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Abstract In this chapter we present a model of growing networks in which the at-
tachment of nodes is driven by the dynamical state of the evolving network. In par-
ticular, we study the interplay between form and function during network formation
by considering that the capacity of a node to attract new links from newcomers de-
pends on a dynamical variable: its evolutionary fitness. Thefitness of nodes are gov-
erned in turn by the payoff obtained when playing a weak Prisoner’s Dilemma game
with their nearest neighbors. Thus, we couple the structural evolution of the system
with its evolutionary dynamics which in turns has been shownto depend strongly
on the structural network patterns. On the one hand, we studyboth the levels of
cooperation observed during network evolution and the structural outcome of the
model. Our results point out that scale-free networks arisenaturally in this setting
and that they present non-trivial topological attributes such as degree-degree corre-
lations and hierarchical clustering. On the other hand, we also look at the long-term
survival of the cooperation on top of these networks, once the growth has finished.
This mechanism points to an evolutionary origin of real complex networks and can
be straightforwardly applied to other kinds of dynamical networks problems.
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1 Introduction

It has been established that the pattern of interactions among the constituents of
many complex systems can not be accurately described neither by lattices or other
uniformly distributed spatial models, nor using mean-fieldformulations. Instead,
they need to be characterized by what is generally known as a complex network
[1, 2]. In many of these networks, the distribution of the number of interactions,i.e.
the degreek, that an individual shares with the rest of the elements of the system,
it is to say,P(k), is found to follow a power-law,P(k) ∼ k−γ , with an exponent
2 < γ < 3 in most cases. This implies a high heterogeneity in the degree distri-
bution. The ubiquity in Nature of these so-called scale-free (SF) networks has led
scientists to propose many models aimed at reproducing the SF degree distribution
[1, 2]. Nonetheless, most of the existing approaches are based on growth rules that
depend solely on the topological properties of the network and therefore neglect
the connection between the structural evolution and the particular function of the
network or the dynamics that takes place on it. This is the case of the well-known
Barab́asi-Albert (BA) model [3], based on two fundamental ingredients: growth and
preferential attachment. In this model, the new nodes are sequentially added to the
network attaching preferentially to those who have the highest connectivity. How-
ever, it is important to recall that accumulated evidences suggest that form follows
function [4] and that the formation of a network is also related to the dynamical
states of its components through a feedback mechanism that shapes its structure.
Taking these facts into consideration, one should not ignore the particular dynamics
evolving on top of a network when trying to propose a model forits growth. On the
contrary, the outcome of that dynamics should affect somehow the development of
the structure.

A paradigmatic case study of the structure and dynamics of complex systems are
that of social networks. In these systems, it is particularly relevant to understand how
cooperative behavior emerges. The mathematical approach to model the cooperative
versus defective interactions is usually addressed under the general framework of
Evolutionary Game Theory [5, 6, 7] through diverse social dilemmas [8]. In the
general case, it is the individual benefit rather than the overall welfare what drives
the system evolution. The emergence of cooperation in natural and social systems
has been the subject of intense research recently [9, 10, 11,12, 13, 14, 15, 16, 17,
18, 19]. (see also the recent reviews [20, 21]). These works are based either on the
assumption of an underlying, given static network (or two static, separate networks
for interaction and imitation, respectively) or on a coevolution and rewiring process,
starting from a fully developed network that already includes all the participating
elements [22, 23, 24, 25, 26, 27] (see also the recent review [28]). As we already
know, it has been shown that if the well-mixed population hypothesis is abandoned,
so that individuals only interact with their neighbors, cooperation is promoted by
heterogeneity, specifically on SF networks. However, the main questions remain
unanswered: Are cooperative behavior and structural properties of networks related
or linked in any way? If so, how? Moreover, if SF networks are best suited to support
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cooperation, then, where did they come from? What are the mechanisms that shape
the structure of the system?

To contribute answering those questions, in this chapter weanalyze the growth
and formation of complex networks bycouplingthe network formation rules to the
dynamical states of the elements of the system. As we have already mentioned,
many mechanisms have been proposed for constructing complex scale-free net-
works similar to those observed in natural, social and technological systems from
purely topological arguments (for instance, using a preferential attachment rule or
any other rule available in the literature [1, 2]). As those works do not include infor-
mation on the specific function or origin of the network, it isvery difficult to discuss
the origin of the observed networks on the basis of those models, hence motivating
the question we are going to address. The fact that the existing approaches consider
separately the two directions of the feedback loop between the function and form of
a complex system demands a new mechanism where the network grows coupled to
the dynamical features of its components. Our aim here is to discuss a recent attempt
in this direction, by linking the growth of the network to thedynamics taking place
among its nodes.

The model combines two ideas in a novel manner: preferentialattachment and
evolutionary game dynamics. Indeed, with the problem of theemergence of coop-
eration as a specific application in mind, we consider that the nodes of the network
are individuals involved in a social dilemma and that newcomers are preferentially
linked to nodes with high fitness, the latter being proportional to the payoffs ob-
tained in the game. In this way, the fitness of an element is notimposed as an ex-
ternal constraint [29, 30], but rather it is the result of thedynamical evolution of the
system. At the same time, the network is not exogenously imposed as a static and
rigid structure on top of which the dynamics evolves, but instead it grows from a
small seed and acquires its structure during its formation process. Finally, we stress
that this is not yet another preferential attachment model,since the quantity that
favors linking of new nodes has no direct relation with the instantaneous topology
of the network. In fact, as we will see, the main result of thisinterplay is the for-
mation of homogeneous or heterogeneous networks (depending on the values of
the parameters of our system) that share a number of topological features with real
world networks such as a high clustering and degree-degree correlations. Thus, the
model we propose not only explains why heterogeneous networks are appropriate to
sustain cooperation, but also provides an evolutionary mechanism for their origin.
On the other hand, we will find that there are some important and quite surprising
differences between the networks we build using this model,and SF topologies, as
far as the microscopic organization of the dynamics is concerned.

2 The model

Our model naturally incorporates an intrinsic feedback between dynamics and topol-
ogy. In this way, the growth of the network starts at timet = 0 with a core ofm0
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fully connected nodes, whose initial strategy is cooperation. New elements are in-
corporated to the network and attached tom existing nodes with a probability that
depends on the dynamics of each node. The particular dynamics we consider is dic-
tated by the Prisoner’s Dilemma (PD) game [31]. Initially, every node adopts with
the same probability one of the two available strategies, cooperationC or defection
D. At equally spaced time intervals (denoted byτD) each nodei of the network plays
with its ki(t) neighbors and the obtained payoffs are considered to be the measure
of its evolutionary fitness,fi(t). There are three possible situations for each pair
of nodes linked together in the network, as far as the outcomeof the game is con-
cerned:(i) if two cooperators meet, both receiveR, when(ii) two defectors play,
both receiveP, while (iii) if a cooperator and a defector compete, the former re-
ceivesSand the latter obtainsT. The ordering of the four payoffs is the following:
T = b > R= 1 > P = S= 0, where we have fixed the value of the three parameters
as usual [9, 32, 33] when considering the weak Prisoner’s Dilemma game. Thus,
the temptation to defectb remains as the unique free parameter of the dynamics.
After playing, every nodei compares its evolutionary fitness (payoff) with that cor-
responding to a randomly chosen neighborj. Then, if fi(t) ≥ f j(t), nodei keeps its
strategy for the next round of the game, but iff j(t) > fi(t) nodei adopts the strategy
of player j with probability [6, 34, 9, 35, 7, 36, 11]

Pi =
f j(t)− fi(t)

b·max[ki(t),k j(t)]
. (1)

The growth of the network proceeds by adding a new node withm links to the
preexisting ones at equally spaced time intervals (denotedby τT ), and the probability
that a nodei in the network receives one of them new links is

Πi(t) =
1− ε + ε fi(t)

∑N(t)
j=1(1− ε + ε f j(t))

, (2)

whereN(t) is the size of the network at timet, and the parameterε ∈ [0,1) controls
the weight of the fitnessfi(t) [37] during the growth of the network. Provided that
ε > 0, nodes withfi(t) 6= 0 are preferentially chosen.

The growth of the network as defined above is thus linked to theevolutionary
dynamics that is simultaneously evolving in the system, andit is controlled by the
parameterε and also by the two associated time scales (τT andτD). Therefore, equa-
tion 2 can be viewed as an “Evolutionary Preferential Attachment” (EPA) mecha-
nism. Depending on the value ofε, we can have two extreme situations:

(i) Whenε ≃ 0, referred to as theweak selection limit[16], the network growth is
independent of the evolutionary dynamics as all nodes have roughly the same
probability of attracting new links.

(ii )Alternatively, in thestrong selection limit, ε → 1, the fittest players (highest pay-
offs) are much more likely to attract the links from newcomers.

Between the above two situations there is a continuum of intermediate values that
will give rise to a wide range of in-between behaviors.
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Fig. 1 Degree distribution of the topologies created for fixed values of b = 1.5 (Top left) and
b = 2.5 (Top right ), and fixed values ofε = 0.3 (Bottom left) andε = 0.99 (Bottom right ). The
networks are made up ofN = 103 nodes, with〈k〉 = 4, andτD = 10τT . Every point is the average
of 300 independent realizations.

We have carried out numerical simulations of the model exploring the (ε, b)-
space. It is worth mentioning that we have also explored different time relations
τD − τT , but we will focus on the results obtained whenτD/τT > 1, namely, the
network growth is faster than the evolutionary dynamics. SinceτD > τT , the linking
procedure is done with the payoffs obtained the last time thenodes played. All
results reported have been averaged over at least 103 realizations, and the number of
links of a newcomer is taken to bem= 2 (so the average connectivity will be〈k〉),
whereas the size of the initial core ism0 = 3.

3 Degree Distribution and Average Level of Cooperation

The dependence of the degree distribution onε andb is shown in figure 1. As it can
be seen, the weak selection limit produces homogeneous networks characterized by
a tail that decays exponentially fast withk. Alternatively, whenε is large, scale-free
networks arise. Although this might a priori be expected from the definition of the
growth rules, this needs not be the case: indeed, it must be taken into account that
in a one-shot PD game, defection is the best strategy regardless of the opponent’s
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Fig. 2 Color-coded average level of cooperation in the system〈c〉 right at the end of the EPA
procedure, it is to say, when the final size is achieved as a function of the temptation to defectb
and the selection pressureε. The networks are made up of 103 nodes with〈k〉 = 4 andτD = 10τT .
Reprinted from [38].

choice. However, if the network dynamics evolves into a state in which all players
(or a large part of the network) are defectors, they will often play against themselves
and their payoffs will be reduced (we recall thatP = 0). The system’s dynamics
will then end up in a state close to an all-D configuration renderingfi(t) = 0 ∀i
∈ [1,N(t)] in equation 2. From this point on, new nodes would attach randomly to
other existing nodes (see equation 2) and therefore no hubs can come out. This turns
out not to be the case, which indicates that for having some degree of heterogeneity,
a nonzero level of cooperation is needed. Conversely, the heterogeneous character
of the system provides a feedback mechanism for the survivalof cooperators that
would not overcome defectors otherwise.

In figure 1 we also show the dependence of the degree of heterogeneity of the
networks with the temptation to defect, and we found out thatonly in the strong
selection limit, it depends slightly onb. On the other hand, for small values ofε,
there is not any dependence of the degree distribution onb, because in this scenario
the dynamics does not play a relevant role on the attachment,on the contrary, it is
almost random.

Regarding the outcome of the dynamics, we have also represented the average
level of cooperation〈c〉, as a function of the two model parametersε andb. The
figure 2 shows that asε grows for a fixed value ofb & 1, the level of cooperation
increases. In particular, in the strong selection limit〈c〉, the system attains its max-
imum value. This is a somewhat counterintuitive result as inthe limit ε → 1, new
nodes are preferentially linked to those with the highest payoffs, which for the PD
game, should correspond to defectors. However, the population achieves the highest
value of〈c〉. On the other hand, higher levels of cooperation are achieved in hetero-
geneous rather than in homogeneous topologies, which is consistent with previous
findings [9, 10, 11].



Growing networks driven by the Evolutionary Prisoners’s Dilemma game 7

4 Degree Distribution among cooperators

In this section we want to study the dependence between strategy and degree of
connectivity, comparing the results with those obtained for the static SF scenario,
where we recall that cooperators occupy always the highest and medium classes of
connectivity, while defectors are not stable when seating on the hubs ([39]). As we
will show, the interplay between the local structure of the network and the hierarchi-
cal organization of cooperation seems to be highly nontrivial, and quite different to
what has been reported for static scale-free networks [9, 11]. In figure 3 one can see
that, surprisingly enough, as the temptation to defect increases, the likelihood that
cooperators occupy the hubs decreases. Indeed, during network growth, cooperators
are not localized neither at the hubs nor at the lowly connected nodes, but in inter-
mediate degree classes. It is important to realize that thisis a new effect that arises
from the competition between network growth and the evolutionary dynamics. In
particular, it highlights the differences between the microscopic organization in the
steady state for the PD game in static networks and that foundwhen the network is
evolving.

To address this interesting and previously unobserved phenomenon, we have de-
veloped a simple analytical argument that can help understand the reasons behind
it. Let kc

i be the number of cooperator neighbors of a given nodei. Its fitness is
f d
i = bkc

i , if node i is a defector, andf c
i = kc

i , if it is a cooperator. The value ofkc
i

is expected to change because of two factors. On the one hand,due to the network
growth (node accretion flow, at a rate of one new node each timeunit τT ) and on
the other hand, due to imitation processes dictated by equation 1, that take place at
a paceτD. As it has been mentioned before, we will focus on the case in which τD

is much larger thanτT , for now. Thus, the expected increase of fitness is:

∆ fi = ∆ f low fi +∆evol fi , (3)

where∆ f low means the variation of fitness in nodei due to the newcomers flow, and
∆evol stands for the change in fitness due to changes of neighbors’ strategies. The
above expression leads to an expected increase inkc

i given by:

∆kc
i = kc

i (t + τD)−kc
i (t) = ∆ f lowkc

i +∆evolk
c
i . (4)

On the other hand, the expected increase of degree of nodei in the interval of
time (t, t + τD) only has the contribution from newcomer flow, and recalling that
new nodes are generated with the same probability to be cooperators or defectors,
i.e, ρ0 = 0.5, it will take the form:

∆ki = ∆ f lowki = 2∆ f lowkc
i . (5)

If the fitness (hence connectivity) of nodei is high enough to attract a signifi-
cant part of the newcomer flow, the first term in equation 3 dominates at short time
scales, and then the hub degreeki increases exponentially. Connectivity patterns are
then dominated by the growth by preferential attachment, ensuring, as in the BA
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Fig. 3 ProbabilityPc(k) that a node with connectivityk plays as a cooperator for different values
of b in the strong selection limit (ε = 0.99) at the end of the growth of a network withN = 103

nodes and〈k〉 = 4. Reprinted from [38].

model [3], that the network will have a SF degree distribution. Moreover, the rate of
increase of the connectivity:

∆ f lowkc
i =

1
2

mτD
fi

∑ j f j
(6)

is larger for a defector hub by a factorb, because of its larger fitness, and then
one should expect hubs to be mostly defectors, as confirmed bythe results shown
in figure 3. This small set of most connected defector nodes attracts most of the
newcomer flow.

On the contrary, for nodes of intermediate degree, say of connectivitym≪ ki ≪
kmax, the term∆ f low fi in equation 3 can be neglected, in other words, the arrival of
new nodes is a rare event, so for a large time scale, we have that k̇i = 0. Note that
if k̇i(t) = 0 for all t in an intervalt0 ≤ t ≤ t0 + T, the size of the neighborhood is
constant during that whole intervalT, and thus the evolutionary dynamics of strate-
gies through imitation is exclusively responsible for the strategic field configuration
in the neighborhood of nodei. During these periods, the probability distribution of
strategies in the neighborhood of nodei approaches that of a static network. Thus,
recalling that the probability for this nodei of intermediate degree to be a cooperator
is large in the static regime [11], we then arrive to the conclusion that for these nodes
the density of cooperators must reach a maximum, in agreement with figure 3. Of
course, it is clear that this scenario can be occasionally subject to sudden avalanche-
type perturbations following ”punctuated equilibrium” patterns in the rare occasions
in which a new node arrive.

Furthermore, our simulations show that these features of the shape of the curve
Pc(k) are indeed preserved as time goes by, giving further supportto the above
argument based on time scale separation and confirming that our understanding of
the mechanisms at work in the model is correct.
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Fig. 4 (Left ) Clustering coefficientCC as a function ofb andε. (Right) Scaling ofCC with the
network size for several values ofb in the strong selection limit (ε = 0.99). The networks are made
up ofN = 103 nodes and have〈k〉 = 4.

5 Clustering Coefficient and Degree-degree correlations

Apart from the degree distribution, we are also interested in exploring other topo-
logical features emerging from the interaction between network growth and the evo-
lutionary dynamics in our EPA networks. Namely, we will focus on two important
topological measures that describes the existence of nontrivial two-body an three-
body correlations: the degree-degree correlations and theclustering coefficient re-
spectively. We will show that the networks generated by the EPA model display both
hierarchical clustering and disassortative degree-degree correlations.

5.1 Clustering coefficient

The clustering coefficient of a given nodei, cci , expresses the probability that two
neighborsj andm of nodei, are also connected. The value ofcci is obtained by
counting the actual number of edges, denoted byei , in Gi , the subgraph induced by
theki neighbors ofi, and dividing this number by the maximum possible number of
edges inGi :

cci =
2ei

ki(ki −1)
. (7)

The clustering coefficient of a given network,CC is calculated by averaging the
individual values{cci} across the network nodes,CC = ∑i cci/N. Therefore, the
clustering coefficientCC measures the probability that two different neighbors of a
same node, are also connected to each other. In the left panelof figure 4 we show
the value ofCC as a function ofb and ε. In this figure we observed that it is in
the strong selection limit where the largest values ofCC are obtained. Therefore,
in this regime, not only highly heterogeneous networks are obtained but the nodes
also display a large clusterization into neighborhoods of densely connected nodes.
In the right panel of figure 4 we show the scaling of the clustering with the network
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Fig. 5 Dependence of the clustering coefficientCC(k) ∼ k−β with the nodes’ degree for different
values ofb in the strong selection limit (ε = 0.99). The networks are made up ofN = 103 nodes
and have〈k〉 = 4. The straight line is an eye guide that corresponds tok−1. Reprinted from [38].

sizeCC(N) in the strong selection limit. In this case we observe that for b ≥ 2.5
the value ofCC is stationary while whenb < 2.5 the addition of new nodes in the
network tends to decrease its clustering.

We now focus on the dependence of the clustering coefficientCCwith the degree
of the nodes,k, in the strong selection limit (ε = 0.99). Interestingly enough, we
show in figure 5 that the dependence ofCC(k) is consistent with a hierarchical
organization expressed by the power lawCC(k) ∼ k−β , a statistical feature found to
describe many real-world networks [2]. The behavior ofCC(k) in figure 5 can be
understood by recalling that in scale-free networks, cooperators are not extinguished
even for large values ofb if they organize into clusters of cooperators that provide
the group with a stable source of benefits [11]. But to understand this feature in
detail, let’s assume that a new nodej arrives to the network: since the attachment
probability depends on the payoff of the receiver, nodej may link either to a defector
hub or to a node belonging to a cooperator cluster. In the firstscenario, it will receive
less payoff than the hub, so it will sooner or later imitate its strategy, and therefore
will get trapped playing as a defector with a payoff equal tof j = 0. Thus, nodej
will not be able to attract any links during the subsequent network growth. On the
other hand if it attaches to a cooperator cluster and forms a triad withmelements of
the cooperator cluster, two different outcomes are possible, depending on its initial
strategy: if it plays as a defector, the triad may eventuallybe invaded by defectors
an may end up in an state where the nodes have no capacity to receive new links.
But if it plays as a cooperator, the group will be reinforced,both in its robustness
against defector attacks and in its overall fitness to attract new links.

To sum up, playing as a cooperator while taking part in a successful (high fitness)
cooperator cluster reinforces its future success, while playing as a defector under-
mines its future fitness and leads to dynamically and topologically frozen structures
(it is to say, with fi = 0), so defection cannot take long-term advantage from co-
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operator clusters. Therefore, cooperator clusters that emerge from cooperator triads
to which new cooperators are attached can then continue to grow if more coopera-
tors are attracted or even if defectors attach to the nodes whose connectivity verifies
k > mb. Moreover, the stability of cooperator clusters and its global fitness grow
with their size, specially for their members with higher degree, and naturally fa-
vors the formation of triads among its components. Thus, it follows from the above
mechanism that a node of degreek is a vertex of(k−1) triangles, and then

CC(k) =
k−1

k(k−1)/2
= 2/k , (8)

which is exactly the sort of functional form for the clustering coefficient we have
found (figure 5).

5.2 Degree-degree correlations

Now we turn the attention to the degree-degree correlationsof EPA networks.
Degree-degree correlations are defined by the conditional probability, P(k

′
|k), that

a node of degreek is connected with a node of degreek
′
. However, since the com-

putation of this probability yields very noisy results, it is difficult to assess whether
degree-degree correlations exist in a given network topology. A useful measure to
overcome this technical difficulty is to compute the averagedegree of the neighbors
of nodes with degreek, Knn(k), that is related with the probabilityP(k|k

′
) as

Knn(k) = ∑
k′

k
′
P(k

′
|k) . (9)

In networks without degree-degree correlations the function Knn(k) is flat whereas
for degree-degree correlated networks the function is approximated byKnn ∼ kν

and the sign of the exponentν reveals the nature of the correlations. For assortative
networksν > 0 and nodes are connected to neighbors with similar degrees.On the
other hand, for disassortative networksν < 0, and high degree nodes tend to be
surrounded by low degree nodes.

In figure 6 we plot several functionsKnn(k) corresponding to different values of
b in the strong selection limit. We observe that for all the cases there exist nega-
tive correlations that make highly connected nodes to be more likely connected to
poorly connected nodes and viceversa. Therefore the EPA topologies are disassor-
tative while this behavior is enhanced as the temptation to defect,b, increases as
observed from the slope of the curves in the log-log plot. This disassortative nature
of EPA networks will be of relevance when analyzing the results presented in the
following section.
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Fig. 6 Degree-degree correlations among the nodes of the EPA networks. We plot the average
nearest-neighbors degreeKnn(k) of a node of degreek for several values of the parameterb used to
generate the networks. The networks are generated withε = 0.99, and haveN = 4.103 nodes and
〈k〉. Note that negative correlations imply that hubs are not likely to be connected to each other.

6 Dynamics on static networks constructed using the EPA model

Up to this section we have analyzed the topology and the dynamics of the EPA net-
works while the growing process takes place. Now we adopt a different perspective
by considering the networks as static substrates while studying the evolutionary dy-
namics of the nodes. This approach will be done in different ways allowing us to
have a deeper insight on the EPA networks and their robustness.

6.1 Stopping growth and letting evolutionary dynamics evolve

To confirm the robustness of the networks generated by Evolutionary Preferential
Attachment, let us consider the realistic situation in which after incorporating a large
number of participants, the network growth stops when a given sizeN is reached,
and after that, only evolutionary dynamics takes place. Thequestion we aim to ad-
dress here is: will the cooperation observed during the coevolution process resist?

In figure 7, we compare the average level of cooperation〈c〉 when the network
just ceased growing with the same quantity computed after allowing the evolution-
ary dynamics to evolve many more time steps without attaching new nodes,〈c〉∞.
The green area indicates the region of the parameterb where the level of coopera-
tion increases with respect to that at the moment the networkstops growing. On the
contrary, the red zone shows that beyond a certain value,bc, of the temptation to
defect the cooperative behavior does not survive and the system dynamics evolves
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Fig. 7 Degree of cooperation when the last node of the network is incorporated,〈c〉, and the
average fraction of cooperators observed when the system is time-evolved〈c〉∞ after the network
growth ends. The four panels show these measures for several valuesof ε. From top to bottom and
left to right we showε = 0.5, 0.75, 0.9 and 0.99 (strong selection limit. The networks are made up
of N = 103 nodes with〈k〉 = 4 andτD = 10τT . Every point is the average over 103 realizations.

to an all-D state. Surprisingly the cooperation is enhanced by the growth stop for
a wide range ofb values pointing out that the cooperation levels observed during
growth are very robust. Moreover, the value ofbc appears to increase with the in-
tensity of selectionε in agreement with the increase of the degree heterogeneity of
the substrate network. These results highlight the phenomenological difference be-
tween playing the PD game simultaneously to the growth of theunderlying network
and playing on fixed static networks.

6.2 Effects of randomizations in the evolutionary dynamics

Now, in order to gain more insight in the relation between network topology and the
supported level of cooperation, we study the evolution of cooperation when network
growth is stopped and we make different randomizations of both the local structure
and the strategies of the nodes. In particular, in figure 8, weshow the asymptotic
level of cooperation when the following randomizations aremade after the growth
is stopped:(i) the structure of the EPA network is randomized by rewiring its links
while preserving the degree of each node;(ii) the structure of the network is kept in-
tact but the strategies of the nodes are reassigned while preserving the global fraction
of cooperation (strategy randomization); and(iii) when the two former randomiza-
tion procedures are combined.
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Fig. 8 Cooperation levels at the end of the growth process and after letting the network relax
as a function ofb. The original network was grown up toN = 4.103 nodes withε = 0.99 and
〈k〉= 4, and the asymptotic cooperation levels are computed 107 time steps afterwards. Full circles
show the cooperation level when the network stops growing. Theother curves show the asymptotic
cooperation when the structure of the network has been randomized (triangles), when the strategies
of the nodes have been reassigned randomly (squares) and with bothrandomizations processes
(diamonds). Reprinted from [40].

As it can be seen from figure 8, the crucial factor for the cooperation increment
during the size-fixed period of the dynamics is the structureof these EPA networks,
since its randomization leads to an important decrease of cooperation at levels far
away from those of the original one. This drop of cooperationwhen randomizing
the structure is in good agreement with previous findings in complex topologies,
specifically, for static BA networks [35, 41]. On the other hand, the strategy ran-
domization procedure does not prevent high levels of cooperation, thus confirming
that the governing factor of the network behavior is the structure arising from the
co-evolutionary process. Moreover, the asymptotic level of cooperation in this case
(squares in figure 8) is larger that those observed when the network is simply let to
evolve without any randomization (C∞ in figure 7). This result points out that us-
ing a random initial condition for the strategies differs strongly from starting from
a configuration where degrees and strategies are correlatedas a result of the EPA
model (figure 3). We will come back to this point in section 8.

6.3 EPA networks as substrates for evolutionary dynamics

The high levels of cooperation observed when applying a random initial configura-
tion for the strategies to EPA networks motivate the question on whether EPA net-
works are best suited to support cooperative behavior than other well-known mod-
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Fig. 9 Cooperation levels in ER, BA, and our Evolutionary Preferential Attachment network mod-
els, as a function of the temptation parameterb. The EPA network is built up using the model
described in the main text forb = 2.1 andε = 0.99. All networks are made up ofN = 103 nodes,
with 〈k〉 = 4, and every point shown is the average over 103 independent realizations. Reprinted
from [40].

els. In order to answer this question, we consider our EPA networks when used as
static substrates for the evolutionary dynamics and compare with the cases of both
Barab́asi-Albert [3] and Erd̋os-Rényi (ER) [42] graphs. To this aim, we take a par-
ticular example of our model networks, grown withb = 2.1 andε = 0.99, and run
the evolutionary dynamics starting from an initial configuration with 50% coopera-
tors and defectors placed at random. The average level of cooperation as a function
of the temptation to defect is represented in figure 9 together with the diagrams for
BA and ER networks. Surprisingly, the plot shows that the EPAnetwork remarkably
enhances the survival of cooperation for all the values ofb studied. Therefore, the
attachment process followed by EPA networks is seen to be more efficient than the
BA preferential attachment model studied in [9, 11, 14]. Obviously, the roots of this
behavior cannot be found in the degree distribution,P(k), but in the high levels of
clustering [43] and the disassortative mixing [44] shown above.

7 Time evolution of thePc(k) after network growth

As we have already mentioned, it is widely known that SF topologies are able to
sustain higher levels of cooperation than random structures, due to the microscop-
ical organization of the strategies [9, 11]. In particular,it has been shown that in
those heterogeneous settings the hubs always play as cooperators being surrounded
by a unique cluster of cooperators, while defectors cannot take advantage of high
connectivity, and thus occupy medium and low degree classes. Nonetheless, in our
EPA structures, we have observed (section 4) that during network grows, some hubs
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Fig. 10 Probability of being a cooperator as a function of the degreeat the end of the Evolutionary
Preferential Attachment process, 104 time steps later, and 107 time steps later, forb = 2.2 and
ε = 0.99. Reprinted from [40].

play as defectors, thus implying a very different scenario than that of static hetero-
geneous networks.

In this section we turn again to the situation in which the network growth is
stopped (and no randomization is made) to study the roots of the increment of the
asymptotic level of cooperation observed in figure 7. To thisaim we look at the
temporal evolution of the probability that a node of degreek is a cooperator,Pc(k),
once the network growth has ceased. As we have observed in section 4, the growth
process leads to a concentration of cooperators at intermediate degree nodes, ex-
plained from the fact that while the network is growing, newcomers join in with the
same probability of being cooperators or defectors. In thissituation, defectors have
an evolutionary advantage as they get higher payoffs from cooperator newcomers.
Although these cooperators will subsequently change into defectors and stop pro-
viding payoff for the original defector, the stable source of fresh cooperator nodes
entering the network compensates for this effect. However,when the growth stops
while the dynamics continues, we observe from figure 10 that low degree nodes are
rapidly taken over by cooperators, and after 104 time steps they are mainly cooper-
ators. On the contrary, hubs are much more resistant to change, and even after 107

time steps not all of them have changed into cooperators (revealed by those values
Pc(k) = 0 in figure 10).

The persistence of hub defectors is a very striking observation, in contrast with
previous findings in static SF networks [9, 41, 11], for whichhubs are always coop-
erators or, in other words, a defector hub is unstable. This occurs because a defector
seating on a hub will rapidly convert its neighbors to defectors, which in turn leaves
it with zero payoff; subsequently, if one of its neighbors turns back to cooperation,
the hub will eventually follow it. It seems, however, that the coupling of evolution-
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ary game dynamics with the network growth leads to a structural configuration that
stabilizes defection on hubs. The unexpected result that figure 10 shows is that de-
fector hubs can also be asymptotically stable once the network growth has ceased.
Indeed, we have observed in our simulations that hubs are defectors for as long as
the dynamics continues (at least,t = 107 generations after finishing growing the
network). However, it is important to stress that not all realizations of the process
end up with defector hubs. For low values ofb, this is practically never the case
and almost no realizations produce defectors at the hubs, but, asb increases, the
percentage of realizations where this phenomenon is observed increases rapidly.

In section 4 we have discussed why a hub can be a defector whilethe network
is growing, because it takes advantage of the newcomer flow, getting high benefits
from them. Nevertheless, the surprising fact that defectorhubs may have very long
lives on the static regime, may be the relevant feature for the cooperative behavior
of the network resulting from the growth process, and thus itis important to fully
understand the reason for such a slow dynamics. We next analyze this in detail.

8 Microscopic roots of cooperation after network growth

Having identified the coexistence of cooperator and defector hubs, we next study
why this configuration seems to be asymptotically stable andwhy the hubs are not
invaded by opposite strategies. In figure 11 we present the payoffs of cooperators
and defectors as a function of their degree. This plot is taken from a single realization
of the dynamics in which defector and cooperator hubs coexist asymptotically. As
can be seen, the payoff grows approximately as a power law,fk ∼ kα ; however,
the key point here is not this law but the fact that the payoffsfor defectors and
cooperators of the same degree are very similar. In view of the strategy update rule
(equation 1), it becomes clear that the evolution must be very slow. Moreover, if we
take into account the role of the degree in that expression, we see that hubs have a
very low probability to change their strategies, whatever they may be.

Considering now the disassortative nature of the degree-degree correlations (fig-
ure 6) we can explain how these dynamical configurations can be promoted by the
structure of the network. The large dissasortativity of EPAnetworks suggests that
hubs are mostly surrounded by low degree nodes and not directly connected to other
hubs. Instead, the connection with hubs is made in two steps (i.e. via a low degree
node). This local configuration resembles that of the so-called Dipole Model [45], a
configuration in which two hubs (not directly connected) arein contact with a large
amount of common neighbors which in turn are low degree nodes. In this configura-
tion, it can be shown analytically that the two hubs can coexist asymptotically with
opposite strategies, provided that the hub playing as cooperator is in contact with an
additional set of nodes playing as cooperators, for this will provide the hubs with a
stable source of benefits. On the contrary, defector hubs areonly connected to the
set of nodes that are also in contact with the cooperator hubs. In this setting, the
low degree individuals attached to both hubs experience cycles of cooperation and
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10
0

10
1

10
2

k

10
-3

10
-2

10
-1

10
0

10
1

10
2

f k

C
D

Fig. 11 Average payoffs of cooperators and defector nodes at the endof network growth (t = 0) as
a function of their degrees,k, for a realization of the Evolutionary Preferential Attachment model
with b = 1.8. Note that the similarity between cooperators’ and defectors’payoffs implies that
imitation events take place on a long time scale. Reprinted from[40].

defection (we call themfluctuating individuals, because their strategies can never
get fixed) due to the high payoffs obtained by the hubs. If sucha local configuration
for the strategies of hubs and their leaves arises, neither of the two hubs will take
over the set of fluctuating individuals, nor the latter will invade the hubs as they are
mainly lowly connected nodes with small payoffs.

In order to test if the grown networks exhibit local dipole-like structures, we have
measured the connectivity of the neighbors of defector and cooperator hubs, which
we represent in figure 12. The figure undoubtedly shows that highly connected nodes
playing as defectors are mainly connected to poorly connected cooperators (acting
as the set of fluctuating strategists), whereas cooperator hubs are connected to each
other and also to a significant fraction of lowly connected nodes. This fully confirms
that, in contrast to all previous results, there is a structure allowing the resilience of
defector hubs, and moreover, it gives rise to a situation quite similar to that described
by the Dipole Model.

9 Conclusions

In this chapter we have presented a model in which the rules governing the for-
mation of the network are linked to the dynamics of its components. This model
provides an evolutionary explanation for the origin of the two most common types
of networks found in natural systems: when the selection pressure is weak, homoge-
neous networks arise, whereas strong selection pressure gives rise to scale-free net-
works. A remarkable fact is that the proposed evolution rulegives rise to complex
networks that share some topological features with those measured in real systems,
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Fig. 12 Connectivity matrix of cooperators with defectors (Left ) and of cooperators with them-
selves (Right). The element(i, j) is set to 1 (black square in the figure) when a link between a
defector (cooperator) of degreei and a cooperator (cooperator) of degreej exists, respectively.
Reprinted from [40].

such as the power law dependence of the clustering coefficient with the degree of
the nodes. Interestingly, our results shows that the microscopic dynamical organi-
zation of strategists in EPA networks is very different fromthe case in which the
population evolves on static networks. Namely, there can behubs playing as defec-
tors during network growth, while cooperators occupy mainly the middle classes.
It is worth stressing that the level of cooperation during network growth reach the
largest values for the strong selection limit in which the newcomers launch their
links to those fittest elements of the system.

Furthermore, the generated networks are robust in the sensethat after the growth
process stops, the cooperative behavior remains. Moreover, we have shown that for
most cases the cooperative behavior increases when networkgrowth is stopped. We
have also shown that the non-trivial topological patterns of EPA networks are the
roots for such enhancement of the cooperation. In particular, we have shown that
rewiring the links while keeping the degree distribution (thus destroying any kind
of correlations between nodes) yields a dramatic decrease of the levels of coop-
eration. On the other hand, a randomization of the strategies does not affect the
asymptotic levels of cooperation. Therefore, the ability of EPA networks to promote
the resilience of cooperation is rooted in the correlationscreated during network
formation via the coevolution with evolutionary dynamics.

Maybe the most important difference we have found between the evolutionary
dynamics on top of EPA networks and that on top of well-known model networks
is the dynamic stabilization of defectors on hubs, long after the growth has finished.
We have shown that these defector hubs can be extremely long-lived due to the simi-
larity of payoffs between cooperators and defectors arising from the co-evolutionary
process. Moreover, we have been able to link the payoff distribution to the network
structure. In particular, we show that the disassortative nature of EPA networks to-
gether with the formation of local dipole-like structures during network growth is
responsible for the fixation of defection in hubs.
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Finally, the coevolutionary perspective presented in thischapter has focused on
the formation of a complex system rather than being applied to the rewiring of links
in already formed systems. Given the simplicity of the formulation presented here
we thus expect that the model will contribute to explain other realistic scenarios in
which the dynamical states of the constituents of a complex system coevolve with
its formation.
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43. S. Assenza, J. Ǵomez-Gardẽnes, V. Latora, Phys. Rev. E78, 017101 (2008)
44. A. Pusch, S. Weber, M. Porto, Phys. Rev. E77, 036120 (2008)
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