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Abstract In this chapter we present a model of growing networks in Whie at-
tachment of nodes is driven by the dynamical state of thevevgphetwork. In par-
ticular, we study the interplay between form and functiorimynetwork formation
by considering that the capacity of a node to attract newslinbim newcomers de-
pends on a dynamical variable: its evolutionary fitness.fithess of nodes are gov-
erned in turn by the payoff obtained when playing a weak Rgse Dilemma game
with their nearest neighbors. Thus, we couple the strultw@ution of the system
with its evolutionary dynamics which in turns has been shesvdepend strongly
on the structural network patterns. On the one hand, we diotly the levels of
cooperation observed during network evolution and thecgiral outcome of the
model. Our results point out that scale-free networks araarally in this setting
and that they present non-trivial topological attributestsas degree-degree corre-
lations and hierarchical clustering. On the other hand, la@laok at the long-term
survival of the cooperation on top of these networks, oneaytiowth has finished.
This mechanism points to an evolutionary origin of real ctammetworks and can
be straightforwardly applied to other kinds of dynamicaiwaks problems.
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1 Introduction

It has been established that the pattern of interactionsngrtite constituents of
many complex systems can not be accurately described néifHattices or other
uniformly distributed spatial models, nor using mean-fiddnulations. Instead,
they need to be characterized by what is generally known asrglex network
[1, 2]. In many of these networks, the distribution of the rn@mof interactiong,e.
the degree, that an individual shares with the rest of the elements efsiystem,
it is to say,P(k), is found to follow a power-lawP(k) ~ k™Y, with an exponent
2 < y < 3 in most cases. This implies a high heterogeneity in theegedistri-
bution. The ubiquity in Nature of these so-called scale-fi®F) networks has led
scientists to propose many models aimed at reproducingRraegree distribution
[1, 2]. Nonetheless, most of the existing approaches aredbas growth rules that
depend solely on the topological properties of the netwart therefore neglect
the connection between the structural evolution and thecpéar function of the
network or the dynamics that takes place on it. This is the cdshe well-known
Baralasi-Albert (BA) model [3], based on two fundamental ingesds: growth and
preferential attachment. In this model, the new nodes ayeestially added to the
network attaching preferentially to those who have the é#gltonnectivity. How-
ever, it is important to recall that accumulated evidencegest that form follows
function [4] and that the formation of a network is also rethto the dynamical
states of its components through a feedback mechanismhhbpes its structure.
Taking these facts into consideration, one should not igtioe particular dynamics
evolving on top of a network when trying to propose a modeltogrowth. On the
contrary, the outcome of that dynamics should affect somehe development of
the structure.

A paradigmatic case study of the structure and dynamicsraptex systems are
that of social networks. In these systems, it is particylalevant to understand how
cooperative behavior emerges. The mathematical approawbdel the cooperative
versus defective interactions is usually addressed umgegéneral framework of
Evolutionary Game Theory [5, 6, 7] through diverse sociémdimas [8]. In the
general case, it is the individual benefit rather than thealveelfare what drives
the system evolution. The emergence of cooperation in aladund social systems
has been the subject of intense research recently [9, 10,2113, 14, 15, 16, 17,
18, 19]. (see also the recent reviews [20, 21]). These wakdased either on the
assumption of an underlying, given static network (or tvaiist separate networks
for interaction and imitation, respectively) or on a coenmn and rewiring process,
starting from a fully developed network that already in@sall the participating
elements [22, 23, 24, 25, 26, 27] (see also the recent re\d8yy.[As we already
know, it has been shown that if the well-mixed populationdtiyesis is abandoned,
so that individuals only interact with their neighbors, pecation is promoted by
heterogeneity, specifically on SF networks. However, thénmaestions remain
unanswered: Are cooperative behavior and structural ptiegeof networks related
or linked in any way? If so, how? Moreover, if SF networks agstisuited to support
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cooperation, then, where did they come from? What are the amésiins that shape
the structure of the system?

To contribute answering those questions, in this chapteanwadyze the growth
and formation of complex networks lepuplingthe network formation rules to the
dynamical states of the elements of the system. As we haeadyrmentioned,
many mechanisms have been proposed for constructing cerspide-free net-
works similar to those observed in natural, social and teldyical systems from
purely topological arguments (for instance, using a pesfgal attachment rule or
any other rule available in the literature [1, 2]). As thos&ke do not include infor-
mation on the specific function or origin of the network, ivexy difficult to discuss
the origin of the observed networks on the basis of those fepkdence motivating
the question we are going to address. The fact that the mxiapproaches consider
separately the two directions of the feedback loop betwleeffunction and form of
a complex system demands a new mechanism where the netveovk goupled to
the dynamical features of its components. Our aim here istuds a recent attempt
in this direction, by linking the growth of the network to tbdgnamics taking place
among its nodes.

The model combines two ideas in a novel manner: prefereaiiathment and
evolutionary game dynamics. Indeed, with the problem ofdimergence of coop-
eration as a specific application in mind, we consider thatibdes of the network
are individuals involved in a social dilemma and that newemsrare preferentially
linked to nodes with high fitness, the latter being propaouicto the payoffs ob-
tained in the game. In this way, the fitness of an element ismpbsed as an ex-
ternal constraint [29, 30], but rather it is the result of tiy@amical evolution of the
system. At the same time, the network is not exogenously $egp@s a static and
rigid structure on top of which the dynamics evolves, butéad it grows from a
small seed and acquires its structure during its formatroogss. Finally, we stress
that this is not yet another preferential attachment maglete the quantity that
favors linking of new nodes has no direct relation with thetamtaneous topology
of the network. In fact, as we will see, the main result of thigrplay is the for-
mation of homogeneous or heterogeneous networks (depenodirthe values of
the parameters of our system) that share a number of topaldgatures with real
world networks such as a high clustering and degree-degmeelations. Thus, the
model we propose not only explains why heterogeneous nk$veme appropriate to
sustain cooperation, but also provides an evolutionaryhaxgism for their origin.
On the other hand, we will find that there are some importadtaarite surprising
differences between the networks we build using this maed, SF topologies, as
far as the microscopic organization of the dynamics is corezk

2 The model

Our model naturally incorporates an intrinsic feedbackieen dynamics and topol-
ogy. In this way, the growth of the network starts at titne 0 with a core ofmg
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fully connected nodes, whose initial strategy is cooperatNew elements are in-
corporated to the network and attachednexisting nodes with a probability that
depends on the dynamics of each node. The particular dysameiconsider is dic-
tated by the Prisoner’s Dilemma (PD) game [31]. Initiallyesy node adopts with
the same probability one of the two available strategiegpemtionC or defection

D. At equally spaced time intervals (denotedipy each node of the network plays
with its ki (t) neighbors and the obtained payoffs are considered to be ¢lasure

of its evolutionary fitnessfi(t). There are three possible situations for each pair
of nodes linked together in the network, as far as the outoofntlee game is con-
cerned:(i) if two cooperators meet, both receif® when (ii) two defectors play,
both receiveP, while (iii) if a cooperator and a defector compete, the former re-
ceivesS and the latter obtaing. The ordering of the four payoffs is the following:

T =b>R=1>P=S=0, where we have fixed the value of the three parameters
as usual [9, 32, 33] when considering the weak Prisonersniha game. Thus,
the temptation to defedi remains as the unique free parameter of the dynamics.
After playing, every nodécompares its evolutionary fitness (payoff) with that cor-
responding to a randomly chosen neighlpofhen, if fi(t) > fj(t), nodei keeps its
strategy for the next round of the game, butjift) > fi(t) nodei adopts the strategy

of playerj with probability [6, 34, 9, 35, 7, 36, 11]

fj(t) — fi(t)

P= ! . 1

' b-maxk(t),kj(t)] @
The growth of the network proceeds by adding a new node mitimks to the

preexisting ones at equally spaced time intervals (dermteg), and the probability
that a node in the network receives one of tihhenew links is

o 1-e+efi(t)
[Ti(t) zlj\l:(tl)(l_g%-(‘Ifi(t))7

(@)

whereN(t) is the size of the network at timieand the parametere [0, 1) controls
the weight of the fitnes$ (t) [37] during the growth of the network. Provided that
€ > 0, nodes withfi(t) # 0 are preferentially chosen.

The growth of the network as defined above is thus linked toetlodutionary
dynamics that is simultaneously evolving in the system, iarglcontrolled by the
parametet and also by the two associated time scatesahd1p). Therefore, equa-
tion 2 can be viewed as arEVolutionary Preferential AttachmeéntEPA) mecha-
nism. Depending on the value of we can have two extreme situations:

(i) Whene ~ 0, referred to as theveak selection limif16], the network growth is
independent of the evolutionary dynamics as all nodes hawghly the same
probability of attracting new links.

(ih)Alternatively, in thestrong selection limjte — 1, the fittest players (highest pay-
offs) are much more likely to attract the links from newcomer

Between the above two situations there is a continuum ofrirgdiate values that
will give rise to a wide range of in-between behaviors.
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Fig. 1 Degree distribution of the topologies created for fixed valoéb = 1.5 (Top left) and
b= 2.5 (Top right), and fixed values of = 0.3 (Bottom left) ande = 0.99 (Bottom right). The
networks are made up &f = 10° nodes, with(k) = 4, andtp = 10t7. Every point is the average
of 300 independent realizations.

We have carried out numerical simulations of the model expiothe €, b)-
space. It is worth mentioning that we have also explorededdfit time relations
Tp — T7, but we will focus on the results obtained whesy/tr > 1, namely, the
network growth is faster than the evolutionary dynamicec8ip > 17, the linking
procedure is done with the payoffs obtained the last timenibaes played. All
results reported have been averaged over at ledsealizations, and the number of
links of a newcomer is taken to lme= 2 (so the average connectivity will H&)),
whereas the size of the initial coreng = 3.

3 Degree Distribution and Average Level of Cooperation

The dependence of the degree distributiore@mdb is shown in figure 1. As it can
be seen, the weak selection limit produces homogeneousnetwharacterized by
a tail that decays exponentially fast wkhAlternatively, where is large, scale-free
networks arise. Although this might a priori be expectedrfithie definition of the

growth rules, this needs not be the case: indeed, it mustkea iato account that
in a one-shot PD game, defection is the best strategy rexsasrdif the opponent’s
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Fig. 2 Color-coded average level of cooperation in the systenright at the end of the EPA
procedure, it is to say, when the final size is achieved as aifumof the temptation to defedt
and the selection pressugeThe networks are made up oflBodes with(k) = 4 andtp = 10t7.
Reprinted from [38].

choice. However, if the network dynamics evolves into aestatwhich all players
(or a large part of the network) are defectors, they will ofiéay against themselves
and their payoffs will be reduced (we recall tHat= 0). The system’s dynamics
will then end up in a state close to an Blleonfiguration renderindj(t) = 0 Vi

€ [1,N(t)] in equation 2. From this point on, new nodes would attachsary to
other existing nodes (see equation 2) and therefore no lawbsame out. This turns
out not to be the case, which indicates that for having sorgesgeof heterogeneity,
a nonzero level of cooperation is needed. Conversely, tterdgeneous character
of the system provides a feedback mechanism for the surefvaboperators that
would not overcome defectors otherwise.

In figure 1 we also show the dependence of the degree of heteeiy of the
networks with the temptation to defect, and we found out trdy in the strong
selection limit, it depends slightly om. On the other hand, for small values &f
there is not any dependence of the degree distributidn because in this scenario
the dynamics does not play a relevant role on the attachroerthe contrary, it is
almost random.

Regarding the outcome of the dynamics, we have also refesstme average
level of cooperation(c), as a function of the two model parameterandb. The
figure 2 shows that as grows for a fixed value ob = 1, the level of cooperation
increases. In particular, in the strong selection lifojt the system attains its max-
imum value. This is a somewhat counterintuitive result athénlimit € — 1, new
nodes are preferentially linked to those with the highegbfifa, which for the PD
game, should correspond to defectors. However, the papulathieves the highest
value of{c). On the other hand, higher levels of cooperation are actiievketero-
geneous rather than in homogeneous topologies, which Estent with previous
findings [9, 10, 11].
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4 Degree Distribution among cooperators

In this section we want to study the dependence betweeregyraind degree of
connectivity, comparing the results with those obtainettiie static SF scenario,
where we recall that cooperators occupy always the higmestreedium classes of
connectivity, while defectors are not stable when seatmthe hubs ([39]). As we
will show, the interplay between the local structure of teewvork and the hierarchi-
cal organization of cooperation seems to be highly nortfiand quite different to
what has been reported for static scale-free networks [9)ifigure 3 one can see
that, surprisingly enough, as the temptation to defecteases, the likelihood that
cooperators occupy the hubs decreases. Indeed, duringnkegvowth, cooperators
are not localized neither at the hubs nor at the lowly coretenbdes, but in inter-
mediate degree classes. It is important to realize thaigtdasew effect that arises
from the competition between network growth and the evohary dynamics. In
particular, it highlights the differences between the wsécopic organization in the
steady state for the PD game in static networks and that fadnssh the network is
evolving.

To address this interesting and previously unobservedgrhenon, we have de-
veloped a simple analytical argument that can help undwaidtse reasons behind
it. Let k® be the number of cooperator neighbors of a given nodes fitness is
fd = b, if nodei is a defector, and® = k¢, if it is a cooperator. The value &f
is expected to change because of two factors. On the one tiaedo the network
growth (node accretion flow, at a rate of one new node each uimitert) and on
the other hand, due to imitation processes dictated by mouaf that take place at
a pacerp. As it has been mentioned before, we will focus on the casehiciwrp
is much larger thamr, for now. Thus, the expected increase of fithess is:

Afi = Aiow i + Devali, (3

whereA¢ o means the variation of fitness in nodgue to the newcomers flow, and
Aeyo) Stands for the change in fithess due to changes of neighliomggies. The
above expression leads to an expected increalgegiven by:

AK =K (t+ 1) — K (t) = Afiowk + Aevolk{” @)

On the other hand, the expected increase of degree of inodine interval of
time (t,t + o) only has the contribution from newcomer flow, and recallihgtt
new nodes are generated with the same probability to be catope or defectors,
i.e, pp = 0.5, it will take the form:

Ak = Atiowki = 2410wk’ 5)

If the fitness (hence connectivity) of nodés high enough to attract a signifi-
cant part of the newcomer flow, the first term in equation 3 chati@s at short time
scales, and then the hub degkeancreases exponentially. Connectivity patterns are
then dominated by the growth by preferential attachmerdueng, as in the BA
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Fig. 3 ProbabilityP:(k) that a node with connectivitlg plays as a cooperator for different values
of b in the strong selection limits(= 0.99) at the end of the growth of a network with= 10°
nodes andk) = 4. Reprinted from [38].

model [3], that the network will have a SF degree distributioreover, the rate of
increase of the connectivity:

fi
Yifi

is larger for a defector hub by a factbr because of its larger fitness, and then
one should expect hubs to be mostly defectors, as confirméldebsesults shown
in figure 3. This small set of most connected defector nodeacés most of the
newcomer flow.

On the contrary, for nodes of intermediate degree, say aietivity m < ki <
Kmax the termAy oy fi in equation 3 can be neglected, in other words, the arrival of
new nodes is a rare event, so for a large time scale, we hat/k theD. Note that
if ki(t) =0 for allt in an intervalty <t <tp+ T, the size of the neighborhood is
constant during that whole interval and thus the evolutionary dynamics of strate-
gies through imitation is exclusively responsible for tirategic field configuration
in the neighborhood of node During these periods, the probability distribution of
strategies in the neighborhood of nadepproaches that of a static network. Thus,
recalling that the probability for this nodef intermediate degree to be a cooperator
is large in the static regime [11], we then arrive to the cosidn that for these nodes
the density of cooperators must reach a maximum, in agreewitnfigure 3. Of
course, itis clear that this scenario can be occasionatljestito sudden avalanche-
type perturbations following "punctuated equilibriumtgans in the rare occasions
in which a new node arrive.

Furthermore, our simulations show that these featureseo$itiape of the curve
P:(k) are indeed preserved as time goes by, giving further sugpdiie above
argument based on time scale separation and confirming thatalerstanding of
the mechanisms at work in the model is correct.

(6)

1
Ationk = émTD
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Fig. 4 (Left) Clustering coefficien€C as a function ob ande¢. (Right) Scaling ofCC with the
network size for several values lofn the strong selection limite(= 0.99). The networks are made
up of N = 10° nodes and havé) = 4.

5 Clustering Coefficient and Degree-degree correlations

Apart from the degree distribution, we are also interesteelxploring other topo-
logical features emerging from the interaction betweewast growth and the evo-
lutionary dynamics in our EPA networks. Namely, we will fecon two important
topological measures that describes the existence ofimiahtwo-body an three-
body correlations: the degree-degree correlations andltiséering coefficient re-
spectively. We will show that the networks generated by th& Ehodel display both
hierarchical clustering and disassortative degree-gegperelations.

5.1 Clustering coefficient

The clustering coefficient of a given nodecg, expresses the probability that two
neighborsj andm of nodei, are also connected. The valueaxf is obtained by
counting the actual number of edges, denoteé;bin ¢, the subgraph induced by
thek; neighbors of, and dividing this number by the maximum possible number of
edges ing: )
S

RCTCE T g
The clustering coefficient of a given netwo®C is calculated by averaging the
individual values{cg} across the network nodeSC = ¥;cG/N. Therefore, the
clustering coefficien€C measures the probability that two different neighbors of a
same node, are also connected to each other. In the left pifiglre 4 we show
the value ofCC as a function ob ande¢. In this figure we observed that it is in
the strong selection limit where the largest value€G6fare obtained. Therefore,
in this regime, not only highly heterogeneous networks &tained but the nodes
also display a large clusterization into neighborhoodsesfsgly connected nodes.
In the right panel of figure 4 we show the scaling of the clustewith the network
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Fig. 5 Dependence of the clustering coeffici@@(k) ~ k—# with the nodes’ degree for different
values ofb in the strong selection limits(= 0.99). The networks are made up Nf= 10° nodes
and havek) = 4. The straight line is an eye guide that corresponds to Reprinted from [38].

sizeCC(N) in the strong selection limit. In this case we observe thatbfe 2.5
the value ofCC is stationary while whet < 2.5 the addition of new nodes in the
network tends to decrease its clustering.

We now focus on the dependence of the clustering coeffi€i€with the degree
of the nodesk, in the strong selection limite(= 0.99). Interestingly enough, we
show in figure 5 that the dependenceQE(k) is consistent with a hierarchical
organization expressed by the power @@(k) ~ k~#, a statistical feature found to
describe many real-world networks [2]. The behavioCaf(k) in figure 5 can be
understood by recalling that in scale-free networks, coatpes are not extinguished
even for large values df if they organize into clusters of cooperators that provide
the group with a stable source of benefits [11]. But to underbtthis feature in
detail, let's assume that a new nogarrives to the network: since the attachment
probability depends on the payoff of the receiver, npdey link either to a defector
hub or to a node belonging to a cooperator cluster. In thesftestario, it will receive
less payoff than the hub, so it will sooner or later imitagesitrategy, and therefore
will get trapped playing as a defector with a payoff equafite= 0. Thus, nodg
will not be able to attract any links during the subsequemivaek growth. On the
other hand if it attaches to a cooperator cluster and formacwith m elements of
the cooperator cluster, two different outcomes are passitdpending on its initial
strategy: if it plays as a defector, the triad may eventuiadlyinvaded by defectors
an may end up in an state where the nodes have no capacityeivaeew links.
But if it plays as a cooperator, the group will be reinforckdth in its robustness
against defector attacks and in its overall fitness to dttrew links.

To sum up, playing as a cooperator while taking part in a ssfaé(high fitness)
cooperator cluster reinforces its future success, whagipyy as a defector under-
mines its future fithess and leads to dynamically and topcédly frozen structures
(it is to say, withf; = 0), so defection cannot take long-term advantage from co-
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operator clusters. Therefore, cooperator clusters thatgafrom cooperator triads
to which new cooperators are attached can then continuete ifmore coopera-

tors are attracted or even if defectors attach to the nodesevtonnectivity verifies

k > mh Moreover, the stability of cooperator clusters and itdglditness grow

with their size, specially for their members with higher gy and naturally fa-

vors the formation of triads among its components. Thus|libdvs from the above

mechanism that a node of degteis a vertex of(k— 1) triangles, and then

CC(k) = - k=1

K-z~ % ®

which is exactly the sort of functional form for the clustegicoefficient we have
found (figure 5).

5.2 Degree-degree correlations

Now we turn the attention to the degree-degree correlat@nEPA networks.
Degree-degree correlations are defined by the conditiandiability, P(k’\k), that
a node of degrek is connected with a node of degrke'e However, since the com-
putation of this probability yields very noisy results,stdifficult to assess whether
degree-degree correlations exist in a given network tapold useful measure to
overcome this technical difficulty is to compute the averdggree of the neighbors
of nodes with degrele, Knn(K), that is related with the probabilify(k|K ) as

Knn(K) = Zk’P(k’uo : 9)
K

In networks without degree-degree correlations the fondti (k) is flat whereas
for degree-degree correlated networks the function isa@mated byK,, ~ k¥
and the sign of the exponentreveals the nature of the correlations. For assortative
networksv > 0 and nodes are connected to neighbors with similar degBeethe
other hand, for disassortative networks< 0, and high degree nodes tend to be
surrounded by low degree nodes.

In figure 6 we plot several function&n(k) corresponding to different values of
b in the strong selection limit. We observe that for all theesathere exist nega-
tive correlations that make highly connected nodes to beerfikely connected to
poorly connected nodes and viceversa. Therefore the ERf\dgies are disassor-
tative while this behavior is enhanced as the temptatiorefed, b, increases as
observed from the slope of the curves in the log-log plotsThisassortative nature
of EPA networks will be of relevance when analyzing the ressptesented in the
following section.
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Fig. 6 Degree-degree correlations among the nodes of the EPA retwdfe plot the average
nearest-neighbors degrigs (k) of a node of degrelefor several values of the paramebeaused to
generate the networks. The networks are generatedewitld.99, and havéN = 4.10° nodes and
(k). Note that negative correlations imply that hubs are notylikebe connected to each other.

6 Dynamics on static networks constructed using the EPA model

Up to this section we have analyzed the topology and the digsaofithe EPA net-
works while the growing process takes place. Now we adopffereint perspective
by considering the networks as static substrates whileystgdhe evolutionary dy-
namics of the nodes. This approach will be done in differeaysvallowing us to
have a deeper insight on the EPA networks and their robustnes

6.1 Stopping growth and letting evolutionary dynamics ewlv

To confirm the robustness of the networks generated by Heokity Preferential
Attachment, let us consider the realistic situation in vataéter incorporating a large
number of participants, the network growth stops when argsieeN is reached,
and after that, only evolutionary dynamics takes place. duestion we aim to ad-
dress here is: will the cooperation observed during theaa&en process resist?
In figure 7, we compare the average level of cooperaf@mwhen the network
just ceased growing with the same quantity computed aftewelg the evolution-
ary dynamics to evolve many more time steps without attachew nodes(c).
The green area indicates the region of the parantetdrere the level of coopera-
tion increases with respect to that at the moment the netatogs growing. On the
contrary, the red zone shows that beyond a certain valyef the temptation to
defect the cooperative behavior does not survive and theraydynamics evolves
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Fig. 7 Degree of cooperation when the last node of the network isrjiuzated,(c), and the
average fraction of cooperators observed when the system isetioleed(c).. after the network
growth ends. The four panels show these measures for several ghtudgom top to bottom and
left to right we showe = 0.5, 0.75, Q9 and 099 (strong selection limit. The networks are made up
of N = 10° nodes with(k) = 4 andtp = 10t7. Every point is the average overlealizations.

to an allD state. Surprisingly the cooperation is enhanced by the tretop for

a wide range ob values pointing out that the cooperation levels observethgu
growth are very robust. Moreover, the valuelpfappears to increase with the in-
tensity of selectiorg in agreement with the increase of the degree heterogerfeity o
the substrate network. These results highlight the phenotogical difference be-
tween playing the PD game simultaneously to the growth ofitiderlying network
and playing on fixed static networks.

6.2 Effects of randomizations in the evolutionary dynamics

Now, in order to gain more insight in the relation betweemoek topology and the
supported level of cooperation, we study the evolution opavation when network
growth is stopped and we make different randomizations tf b local structure
and the strategies of the nodes. In particular, in figure 8sha@v the asymptotic
level of cooperation when the following randomizations @u@de after the growth
is stopped(i) the structure of the EPA network is randomized by rewirisdiitks
while preserving the degree of each noii¢;the structure of the network is kept in-
tact but the strategies of the nodes are reassigned whéemiag the global fraction
of cooperation (strategy randomization); gii when the two former randomiza-
tion procedures are combined.
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Fig. 8 Cooperation levels at the end of the growth process and aftiéngd the network relax
as a function ob. The original network was grown up 18 = 4.10° nodes withe = 0.99 and
(k) = 4, and the asymptotic cooperation levels are computédirt@ steps afterwards. Full circles
show the cooperation level when the network stops growing ofiner curves show the asymptotic
cooperation when the structure of the network has been razeédrtriangles), when the strategies
of the nodes have been reassigned randomly (squares) and withalpoibmizations processes
(diamonds). Reprinted from [40].

As it can be seen from figure 8, the crucial factor for the coafen increment
during the size-fixed period of the dynamics is the structiditbese EPA networks,
since its randomization leads to an important decrease aferation at levels far
away from those of the original one. This drop of cooperatidren randomizing
the structure is in good agreement with previous findingsommex topologies,
specifically, for static BA networks [35, 41]. On the othenbathe strategy ran-
domization procedure does not prevent high levels of cadjmer, thus confirming
that the governing factor of the network behavior is thectme arising from the
co-evolutionary process. Moreover, the asymptotic lefeboperation in this case
(squares in figure 8) is larger that those observed when tfweorieis simply let to
evolve without any randomizatiorC{ in figure 7). This result points out that us-
ing a random initial condition for the strategies differosgly from starting from
a configuration where degrees and strategies are correatadesult of the EPA
model (figure 3). We will come back to this point in section 8.

6.3 EPA networks as substrates for evolutionary dynamics

The high levels of cooperation observed when applying agamititial configura-
tion for the strategies to EPA networks motivate the quesbio whether EPA net-
works are best suited to support cooperative behavior thzr avell-known mod-
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Fig. 9 Cooperation levels in ER, BA, and our Evolutionary Prefésittachment network mod-
els, as a function of the temptation parameiehe EPA network is built up using the model
described in the main text fdr= 2.1 ands = 0.99. All networks are made up &f = 10° nodes,
with (k) = 4, and every point shown is the average ovet ibllependent realizations. Reprinted
from [40].

2.5

els. In order to answer this question, we consider our EP#arés when used as
static substrates for the evolutionary dynamics and coenpéth the cases of both
Baralasi-Albert [3] and Erds-Réyi (ER) [42] graphs. To this aim, we take a par-
ticular example of our model networks, grown whh= 2.1 ande = 0.99, and run
the evolutionary dynamics starting from an initial configtion with 50% coopera-
tors and defectors placed at random. The average level pecation as a function
of the temptation to defect is represented in figure 9 togetiith the diagrams for
BA and ER networks. Surprisingly, the plot shows that the BBAvork remarkably
enhances the survival of cooperation for all the valuelk studied. Therefore, the
attachment process followed by EPA networks is seen to be efticient than the
BA preferential attachment model studied in [9, 11, 14]. Bbsly, the roots of this
behavior cannot be found in the degree distributiefk), but in the high levels of
clustering [43] and the disassortative mixing [44] shown\ah

7 Time evolution of the P;(k) after network growth

As we have already mentioned, it is widely known that SF togials are able to
sustain higher levels of cooperation than random strusfutee to the microscop-
ical organization of the strategies [9, 11]. In particulaihas been shown that in
those heterogeneous settings the hubs always play as etansdreing surrounded
by a unique cluster of cooperators, while defectors caral@ advantage of high
connectivity, and thus occupy medium and low degree cladsmsetheless, in our
EPA structures, we have observed (section 4) that duringanktgrows, some hubs
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Fig. 10 Probability of being a cooperator as a function of the degtdke end of the Evolutionary
Preferential Attachment process,*1fime steps later, and 1Gime steps later, fob = 2.2 and
£ =0.99. Reprinted from [40].

play as defectors, thus implying a very different scendramtthat of static hetero-
geneous networks.

In this section we turn again to the situation in which thewmek growth is
stopped (and no randomization is made) to study the rootseoiiiicrement of the
asymptotic level of cooperation observed in figure 7. To #im we look at the
temporal evolution of the probability that a node of dedtéga cooperator:(k),
once the network growth has ceased. As we have observedtiorsécthe growth
process leads to a concentration of cooperators at intéateedegree nodes, ex-
plained from the fact that while the network is growing, neweers join in with the
same probability of being cooperators or defectors. Inghigtion, defectors have
an evolutionary advantage as they get higher payoffs froopemtor newcomers.
Although these cooperators will subsequently change iefeadors and stop pro-
viding payoff for the original defector, the stable sourédresh cooperator nodes
entering the network compensates for this effect. Howevken the growth stops
while the dynamics continues, we observe from figure 10 thatdegree nodes are
rapidly taken over by cooperators, and aftef filhe steps they are mainly cooper-
ators. On the contrary, hubs are much more resistant to ehang even after 10
time steps not all of them have changed into cooperatoredted by those values
P:(k) = 0 in figure 10).

The persistence of hub defectors is a very striking obsiemvain contrast with
previous findings in static SF networks [9, 41, 11], for whielbs are always coop-
erators or, in other words, a defector hub is unstable. T¢gsrs because a defector
seating on a hub will rapidly convert its neighbors to dedestwhich in turn leaves
it with zero payoff; subsequently, if one of its neighbormtback to cooperation,
the hub will eventually follow it. It seems, however, tha¢ ttoupling of evolution-
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ary game dynamics with the network growth leads to a strattianfiguration that
stabilizes defection on hubs. The unexpected result thatefigj0 shows is that de-
fector hubs can also be asymptotically stable once the mktgrowth has ceased.
Indeed, we have observed in our simulations that hubs aextde$ for as long as
the dynamics continues (at least= 10’ generations after finishing growing the
network). However, it is important to stress that not allizions of the process
end up with defector hubs. For low valueshyfthis is practically never the case
and almost no realizations produce defectors at the hubbsabb increases, the
percentage of realizations where this phenomenon is obdénereases rapidly.

In section 4 we have discussed why a hub can be a defector thkileetwork
is growing, because it takes advantage of the newcomer fletting high benefits
from them. Nevertheless, the surprising fact that defenttyss may have very long
lives on the static regime, may be the relevant feature ferctioperative behavior
of the network resulting from the growth process, and thus inportant to fully
understand the reason for such a slow dynamics. We nextzntilis in detail.

8 Microscopic roots of cooperation after network growth

Having identified the coexistence of cooperator and defduibs, we next study
why this configuration seems to be asymptotically stablevelmglthe hubs are not
invaded by opposite strategies. In figure 11 we present thefiseof cooperators
and defectors as a function of their degree. This plot istéiten a single realization
of the dynamics in which defector and cooperator hubs coasigmptotically. As
can be seen, the payoff grows approximately as a power filaw, k%; however,
the key point here is not this law but the fact that the payfifsdefectors and
cooperators of the same degree are very similar. In viewentrategy update rule
(equation 1), it becomes clear that the evolution must bg slexwv. Moreover, if we
take into account the role of the degree in that expressiersee that hubs have a
very low probability to change their strategies, whateteytmay be.

Considering now the disassortative nature of the degrgesdecorrelations (fig-
ure 6) we can explain how these dynamical configurations egorémoted by the
structure of the network. The large dissasortativity of Biaworks suggests that
hubs are mostly surrounded by low degree nodes and notlglioectnected to other
hubs. Instead, the connection with hubs is made in two stepwi@ a low degree
node). This local configuration resembles that of the steddipole Model [45], a
configuration in which two hubs (not directly connected)iareontact with a large
amount of common neighbors which in turn are low degree nddekis configura-
tion, it can be shown analytically that the two hubs can cgieagymptotically with
opposite strategies, provided that the hub playing as catges in contact with an
additional set of nodes playing as cooperators, for thispudvide the hubs with a
stable source of benefits. On the contrary, defector huberdyeconnected to the
set of nodes that are also in contact with the cooperator.Hualthis setting, the
low degree individuals attached to both hubs experienckesyaf cooperation and
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Fig. 11 Average payoffs of cooperators and defector nodes at thefametwork growth { = 0) as
a function of their degreeg, for a realization of the Evolutionary Preferential Attasént model
with b = 1.8. Note that the similarity between cooperators’ and defecqagoffs implies that
imitation events take place on a long time scale. Reprinted fA@

defection (we call thenfluctuating individuals because their strategies can never
get fixed) due to the high payoffs obtained by the hubs. If suldtal configuration
for the strategies of hubs and their leaves arises, neithttieadwo hubs will take
over the set of fluctuating individuals, nor the latter wilVade the hubs as they are
mainly lowly connected nodes with small payoffs.

In order to test if the grown networks exhibit local dipoikel structures, we have
measured the connectivity of the neighbors of defector aoperator hubs, which
we represent in figure 12. The figure undoubtedly shows tigaty\connected nodes
playing as defectors are mainly connected to poorly comaecboperators (acting
as the set of fluctuating strategists), whereas cooperatiy &ire connected to each
other and also to a significant fraction of lowly connectedew This fully confirms
that, in contrast to all previous results, there is a stmecliowing the resilience of
defector hubs, and moreover, it gives rise to a situatiotecgiimilar to that described
by the Dipole Model.

9 Conclusions

In this chapter we have presented a model in which the rulesrgimg the for-

mation of the network are linked to the dynamics of its congyda. This model

provides an evolutionary explanation for the origin of th® tmost common types
of networks found in natural systems: when the selectioague is weak, homoge-
neous networks arise, whereas strong selection pressig®rige to scale-free net-
works. A remarkable fact is that the proposed evolution giNes rise to complex
networks that share some topological features with thosesaored in real systems,
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Fig. 12 Connectivity matrix of cooperators with defectots{t) and of cooperators with them-
selves Right). The elementi, j) is set to 1 (black square in the figure) when a link between a
defector (cooperator) of degréeand a cooperator (cooperator) of degieexists, respectively.
Reprinted from [40].

such as the power law dependence of the clustering coeffigigm the degree of
the nodes. Interestingly, our results shows that the méoqis dynamical organi-
zation of strategists in EPA networks is very different frtime case in which the
population evolves on static networks. Namely, there canutis playing as defec-
tors during network growth, while cooperators occupy mathke middle classes.
It is worth stressing that the level of cooperation duringuaek growth reach the
largest values for the strong selection limit in which thevaemers launch their
links to those fittest elements of the system.

Furthermore, the generated networks are robust in the desisafter the growth
process stops, the cooperative behavior remains. Morewednave shown that for
most cases the cooperative behavior increases when negwawkh is stopped. We
have also shown that the non-trivial topological patterhERA networks are the
roots for such enhancement of the cooperation. In particula have shown that
rewiring the links while keeping the degree distributionug destroying any kind
of correlations between nodes) yields a dramatic decreb®edevels of coop-
eration. On the other hand, a randomization of the strezed@es not affect the
asymptotic levels of cooperation. Therefore, the abilftiZBA networks to promote
the resilience of cooperation is rooted in the correlatioreated during network
formation via the coevolution with evolutionary dynamics.

Maybe the most important difference we have found betweerettolutionary
dynamics on top of EPA networks and that on top of well-knowsdei networks
is the dynamic stabilization of defectors on hubs, longrdfte growth has finished.
We have shown that these defector hubs can be extremelyil@tdue to the simi-
larity of payoffs between cooperators and defectors ayisiom the co-evolutionary
process. Moreover, we have been able to link the payoffidigton to the network
structure. In particular, we show that the disassortatateine of EPA networks to-
gether with the formation of local dipole-like structuragricig network growth is
responsible for the fixation of defection in hubs.
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Finally, the coevolutionary perspective presented in ¢thiapter has focused on
the formation of a complex system rather than being apptiede rewiring of links
in already formed systems. Given the simplicity of the folation presented here
we thus expect that the model will contribute to explain ottealistic scenarios in
which the dynamical states of the constituents of a compjstem coevolve with
its formation.
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