Thermodynamically-feasible metabolic reconstructions can be used,
under some conditions, to predict the growth rate of certain microbes using constraint-based methods. While these
reconstructions are powerful, they are still cumbersome to build and, because of the complexity of metabolic networks, it is
hard for researchers to gain from these reconstructions an understanding of why a certain nutrient yields a given growth
rate for a given microbe. Here, we present a simple model of biomass production that accurately reproduces the predictions
of thermodynamically-feasible metabolic reconstructions. Our model makes use of only: i) a nutrient’s structure and
function, ii) the presence of a small number of enzymes in the organism, and iii) the carbon flow in pathways that catabolize
nutrients. When applied to test organisms, our model allows us to predict whether a nutrient can be a carbon source with
an accuracy of about 90% with respect to in silico experiments. In addition, our model provides excellent predictions of
whether a medium will produce more or less growth than another (pv10{6) and good predictions of the actual value of
the in silico biomass production.
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Introduction

Predicting microbial metabolism under a broad range of

conditions would enable us to leverage microbes for applications

in critical areas such as energy production [1], pollution

amelioration [2,3], bioengineering [4], physiology or medicine

[5,6] to name a few. While systematic in vivo growth experiments

could in principle fill the gaps in our current knowledge, those

experiments are time consuming and contingent on the ability to

grow the microbial species of interest in the laboratory [7]. As a

consequence, only a small number of microbes have been studied

using these techniques. For example, Biolog (http://www.biolog.

com) provides Phenotype Microarrays that have been used on

species such as Escherichia coli [8] and Bacillus subtilis [9] but to date

there are only 200 publications listed in Biolog.

To circumvent experimental limitations, a number of mathe-

matical models have been developed aiming to predict microbial

growth rates [10–14]. However, these models are only valid for a

limited number of specific nutrients and are not easily generaliz-

able because of the need to determine many parameters

empirically. Indeed, developing such a theory seems an insur-

mountable challenge given the combinatorial number of possible

growth media and the large number of unknown parameters such

as reaction constants and enzyme affinities that control metabolic

reactions [15–17]. For instance, the in silico reconstruction of E. coli

contains more than 2,000 reactions [8]; taking into account that

each reaction has at least two and up to tens of kinetic parameters

[18], a detailed kinetic model would have on the order of 10,000

parameters, unless some approximations valid under certain

conditions are made to reduce this number [19].

An alternative approach that is gaining in popularity is the

development of thermodynamically-feasible metabolic reconstruc-

tions that can be used to predict the growth of individual

organisms using constraint-based methods [8,9,20–27]. Research-

ers fine-tune these reconstructions to match the conditions of

specific growth rate experiments, such as nutrient availability and

ATP maintenance. These reconstructions, built by literature

mining, can, under certain conditions, accurately predict the

impact of individual nutrients on growth as sources of carbon,

nitrogen, phosphorus and sulfur, thus allowing researchers to

evaluate the demands of biomass production and to investigate

how individual nutrients can meet that demand. While building

metabolic reconstructions for new organisms is quite challenging,

nowadays the process is becoming more and more automated
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[28]. Nonetheless, building a reconstruction still requires manual

and/or experimental tuning, which hinders the generalization of

these models. An additional caveat of these metabolic reconstruc-

tions is that the complexity of metabolic networks prevents

researchers from obtaining an understanding of why a certain

nutrient yields a given growth rate for a given microbe.

In order to formalize the intuition used to build and fine-tune

the constraints used to predict growth rates using metabolic

reconstructions, we present here a systems-level phenomenological

theory of microbial metabolism, that is, a theory that yields a

mathematical relationship between the maximal biomass produc-

tion of a microbe and the set of available nutrients acting as

carbon sources, without taking into account any microscopic

details of the processes occurring inside the cell. The biomass

production predictions of our model depend exclusively on the

characteristics of the available carbon sources and the set of

metabolic pathways that can catabolize them. Our model is able to

match the predictions of flux balance analysis with no significant

computational effort and providing insight into the determinants

of catabolic efficiency.

Background
Our phenomenological model expresses the impact that

different carbon sources (or nutrients) have on a microbe’s ability

to grow using only information on the chemical structure of these

carbon sources and on the ability of a microbe to catabolize these

nutrients. Our model is built to reproduce the predictions of flux

balance analysis calculations (FBA) on metabolic reconstructions,

thus it will suffer from the same limitations. Indeed, while FBA is a

powerful tool to investigate microbial metabolism and microbial

growth in particular, it has a number of limitations when

estimating growth rates and the effect of media and environmental

conditions on growth.

It is well-known that microbes need a minimal medium and a

carbon source in order to grow. Minimal media have been

described for a number of species and contain essential chemical

species without which the species would not be able to grow

[20,29]. The growth rate of a microbe, however, depends on many

other factors including the uptake rate of nutrients, temperature,

regulation, the availability of oxygen, etc.

FBA is a linear optimization method that predicts the maximal

conversion of a set of carbon sources into biomass with a fixed

minimal medium. In order for FBA conversion rates to reproduce

empirical growth rates, one needs to consider an additional ATP

maintenance flux which is obtained by fitting FBA results to

empirical growth rates obtained for a certain temperature,

minimal medium, and carbon source uptake. While ATP

maintenance rates obtained for a specific minimal medium have

been shown to give accurate predictions of growth rates in

different minimal media for some organisms [8], in principle one

cannot assume that they are valid for predicting growth rates for

arbitrary minimal media.

Additionally, because metabolic reconstructions do not consider

regulatory constraints, FBA will predict that a microbe is capable

of uptaking two different sugars simultaneously, while it is well-

known that if there is more than one sugar carbon source at high

enough concentrations, the organism will exhaust the preferred

one before consuming the others [30]. A microbe will, however,

consume multiple sources of carbon other than sugars simulta-

neously and as a consequence grow faster [31]. It has been shown

that steric constraints can already reproduce diauxic growth in

some organisms in the presence of multiple sugars [32], however,

there is no general framework that is able to deal with this issue

when using FBA.

To develop a phenomenological model that is able to reproduce

maximal biomass conversion rates per carbon source under

aerobic conditions, we investigate the maximum amount of

biomass that can be produced by an organism in the presence of

a minimal medium, oxygen and one or more carbon sources

including at most one sugar. To this end, we run FBA on

metabolic reconstructions in which we remove ATP maintenance

[27] (see Methods for specific details). We concentrate on a

training set of four species for which there are high-quality

metabolic reconstructions available, and which cover a wide range

of microbial phylogeny: a gram-negative bacterium (E. coli [8]), a

gram-positive bacterium (B.subtilis [9]), an eukaryote (Saccharomyces

cerevisiae [21]), and an archaeon (Methanosarcina barkeri [24]). We

validate our model on a test set of three species for which we also

have high-quality metabolic reconstructions—Helicobacter pylori, a

gram-negative bacterium [20], Staphylococcus aureus, a gram-positive

bacterium [22], and Mycobacterium tuberculosis, an acid-fast gram-

positive bacterium [23].

The rationale for choosing a small number of species for model

building and validation is that lower quality reconstructions are

likely to have significant gaps that could incorrectly bias the

determination of the model. Additionally, the aggregate set of

nutrients available for these reconstructions is of 352 nutrients,

which cover all nutrient types and 90 out of 97 pathways available

in KEGG [33–35], thus ensuring that our model is comprehen-

sive.

We believe that the development of a systems-level model of

microbial metabolism is not only complementary to current

approaches but offers some advantages with respect to them.

Specifically, while FBA run on metabolic reconstructions already

has the capability of predicting maximum biomass yield, our

model has the advantage that since it does not consider

microscopic details of the metabolism of a species it is directly

applicable to any other organism growing under the conditions of

our analysis. In fact, we show that solving over a thousand linear

equations under constraints can be well approximated by a simpler

model whose principles are easier to understand. As such, our

model offers the possibility of uncovering universal features of the

metabolism of organisms that other computational approaches are

not capable of. The mathematical model we develop is thus a

valuable tool from both fundamental and applied perspectives,

since it can help understand the metabolism of organisms for

Author Summary

The ability of microbial species to consume compounds
found in the environment to generate commercially-
valuable products has long been exploited by humanity.
The vast untapped diversity of microbial species offers a
wealth of potential resources. However, little is known
about most microbial species. While the metabolic
network of an organism can be studied to find its
nutritional requirements, we lack a reliable metabolic
reconstruction for most species. We use in silico organisms
to systematically explore whether an arbitrary nutrient can
stimulate growth as a single source of carbon, and how
effectively it can be used by the organism. We find that we
can predict whether a nutrient is a source of carbon and
the biomass yield of that nutrient with a simple model that
transcends the diversity of species and their environments.
Our model for catabolic potential can therefore be used as
a baseline model for any microbe for which we lack a
metabolic reconstruction.

Model for the Catabolic Potential of a Nutrient
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which a metabolic reconstruction is not available, or guide the

process of validating metabolic reconstructions.

Results

In order to develop a mathematical model that relates nutrient

(carbon source) uptake in complex media to biomass production,

we need to address three different questions (see Fig. 1). The first

question we need to answer is whether a nutrient can be a source

of carbon or not. This is to say, first we need to develop a

mathematical model that determines whether a nutrient can

produce growth or not based on the information available for that

nutrient and organism. Note that because we are interested in a

binary output (growth/no growth), our model will depend

exclusively on the composition of the nutrient and the pathways

that can catabolize this nutrient.

Then, we need to assess what is the maximum amount of

biomass a nutrient can produce when acting as the sole source of

carbon. Our specific aim will be to find a mathematical

relationship between nutrient composition (in our case, carbon

content) and the biomass produced per unit of nutrient uptaken.

In third place, we need to assess how maximal biomass

production is affected when several nutrients are present in a

medium. That is to say, we need to determine the relationship

between biomass produced and the characteristics of the nutrients

available in the medium.

Finally, to prompt and aid experimental studies, we use our model

to predict which nutrients can be a source of carbon for four species

lacking a metabolic reconstruction, and predict the biomass

production of these species in complex media. We show that the

carbons available in the 20 natural amino acids in a medium provide

the best boost to biomass production regardless of the species.

Catabolic potential: Can a given nutrient be a source of
carbon for a specific microbe?

The first step is to build a model that predicts whether an

individual nutrient i can be used as a source of carbon by species s

(see Fig. 1). If it can, we say that i belongs to the group of nutrients

Gs that contribute to growth in s; otherwise we say that i belongs

to the group of nutrients NGs that do not contribute to growth in

species s. We use flux balance analysis on the species in the

training set to empirically determine which nutrients belong to Gs

and which ones to NGs (see Materials and Methods). We then use

these data to build the model. In this section we describe the model

(which we summarize in Fig. 2) and validate it with the species in

the test set.

Uptake. To establish whether a given nutrient is a source of

carbon for a given organism, we first need to determine whether

the nutrient can be transported into the cell from the extracellular

medium (Fig. 2A). This question can be currently answered using

bioinformatics tools. Recent studies have shed light on the function

and orthology of families of microbial transporters for several

nutrient classes [36–39]. Therefore, a search within a genome for

orthologs of transporters provides a plausible answer as to whether

a given nutrient is actively transported by a particular species.

The number of nutrients that are actively transported by a

species varies greatly with nutrient class (Fig. 3B and Methods for a

detailed explanation of nutrient classes). For example, M. barkeri

does not uptake nutrients that we classify as sugars, sugar

derivatives, cell boundary, fatty acids, purines, or pyrimidines.

However, experiments with M. barkeri may have deliberately been

focused on small organic compounds, so one may question the

range of nutrients that M. barkeri is truly capable of uptaking. Note

that we will have to ask this question for every new in silico

organism, an infeasible task given the large number of experiments

that one would need to perform.

Fatty acids are only actively transported by two of the species we

analyze, but the absence of transporters in the other species does

not mean that they cannot allow the diffusion of fatty acids

through the cell membrane [40]. In the following, we assume that

all species can uptake fatty acids in this manner.

Nutrient classes. Next, we investigate whether entire classes

of nutrients (defined by chemical structure and cellular function)

can be labeled G or NG on the basis of the fraction of G and NG

Figure 1. Schematic representation of the development of a model for maximum biomass production in complex media of
microbial organisms. We aim at developing a phenomenological model to predict the maximum biomass production Bm of species s when
growing in a medium containing a set of nutrients {i} acting as a carbon source under aerobic conditions. That is, we want to express Bm as a function
f ({i}, s) that only takes into account data related to: i) the set of nutrients {i} available, namely, nutrient type, the set of pathways {p(i)} that can
catabolize each nutrient, and the carbon content Ci of each nutrient; and ii) the species s, specifically the presence or not of certain enzymes in a
species that allow to catabolize specific types of nutrients (enzymes EC: 1.1.1.35, EC: 2.3.1.16, and EC 3.5.2.17 - see text). In order to achieve our goal,
there are three different questions we need to answer: i) Does nutrient i produce growth or not in species s when acting as the sole source of carbon?
We find that whether nutrient i produces growth (G) or not (NG) is a function of the nutrient type (see text) and its pathway membership; (ii) If a
nutrient produces growth, what is the maximal biomass Bs

i it can produce in species s when acting as the sole source of carbon? We find that Bs
i is

proportional to Ci, the number of carbons in nutrient i, and that the proportionality constant ys depends on the species s. iii) What is the maximal
biomass production Bm(m) when growing on a complex medium m? We find that Bm(m) can be well approximated by adding up the individual
contributions Bs

i of nutrients i present in medium m.
doi:10.1371/journal.pcbi.1002762.g001

Model for the Catabolic Potential of a Nutrient
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observations found for the training set of organisms. If this is the

case, we would then be able to predict if a single nutrient is G or

NG just from knowing to which class it belongs (Fig. 2B).

Based on the predicted biological function of the nutrients, we

identify two classes whose nutrients are consistently found not to be

sources of carbon: cell boundary nutrients and cofactors. Nutrients

in the cell boundary class form the cell wall or the cell membrane

and are composed of distinct metabolites that could, in principle,

serve as carbon sources on their own. For example, lipid A

contains several fatty acid chains that can be catabolized in E. coli.

However, as in this particular example, these complex nutrients do

not have enzymes available to decompose them, and they are

instead used directly in the formation of the cell boundary.

Cofactors have several metabolic functions (they serve as

precursors to several biomass components, facilitate or act as

carrier molecules in many reactions, act as transporters of

important inorganic elements such as iron), but nearly none of

them is catabolized by the species we study. Functional classes

highlight that if a compound has a function in the cell other than

being a source of carbon, then there will be selective pressure

against the occurrence of enzymes that breakdown these nutrients.

When considering the chemical structure of nutrients, we find

four nutrient classes whose components are consistent in whether

they were sources of carbon or not: inorganic compounds,

pyrimidines, sugars, and sugar derivatives. We label inorganic

compounds and pyrimidines as NG since none of these nutrients

acts as a source of organic carbon on its own for any of the species

in the training set (Table S6b in Text S1). We label all sugars and

Figure 2. Determining whether a nutrient can or cannot be catabolized. A, To establish whether a given nutrient is a source of carbon for a
given organism, we first need to determine whether the nutrient can be transported into the cell from the extracellular medium. B, For some
nutrients, we can predict if a it does or does not contribute to growth just from knowing to which class it belongs. Complex nutrients are broken
down into simple nutrients. See the main text for the description of the enzymes that catabolize fatty acids and purines. C, Any nutrient that is not
classified into the nutrient classes in B is classified as G or NG using the logistic model described in the text and Methods.
doi:10.1371/journal.pcbi.1002762.g002

Model for the Catabolic Potential of a Nutrient
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sugar derivatives as G, a classification that is accurate 89% of the

times. This level of accuracy is expected since these are typically

the major sources of carbon for many species (Tables S6d & e in

Text S1). There are 13=118 observations where sugars or sugar

derivatives are NG, despite the organisms having transporters

available for their uptake. This means that the organisms have no

enzymes that can catabolize these sugars and their derivatives, and

it is likely that they are uptaken because of the lack of specificity of

some sugar transporters [41,42]. One notable exception is inositol

which can be involved in signaling processes [43] or in

pathogenesis [44]; we surmise that, for this reason, some species

may select against the presence of enzymes that allow inositol to be

catabolized.

We find mixed results outside of the four structural classes

discussed above. Purines (Table S6a in Text S1) are G in E. coli and

B. subtilis, but NG in the other species in the training set. In E. coli

and B. subtilis, purines are catabolized via the degradation of urate

into glyoxylate; we find a well-characterized enzyme in this pathway

that is present in these species, but is not present in the other two: 5-

hydoxyisourate hydrolase (EC: 3.5.2.17). Therefore, if an organism

contains genes encoding for this enzyme we label all purines

uptaken by that organism as G; otherwise, we label them as NG.

Because we assume that fatty acids can always be uptaken by a

microbe, we need to be able to predict whether a given fatty acid is

G or NG on the basis of the enzymes available in the organism’s

genome. The catabolism of fatty acids occurs through a self-

contained pathway that produces acetyl-Coenzyme A (CoA) by

way of b-oxidation [45]. A round of reactions in the b-oxidation

process may depend on whether the fatty acids are saturated or

not, but the final two reactions are always the same: i) the

oxidation of L-3-hydroxyacyl-CoA to 3-Ketoacyl-CoA (EC:

1.1.1.35) and ii) the cleavage of 3-Ketoacyl-CoA with another

CoA molecule to produce acetyl-CoA (EC: 2.3.1.16). If an

organism contains genes encoding for the enzymes catalyzing

both of these reactions, we label all fatty acids uptaken by that

organism G; otherwise, we label them NG.

Figure 3. Nutrients uptaken and that stimulate growth in the presence of minimal media for the organisms in the training set. A, E.
coli and B. subtilis have the largest number of uptaken nutrients whereas M. barkeri has the fewest. This reflects the current understanding of M.
barkeri as a specialized methanogen [68]. B, E. coli and B. subtilis are able to catabolize half of the nutrients they uptake whereas M. barkeri can
catabolize less than 10% of the nutrients it uptakes. C, Number of uptaken nutrients by nutrient class. Within each class, the four organisms uptake
approximately the same number of nutrients. Exceptions are M. barkeri—which does not uptake neither Fatty acids nor Sugars, and only one Sugar
derivative—and B. subtilis—which is not assumed to uptake Fatty acids in the in silico reconstruction. D, Fraction of uptaken nutrients that stimulate
growth by nutrient class. There is a consistent pattern of growth stimulation across all four species for six nutrient classes: Sugars, Sugar derivatives,
and Purines are catabolized whilst Inorganic compounds, Pyrimidines, Cofactors, and compounds involved in the formation of the cell membrane or
cell wall (Cell boundary class) are not catabolized.
doi:10.1371/journal.pcbi.1002762.g003

Model for the Catabolic Potential of a Nutrient
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Logistic model for other nutrients. The remaining nutri-

ents cannot be globally classified as G or NG based on their

structure or function. Therefore, we investigate their catabolic

potential on the basis of the metabolic pathways in which they

participate (as defined by KEGG [33–35]; see Methods).

We use logistic regression [46] to estimate the probability Pr(i)
that nutrient i is a source of carbon, that is i[G, given a model pi

Pr(i[GDpi)~
1

1ze{pi
: ð1Þ

We consider the following linear model for pi:

pi~b0zX i
1b1zX i

2b2z . . . zX i
PbPzY i

1c1 . . . zY i
zcz, ð2Þ

where b0 is related to the probability that nutrient i[G if it is not in

any of the pathways in the model, k[f1, . . . ,Pg runs over the

pathways included in the model, l[f1, . . . ,zg runs over the pairs of

pathways included in the model, X i
k[f0,1g indicates whether a

nutrient belongs to pathway k, Y i
l [f0,1g indicates whether a

nutrient belongs to a given pair of pathways, and bk and cl are

interpreted as the change in the probability that nutrient i can be

catabolized by belonging to pathway k or to the pair of pathways l,
respectively. We performed the logistic regression using R (version

2.10.1 [47]).

We use the logistic model above to uncover a small set of

pathways that has the greatest predictive power for the largest

number of nutrients (Fig. 2C). We start with an initial null model

of zero pathways, and build increasingly sophisticated models by

sequentially adding linear terms corresponding to the pathways

that provide the greatest increase in prediction accuracy (Fig. 4).

As our first strategy, we add terms by selecting a pathway with

both a high number of G nutrients and a large fraction of G nutrients.

Many pathways with only one or two G nutrients have 100% of G

nutrients, but will not achieve our goal of covering the greatest

number of nutrients. For k~1 (only one term in the model), we

select ‘‘Glyoxylate and dicarboxylate metabolism,’’ which has

thirteen G nutrients and only two NG nutrients. When we

consider which pathway to add next, we only consider the

nutrients that are not already accounted for in the model, which is

important because there is a significant overlap between pathways.

For example, when determining which pathway to select for k~2,

we note that after including ‘‘Glyoxylate and dicarboxylate

metabolism’’, we exclude fifteen nutrients from the rest of the

pathways (Table S7 and Fig. S1 in Text S1). This has the

additional effect of removing two pathways from consideration.

As our second strategy, we consider pathways with a high

fraction of NG nutrients. By doing so, we build a model that can

predict NG nutrients as well as G nutrients. There are several

pathways that have a high fraction of NG nutrients, but we find

that only the inclusion of ‘‘Folate biosynthesis’’ significantly

improves the model.

As a third strategy, we add pairwise interaction terms to the

model. These terms reduce the number of false positives due to all

nutrients in a pathway with high fraction of G nutrients being

predicted to be catabolized. We find that there are several

Figure 4. Model selection. We consider logistic models with different number of pathways P and of pairs of pathways z (see text and Methods). A,
Model accuracy. We calculate the true positive (TP) and true negative (TN) rates for the different models. TP reflects whether the model correctly
predicts G nutrients, whilst the TN reflects whether the model correctly predicts NG nutrients. B, Area under the ROC curve (AUC) for the 10 models.
The higher the AUC, the better the model is at separating G nutrients from NG nutrients. C, Akaike information criterion (AIC) and Bayesian
information criterion (BIC) of the 10 models. The lower the information criterion, the more parsimonious the model. We could not identify any
additional pathways and/or pathway pairs that improved the AIC and BIC of the model with P = 8, z = 2 (pathways and pathway pairs are listed in the
upper right panel of the figure). In the case of TP, TN, and AUC, we apply our complete model including both nutrient classes and KEGG pathways to
the training set of organisms, and to the test set of organisms (see text and Methods). When P = 0, z = 0, there are more NG nutrients than G nutrients
that are not included in a nutrient class, therefore all of these nutrients are considered iMNG; hence, the initially low TN rate. When P$4, the TP in the
test set is similar to the TP in the training set. This means that our model is successful at identifying G nutrients. However, the TN for the test set is
slightly lower than the TN for the training set. This occurs because there are more NG nutrients in the test set that are also found in the Sugar and
Sugar derivative classes, or in G pathways in the linear model, which we could not account for because of the small sample size of the training set.
The difference between the TN rates of the two test sets has an impact on the overall accuracy of the model for the training and test sets.
doi:10.1371/journal.pcbi.1002762.g004

Model for the Catabolic Potential of a Nutrient
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pathways that contain NG nutrients also found in the G pathways

in the model. These pathways do not necessarily have a high

fraction of G or NG nutrients, but they enable us to pick out

nutrients that are false positives in the pathways classified as G.

Our analysis identifies a logistic model with P~8 pathways, and

z~2 pathway interactions (Table S8 in Text S1). The small

number of pathways could be a function of the small number of

species we are exploring. However, we find that 94% of the

thousand or so microbes listed in KEGG have the pathways

included in our model, suggesting that, despite its simplicity, our

model is likely to be applicable with similar accuracy to other

species.

Model validation. Our final model for catabolic potential

integrates 7 nutrient classes and 10 pathways. Using our training

set of species, we find that the true positive rate is TP~0:89 and

the true negative rate is TN~0:92 (Fig. 4 and Fig. S2 in Text S1).

To validate the model beyond the training set, we test its

predictions on the set of test organisms described above. We find

that the TP rate is consistent between the training set and the test

set of nutrients, whereas the TN rate drops slightly (Fig. 5). This

drop is mostly accounted for by nutrients that are NG in the test

set, but that are found in the G pathways of the training set and

are not corrected by the interaction terms in our model, thus

providing an avenue for improving the model.

Biomass yield: What is the biomass yield of a given
nutrient for a specific microbe?

The next step is to determine for those nutrients that produce

growth what is the maximal production of biomass when that

nutrient is the only source of carbon. In fact, if a nutrient is the

carbon-limiting source in a given medium, the biomass yield of the

nutrient must be related to the number of carbons in the nutrient.

In Fig. 6, we display the in silico biomass production bs
i and the

biomass yield bs
i=Ci of all nutrients as a function of the number Ci

of carbon atoms they contain, for the species in the training and

test sets (we do not consider M. barkeri in our model for biomass

yield because M. barkeri can only grow anaerobically, and this has a

significant effect on the energy used to polymerize the proteins and

nucleic acids in the biomass).

It is visually apparent from Fig. 6 that there is a strong

correlation between the number of carbons in a nutrient and the

biomass production. We thus model the biomass production

induced by nutrient i[Gs as

~bbs
i ~ysCi ð3Þ

where ys is the (nutrient-independent) average biomass yield of the

nutrients in Gs

ys~
1

N

X
i[Gs

bs
i

Ci

:

The data suggests the existence of an upper bound for the biomass

yield (ymax
s ) as a function of the number of carbons (blue line in

Figs. 6, 7, and 8). The nutrients frequently found at or close to this

upper bound are sugars, alcohols, and other compounds with

hydroxyl groups. Many of the hydroxyl groups on these compounds

are typically oxidized in order to reduce NADz to NADH, which is

an important source of energy, and will in turn increase the biomass

yield. For simplicity, we obtain ymax
s as the average biomass yield for

the sugars uptaken by an organism. The average nutrient has 83%
of the efficiency of these high-efficiency sugars, but nutrients vary

wildly in their yield (Fig. 7). We consider one main factor that

contributes to this variation in biomass yield: the number CE
i of

carbons in a nutrient that are effectively catabolized.

Figure 5. Breakdown of true positives and true negatives in training and test sets. Solid red indicates true positives. Solid blue indicates
true negatives. Hashed red indicates false positives. Hashed blue indicates false negatives. If our model was 100% accurate, the solid red bars would
add up to 100%, as would the solid blue bars. It is visually apparent that the majority of false positives and false negatives are due to misclassification
using the KEGG pathways.
doi:10.1371/journal.pcbi.1002762.g005
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Effective number of carbons. We find two sets of nutrients

for which the number of carbons that is effectively catabolized is

not the actual number of carbons available in the nutrient

CE
i vCi: complex nutrients and purines.

Very often, catabolism of complex nutrients starts by breaking

them down into a number of simpler nutrients, which are then

catabolized according to their respective pathways. Tryptophan,

lipids and nucleotides are examples of such complex nutrients:

tryptophan is broken down into three separate metabolites

(pyruvate, indole, and ammonia); lipids are broken into fatty

acids, glycerol and a functional group such as choline;

nucleotides are broken into a phosphorylated ribose and a

nucleobase. Each of these simple compounds can act as

nutrients on their own.

Complex nutrients display some of the largest variation in

biomass yield, as highlighted in Fig. 8. This can be explained by

the fact that not all of the constituent simple nutrients can be

catabolized, that is, not all of the carbons in a complex nutrient

can be used to produce biomass. Therefore, for each complex

nutrient i we estimate CE
i as follows. We break down the nutrient

into its respective simple nutrients. Then, we find whether each

simple nutrient j can be catabolized; CE
i is the sum of CE

j for each

simple nutrient j that can be catabolized

CE
i ~

Xni

j~1

CE
j ,

where CE
j ~0 if j[NGs and ni is the number of simple nutrients that

compose the complex nutrient i. For example, consider the nucleotide

thymidine for which CThymidine~8. Thymidine is comprised of two

simple nutrients, the phosphorylated ribose (CRibose~CE
Ribose~5),

and thymine (CThymine~3, but CE
Thymine~0 because as

Thymine~NG).

Therefore CE
Thymidine~CE

RibosezCE
Thymine~5.

An additional consideration is the fact that some nutrients

‘‘leak’’ carbons during catabolism. Purines are an example of this;

they are reduced to glyoxylate, but in doing so, they ‘‘leak’’ three

carbons as carbon dioxide and urea, which cannot be catabolized

for the carbon. Therefore CE
Purine~CPurine{3.

Figure 6. Biomass production is related to the number of carbons in a nutrient. We show the optimized biomass production of each
species on G nutrients, for species in the training set (left) and the test set (right). For all species there is a positive correlation between biomass
production and the number of carbons in the nutrient. The blue line represents ~bbs (see text) for all the sugars uptaken by species s. S. aureus exhibits a
reduced biomass production; the biomass defined in the in silico organisms demands approximately ten times more moles relative to the other
species. In all the plots, the position of the nutrients on the X axis is slightly staggered so that all data points are visible. Note that the symbols for the
complex nutrients are enlarged.
doi:10.1371/journal.pcbi.1002762.g006
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Figure 8 displays how the biomass yield of complex nutrients

changes when we adjust for the effective number of catabolizable

carbons. Tryptophan, for example, is now seen to be catabolized as

efficiently as other amino acids. Many purines and sugar derivatives

only contained sugars as catabolizable simple nutrients, and therefore

their efficiency becomes comparable with that observed for nutrients

in the sugars class. Adenine and guanine still remain inefficient (the

two red dots towards the bottom of the purines class), but as their

catabolic end product is glyoxylate, the result is comparable with a

glyoxylate derivative highlighted in the organic acids class.

For some classes, such as amino acids and sugar derivatives, the

variance of the biomass yield for nutrients within the classes is also

reduced. This reduction supports the use of the effective number of

carbons as the predictor of biomass yield of a single nutrient. We

thus modify Eq. (3) accordingly:

~bbs
i ~ysC

E
i ,Vi[Gs: ð4Þ

Note that species in the test set take up very few complex nutrients

and no purines; we therefore do not show the results of using Eq.

(4) for these species.

Complex media: Is biomass yield of a nutrient affected by
the presence of other nutrients in the medium?

Finally, we want to model the maximal biomass production when

there is more than a single source of carbon present in the medium,

or in other words when organisms grow in a complex medium. We

consider complex media in which nutrients are restricted to five

classes: sugars, fatty acids, amino acids, purines, and pyrimidines,

partly because they are commonly used in growth rate/biomass

yield experiments, and partly because it simplifies the analysis of the

results. In addition, complex purines and pyrimidines are a mixture

of sugars and nucleobases, and as we are already considering sugars,

we only use the simple nucleobases.

The simplest plausible model for the contribution of nutrients to

the biomass production is one in which each nutrient i has an

independent contribution to the biomass production. For each species s,

we calculate the biomass production Bmodel
s on a complex medium

containing Nm nutrients using

Bmodel
s ~

XNm

i~1

~bbs
i : ð5Þ

Figure 7. Normalized biomass yield for nutrient classes. The panels show the normalized biomass yield
bs

i

Ci

=ymax
s of G nutrients for species in

the training set (left) and in the test set (right). Nutrients are grouped by their nutrient class (with positions in the X axis staggered so as to allow one

to see all of them). The blue line represents ~bbs for all the sugars uptaken by species s. The symbols for complex nutrients are enlarged.
doi:10.1371/journal.pcbi.1002762.g007
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We estimate ~bbs
i for a nutrient from class c using the average yield

for that class in the organisms in the training set

yc~S 1

Nc
s

XNc
s

i~1

yi
sT

s

ð6Þ

where Nc
s is the number of nutrients of class c that are taken up by

species s, and S � � � Ts represents the average over species in the

training set. For tryptophan and for purines, we use the effective

number of carbons when calculating yield, as described previously.

To test this model, we randomly generate ensembles of complex

media as described in the Data and Methods section. For each

medium and for each species, we calculate Bmodel
s ; we use FBA to

find the actual in silico biomass production of the organism on the

complex media Bsilico
s . In Fig. 9 we show how Bmodel

s compares to

Bsilico
s for each species, and for each of the 1000 complex media we

generate. In these comparisons we also include predictions for the

species in the test set (with the exception of S. aureus, for whose

reconstruction it is not clear what units were used for the biomass

production).

We find a very strong correlation (pv10{6 using the Spearman

rank correlation coefficient) between the predictions of our model

and in silico experimental results for training set species (E. coli, B.

subtilis, and S. cerevisiae) and test set species (H. pylori and M.

tuberculosis). This indicates that the model accurately captures

which media will result in faster/slower production of biomass.

For each species, however, the model systematically under or over-

predicts growth. A regression of the predicted biomass production

versus experimental in silico production indicates that

Bmodel
s &KsB

silico
s , with: K~0:76 for E. coli, K~0:62 for B.

subtilis, K~0:84 for S. cerevisiae, K~1:10 for H. pylori, and

K~0:92 for M. tuberculosis.

The parameters used to make the predictions for the individual

nutrients in the linear model were trained on three species. The

linear model consistently under-predicted the in silico biomass

production for these three species, and more so for media

containing more nutrients. This is a strong indicator that the

nutrients that are uptaken are used synergistically by the in silico

organism to produce more biomass than expected, showcasing the

effect of catabolic pathways being highly connected in the

metabolic network. A more complete model for predicting biomass

Figure 8. Adjusting for the effective number of carbons in complex nutrients and purines in the training set. We show the normalized
biomass yield (see Fig. 7) for purines and complex nutrients (full colored symbols) for species in the training set. In the left column, we show the
normalized biomass yield considering the number of carbons in each nutrient Ci. In the right column, we show the normalized biomass yield using
the effective number of carbons CE

i (see Text and Methods). Additionally, for each nutrient class that contains these nutrients, we show the mean
and variance.
doi:10.1371/journal.pcbi.1002762.g008
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production in complex media will therefore need to take into

account synergistic interactions among catabolic pathways.

Predicting growth for organisms lacking a metabolic
reconstruction

Our model sheds light on several questions related to the impact

of nutrients on the biomass production of microbes. Our approach

treats microbial metabolism as a ‘‘black box’’ that uses nutrients to

reach optimal biomass production. Because the model does not

take species-specific details into consideration, it is useful for

generating predictions for any microbe, something that would be

impossible with any existing modeling approach. To illustrate how

one would proceed to extrapolate to ‘‘new’’ organisms and to show

what kind of insights one could obtain, we generate predictions for

four organisms that lack a metabolic reconstruction: R. palustris (a

gram-negative bacterium), L. monocytogenes (a gram-positive bacte-

rium), D. discoideum (an eukaryote), and T. acidophilum (an

archaeon).

We find that, overall, these species are predicted to take up

fewer nutrients than the species in the test set (Fig. 10A). This is a

consequence of the limited annotation that the authors of

TransportDB could use for the predicted protein transporters.

One example of this limitation is that for all four species, there

were many transporters predicted to take up amino acids, but

there was no indication of which amino acids the transporters were

specific for. Therefore, for the sake of prediction, we consider that

all four species uptake all twenty natural amino acids.

We then use the model of catabolic potential to predict whether

each of these nutrients could be a source of carbon. In Fig. 10B we

show the number of nutrients that belong to one of the nutrient

classes previously described and whether these nutrients are G or

NG. For the fatty acids, none of which were predicted to be

uptaken by any of the four species, we examined the enzymes

available and found that only D. discoideum contains the enzymes

for b-oxidation, and could therefore catabolize fatty acids.

Finally, we combine our models of biomass yield of G nutrients,

and of biomass production on complex media (Fig. 11). We choose

four complex media which contain a different number of the same

nutrients we used for the randomly-generated complex media,

namely: sugars, fatty acids, bases, and amino acids. The four

media contain: 1) glucose; 2) glucose and hexanoic acid; 3) glucose,

hexanoic acid, adenine, guanosine, cytosine, and thymine; 4)

glucose, hexanoic acid, adenine, guanosine, cytosine, and thymine

and the twenty natural amino acids. We estimate the biomass

production in the same manner that we described earlier for the

randomly-generated complex media. We find that the biggest

influence on the biomass production is the number of carbons

available in the nutrients present in the medium; because we are

now adding 20 amino acids to medium 4, the biomass production

increases almost 7-fold, on average, in that case.

Note that these predictions for biomass production are based on

the biomass yield per carbon available in the nutrients present in

the medium. Biomass yield is a time independent quantity that

cannot be directly associated to growth rate. However, because

biomass yield gives an upper limit for growth rate [48], our model

can be used as a baseline for researchers to explore and model

growth rates.

Discussion

Microbes use nutrients found in their environments to grow.

Understanding and developing quantitative models of this process

is of fundamental importance in cell biology, physiology, medicine,

evolution, synthetic biology and bioengineering, not to mention of

practical importance to those that need to grow microbes in

laboratories. Given the diversity of the microbial world and the

number of combinations of nutrients available in their environ-

ments, this seems too difficult a problem. In this study, we focused

on how microbes might catabolize nutrients to obtain carbon for

biomass production.

Our model comprises three levels, with each level building up

on the results from the previous one. The first level concerns

whether a nutrient will be catabolized. The second level concerns

whether all of the carbon in a catabolized nutrient is available for

biomass production. The final level incorporates the biomass yield

for selected classes of nutrients and enables us to make a prediction

on the biomass production of a microbe in a complex medium. To

validate our approach, we compare the predictions of the

complete model with in silico predictions of growth in complex

media of species that are not part of the training set. Our results on

these species are excellent predictions of which media will produce

more/less growth.

Finally, we looked at the biomass yield of sugars, amino acids,

purines, pyrimidines, and fatty acids. We found little variation

in the yield of these nutrients amongst different species, and

were able to postulate a model for the biomass production of a

microbe on a complex medium containing any number of these

important nutrients. All of these nutrients have separate

catabolic pathways, with the exception of some groups of amino

acids which share a catabolic pathway. The fact that the in silico

microbial biomass production was 30% more than our model

predicts indicates that each of these catabolic pathways can

work together synergistically to improve the biomass production

of the microbe.

Figure 9. Validation of the model for biomass production on
complex media. We show, for 3000 randomly generated complex
media containing sugars, fatty acids, bases, and amino acids (see
Methods), the prediction for the biomass production as a function of
the actual in silico growth. We show the results for E. coli, B. subtilis, S.
cerevisiae, H. pylori, and M. tuberculosis. The dashed lines represent a
regression of the predicted biomass production versus experimental in
silico productionBmodel

s &KSBsilico
s . We obtain: K = 0.76 for E. coli, K = 0.62

for B. subtilis, K = 0.84 for S. cerevisiae, K = 1.10 for H. pylori, and K = 0.92
for M. tuberculosis.
doi:10.1371/journal.pcbi.1002762.g009
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The ability of our model to predict biomass production on

complex media must be balanced by an understanding of its

limitations. First, we model microbial metabolism as a black box,

and therefore we do not account for absent pathways that

biosynthesize some biomass components. The absence of such

pathways would require that the corresponding biomass compo-

nents be made available in the medium used, but our model

cannot be used to predict which of these are indeed required. This

means we cannot use the model in its current form to predict the

minimal medium that is needed for a microbe to grow.

Second, microbial species are sometimes identified by the

nutrients they take up and excrete. The ability of a microbe to

transport such compounds in and out of the cell is largely

dependent on the specific protein transporters available. A

separate body of work exists, largely in the form of TransportDB

[39], and TCDB [49,50], which will enable the researchers to

predict the proteins that transport specific nutrients. We incorpo-

rate such predictions of nutrient transport into our model to make

predictions for specific species that lack a metabolic reconstruc-

tion. Importantly, while knowledge of transporters can enable us

to predict which nutrients in the medium can be taken up, we are

currently unable to predict which nutrients are excreted as that

would in principle require knowledge of the full metabolic

network.

Third, the stoichiometric method we describe for generating the

biomass data cannot be used to predict the growth rate of a

microbe because kinetic information is not included. However, our

model provides a baseline to which one can add kinetic

information. For example, the rate-limiting step in poor growth

media is likely to be the rate at which a microbe takes up nutrients.

Therefore one can use the kinetics of nutrient transport with our

prediction of biomass yield to predict growth rate.

All this notwithstanding, we believe that our approach and

models open the door to significant advances in the quantitative

modeling of microbial metabolism, and eventually of the

metabolism of more complex organisms. In particular, our models

could be extended to consider whether a nutrient acts, not only as

a source of carbon, but also as a source of nitrogen or energy, or

Figure 10. Predictions for four organisms lacking a metabolic reconstruction. A, The number of nutrients found to be uptaken by four
organisms for which we lack a metabolic reconstruction: Rhodopseudomonas palustris (gram-negative bacterium), Listeria monocytogenes (gram-
positive bacterium), Dictyostelium discoideum (eukaryote), and Thermoplasma acidophilum (archaeon). The nutrients were determined using
predictions found in TransportDB (http://www.transportdb.org). B, Prediction of whether a nutrient is a source of carbon according to class. Bars in
the top panel represent predictions of G nutrients, whereas bars in the bottom panel represent predictions of NG nutrients. None of the species had
fatty acids listed as nutrients, but since fatty acids can be uptaken by diffusing through the cell membrane, we show here the predictions for fatty
acids as well. The prediction for nutrients in the Organic compounds class are based on our logistic regression using the KEGG pathway terms. Thus
some nutrients are predicted to be G while others are predicted to be NG.
doi:10.1371/journal.pcbi.1002762.g010
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directly as a component of the biomass. Our models could also be

extended to include more detailed information about pathways, or

to consider functional metabolic modules [51–53] instead of

pathways.

Methods

Data
In silico organisms. We first consider a training set of four

species for which there are high quality metabolic reconstructions

available, and which cover a wide range of microbial phylogeny: a

gram-negative bacterium (E. coli [8]), a gram-positive bacterium

(B.subtilis [9]), an eukaryote (Saccharomyces cerevisiae [21]), and an

archaeon (Methanosarcina barkeri [24]). We validate our model on a

set of test species: Helicobacter pylori, a gram-negative bacterium

[20], Staphylococcus aureus, a gram-positive bacterium [22], and

Mycobacterium tuberculosis, an acid-fast gram-positive bacterium [23].

We download these organisms from http://gcrg.ucsd.edu/ in SBML

format (accessed 03/27/2009). There are 352 distinct nutrients

listed for the metabolic reconstructions of the four in silico

organisms in the training set. According to the reconstructions,

out of these 352 nutrients only 26 are uptaken by all four species, a

fact that illustrates the diversity of microbial metabolism.

We use the available reconstructions and the literature to define a

fully minimal medium for each in silico organism [54–57]. The

minimal medium does not enable the organism to produce biomass.

However, the addition of a carbon source is enough to enable

growth. We do not consider components of a minimal medium for

which an uptake reaction is not present in the reconstruction. We

describe in detail the minimal media for the seven organisms in our

training and test sets in Table S1 in Text S1.

Organisms in prediction set. We generated predictions of

biomass production on four species for which we lack a metabolic

reconstruction, and which have the same phylogenetic breadth as

the training set: Rhodopseudomonas palustris (a gram-negative

bacterium), Listeria monocytogenes (a gram-positive bacterium),

Dictyostelium discoideum (an eukaryote), and Thermoplasma acidophilum

(an archaeon). We identified the nutrients that these organisms

take up (Tables S2a–j in Text S1) from the prediction of nutrient

transporters found in the database TransportDB [39] (accessed

11/03/2010).

Metabolites and pathways. We downloaded KEGG [33–

35], and SEED’s [28,58] metabolite databases, and KEGG’s

pathway database. The SEED metabolite database allows us to

link the metabolites in various reconstructions to their respective

KEGG IDs. The KEGG metabolite and pathway databases allow

us to assign the metabolic pathways to the individual metabolites

in the reconstruction. The pathway database in KEGG is

organized into 7 groups, one of which is metabolism. Metabolism

is further divided into 11 major subgroups (for example, ‘‘Amino

Acid Metabolism’’). Each of these major subgroups is further

divided into metabolic pathways (for example, ‘‘Arginine and

Proline Metabolism’’). There are 156 distinct metabolic pathways,

but only 50 pathways are found in all seven species we used in this

study.

We cross-checked the identifiers used in the reconstructions with

the linked names in the SEED database to find mistakes,

duplicates, and missing KEGG IDs. There are metabolites used

in the reconstructions that we could not find in the KEGG

database. For each one of these, we attempted to manually assign

the KEGG ID of related metabolites, by using KEGG and SEED.

There were 27 metabolites for which we attempted this manual

assignment; for 5 of these, we could not unambiguously assign a

KEGG ID (Tables S3a&b in Text S1). In addition, there are

metabolites which do not have any KEGG pathways assigned. We

used KEGG and SEED to find the most relevant pathway for

these metabolites, and we manually assigned the KEGG ID of

another metabolite in the same pathway, thereby assigning the

same pathways by default. There were 43 metabolites for which

we attempted this manual assignment. For 12 of these, we were

unable to find an appropriate pathway classification (Tables

S3c&d in Text S1).

Complex nutrients. Many of the 352 nutrients in our list

may be considered complex in that they are composed of one or

more simple nutrients. For example, adenosine consists of two

simple nutrients: adenine and ribose. Complex nutrients are

typically degraded into their simple components and then each

component may or may not be catabolized separately. We

denoted every nutrient in our list either as simple or complex. For

the latter, we identified the simple nutrients that compose it

(Tables S4a–f in Text S1).

Nutrient classes. We classify the nutrients by their

structure and, to a lesser extent, function. We define 12 classes.

Five of these classes—‘‘Sugars’’, ‘‘Amino acids’’ (including

uncommon amino acids), ‘‘Purines’’, ‘‘Pyrimidines’’, and ‘‘Fatty

acids’’—are self-explanatory. We classify elements and sources

of inorganic carbon as ‘‘Inorganic compounds.’’ The ‘‘Cofac-

tors’’ class includes cofactors, vitamins—which are precursors of

cofactors—and nutrients whose primary function is to chelate

an inorganic element. Many nutrients that were deemed to be

derivatives of amino acids, sugars or fatty acids were included in

the relevant ‘‘derivative’’ categories. In addition, larger nutri-

ents involved in the formation of the cell boundary, such as lipid

A, were included in the ‘‘Cell boundary’’ nutrient class. We

lumped together the remaining nutrients—which are small

organic compounds—as ‘‘Organic compounds’’ (Tables S5a–l

in Text S1).

Figure 11. Predictions of biomass production for four organ-
isms lacking a metabolic reconstruction. The predictions are made
for the biomass production of R. palustris, D. discoideum, T. acidophilum,
and L. monocytogenes. For the predictions of biomass production, we
use four different complex media containing: 1) Glucose 2) Glucose and
hexanoic acid 3) Glucose, hexanoic acid, guanine, adenine, cytosine,
and thymine. 4) Glucose, hexanoic acid, guanine, adenine, cytosine,
thymine, and the 20 natural amino acids (see Methods). There is no
difference in the prediction for biomass production between complex
media 2 and 3 because none of the species shown here can catabolize
nucleobases. The large number of carbons available in the 20 natural
amino acids are responsible for the increase in biomass production
predicted for complex medium 4.
doi:10.1371/journal.pcbi.1002762.g011
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Flux Balance Analysis experiments
Stoichiometric methods have been widely used in metabolic

engineering for over 20 years [59], the most used of which is Flux

Balance Analysis (FBA) [26,27,60]. FBA aims at determining the

fluxes v through each one of the metabolic reactions in an

organism. Thus, FBA relies on the determination of a stoichio-

metric matrix S that represents all the reactions and metabolites in

an in silico organism s, and a vector u of uptake fluxes.

In the matrix S, each row corresponds to a reaction, and each

column to a metabolite. Si,j is the stoichiometric coefficient of

metabolite j in reaction i. The vector of uptake fluxes u can have a

non-zero entry for every transport reaction that moves a nutrient

into the in silico organism.

As a simple example, consider a metabolic network with three

reactions:

R1 : GlucosezATP [ Glucose{6{phosphatezADP

R2 : ADPzPi [ ATP

R3 : Glucoseenv [ Glucose

ð7Þ

where R3 represents the transport reaction for uptaking Glucose

from the environment. The stoichiometric matrix for metabolic

network (7) is:

Glucoseenv Glucose ATP G6P ADP Pi

S~

R1

R2

R3

0

0

{1

{1

0

z1

{1

z1

0

z1

0

0

z1

{1

0

0

{1

0

0
BB@

1
CCA:
ð8Þ

Assuming a steady-state concentration of every metabolite and

requiring mass-conservation we must impose that

S:v~u, ð9Þ

where v is the set of fluxes through each metabolic reaction. In

order to solve Eq. (9), we need to provide the vector u. The default

flux for each uptake reaction is 0, meaning that the nutrient is not

in the medium or that it cannot be uptaken by the organism. We

set ui~{1 if nutrient i is present in the medium and could be

taken up by the organism.

The system in Eq. (9) has many solutions. In our analysis, the

biologically relevant metabolic state is the one that maximizes

biomass production b [59]. The problem of finding the fluxes

through the reactions with a cost function that have to satisfy a

number of constraints is a standard linear optimization problem

that can be numerically solved using the subroutines provided in

GLPK [61].

In order for us to model whether a nutrient can be a source of

carbon and the biomass yield of the nutrient, we control the data

in two ways. First, for some organisms the uptake of specific

nutrients can lead to bw0 without being considered significant [8].

Secondly, ATP hydrolysis is integrated into the biomass of the in

silico organisms, and is typically trained to better match empirical

results based on growth rates. We are not exploring growth rates

and we thus adjust the ATP hydrolysis in the biomass of the in silico

organisms in order to better support the conclusions we reach.

These controls are explained in detail in Text S1.

Model selection
Model accuracy. To determine which of the logistic models

we build is the best, we must balance accuracy with economy. We

assess the model’s sensitivity and specificity using two sets of

measures. First, we calculate the true positive rate (TP) and the

true negative rate (TN ), which indicate how many nutrients are

successfully predicted to be in G, or NG, respectively. Secondly,

we calculate the area under the ROC curve, AUC, to quantify the

accuracy of the model [62].

We assess whether the prediction for a nutrient is a true positive

or a true negative as follows: For each nutrient i, we first estimate

pi. For every G nutrient, if pi§0 (which is equivalent to

Pr(i[GDpi)§0:5), the nutrient is predicted to be a source of

carbon, and we record a true positive. If, for a G nutrient, piv0,

the nutrient is predicted to not be a source of carbon and we

record a false negative. For every NG nutrient, if piv0, it is

recorded as a true negative; if pi§0, it is recorded as a false

positive.

We calculate the AUC as follows. First, we rank all of the

nutrients according to the probability that they are a source of

carbon Pr(i[GDpi). Then starting with the nutrient with the

highest Pr(i[GDpi), for every n[f1, . . . ,Ng nutrients we count the

fraction of nutrients that are sources of carbon f n
G~

Gn

GN

and the

fraction of nutrients that are not sources of carbon f n
NG~

NGn

NGN

where Gn and NGn are the number of nutrients in n that can, and

cannot be sources of carbon respectively, and GN and NGN are

the total number of nutrients that can and cannot be sources of

carbon, respectively. Each (f n
G ,f n

NG ) pair is a point in the ROC

curve. We expect fGwfNG at the top of the list and fGvfNG at the

bottom of the list. The AUC is the area under this curve. An AUC
close to 1 means that the pathways model succeeded in separating

the nutrients that are sources of carbon from the nutrients that are

not sources of carbon.

Model economy. The larger P and z are (that is, the larger

the number of parameters in Eq. (2), the more accurate the model

is for the data at hand. However, with every additional parameter,

the chances that we overfit the data increases. This issue becomes

particularly worrisome if we consider pathways that are only

partially conserved, for these pathways may not be represented in

the test set of species we use to validate our model. To assess the

economy of the model, we use two standard information criteria,

the Akaike Information Criterion (AIC) [63]

AIC~2(Pzz){2 log(L) ð10Þ

and the Bayesian Information Criterion (BIC) [64]

BIC~(Pzz):ln(N){2 log(L): ð11Þ

These information criteria balance the number of parameters,

which in this case is the number of pathways and pairs of pathways

Pzz, with the maximum likelihood of the model L, a measure of

how effectively the model predicts the catabolic potential of a

nutrient. When a new parameter is added to the model, L must

increase sufficiently to balance the increase in Pzz. In addition,

BIC includes the number of data points (in our case nutrients N in

the dataset), and is therefore more stringent if the dataset is small.

By adding parameters, we can find the pathways and pairs of

pathways at which the information criteria are at the global

minimum.

Complex media
We tested our model on a large number of complex media

generated using the nutrients available for uptake in the in silico
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organisms. Because the number of possible combinations of these

nutrients was too large for us to test each one computationally, we

considered an ensemble of 1000 randomly generated complex

mediaM(q). For each complex medium, every nutrient was made

available for uptake with the probability q, and was excluded with

the probability 1{q. We generated ensembles for q~0:1, 0:3, and

0:5 (for a total of 3000 random media).

Sugars present an unusual case because a microbe such as E. coli

has been known to exhibit diauxic growth [65–67]. This means

that microbes regulate sugar uptake so that, despite having various

sugars present in the medium, they will only take up one sugar at a

time. Our model does not take gene regulation into account, and

therefore we manually limited the number of sugars presents in

each complex medium to one, specifically glucose.
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