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Abstract

This manuscript is a brief summary of a talk designed to address the question of whether
two of the pillars of the "eld of phase transitions and critical phenomena—scale invariance
and universality—can be useful in guiding research on interpreting empirical data on economic
!uctuations. Using this conceptual framework as a guide, we empirically quantify the relation
between trading activity—measured by the number of transactions N—and the price change G(t)
for a given stock, over a time interval [t; t + #t]. We relate the time-dependent standard de-
viation of price changes—volatility—to two microscopic quantities: the number of transactions
N (t) in #t and the variance W 2(t) of the price changes for all transactions in #t. We "nd
that the long-ranged volatility correlations are largely due to those of N . We then argue that the
tail-exponent of the distribution of N is insu$cient to account for the tail-exponent of P{G¿x}.
Since N and W display only weak inter-dependency, our results show that the fat tails of the
distribution P{G¿x} arises from W . Finally, we review recent work on quantifying collective
behavior among stocks by applying the conceptual framework of random matrix theory (RMT).
RMT makes predictions for “universal” properties that do not depend on the interactions be-
tween the elements comprising the system, and deviations from RMT provide clues regarding
system-speci"c properties. We compare the statistics of the cross-correlation matrix C—whose
elements Cij are the correlation coe$cients of price !uctuations of stock i and j—against a
random matrix having the same symmetry properties. It is found that RMT methods can distin-
guish random and non-random parts of C. The non-random part of C which deviates from RMT
results, provides information regarding genuine collective behavior among stocks. We also discuss
results that are reminiscent of phase transitions in spin systems, where the divergent behavior of
the response function at the critical point (zero magnetic "eld) leads to large !uctuations, and
we discuss a curious “symmetry breaking”, a feature qualitatively identical to the behavior of
the probability density of the magnetization for "xed values of the inverse temperature. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, physicists have started applying concepts and methods of statistical
physics to study economic problems. The word “Econophysics” is sometimes used
to refer to this work. Much recent work is focused on understanding the statistical
properties of "nancial time series. One reason for this interest is that "nancial markets
are examples of complex interacting systems for which huge amounts of data exist and
it is possible that "nancial time series viewed from a di&erent perspective might yield
new results. This article reviews the results of several recent studies, with emphasis on
studies carried out by the authors.
(i) The probability distribution of stock price "uctuations. Stock price !uctuations

occur in all magnitudes, in analogy to earthquakes—from tiny !uctuations to drastic
events, such as market crashes. The distribution of price !uctuations decays with a
power-law tail well outside the L%evy stable regime and describes !uctuations that
di&er by as much as 8 orders of magnitude. In addition, this distribution preserves its
functional form for !uctuations on time scales that di&er by 3 orders of magnitude,
from 1 min up to approximately 10 days.
(ii) Correlations in #nancial time series. While price !uctuations themselves have

rapidly decaying correlations, the magnitude of !uctuations measured by either the
absolute value or the square of the price !uctuations has correlations that decay as a
power-law and persist for several months.
(iii) Correlations among di$erent companies. The third result bears on the appli-

cation of random matrix theory to understand the correlations among price !uctua-
tions of any two di&erent stocks. From a study of the eigenvalue statistics of the
cross-correlation matrix constructed from price !uctuations of the leading 1000 stocks,
we "nd that the largest ≈ 5% of the eigenvalues and the corresponding eigenvectors
show systematic deviations from the predictions for a random matrix, whereas the rest
of the eigenvalues conform to random matrix behavior—suggesting that these 5% of
the eigenvalues contain system-speci"c information about correlated time evolution of
di&erent companies.
(iv) Similarities with critical point phenomena. We also discuss results that are

reminiscent of phase transitions in spin systems, where the divergent behavior of the
response function at the critical point (zero magnetic "eld) leads to large !uctuations.
In particular, we discuss a curious “symmetry breaking” for values of ! above a certain
threshold value !c; here ! is de"ned to be the local "rst moment of the probability
distribution of demand "—the di&erence between the number of shares traded in
buyer-initiated and seller-initiated trades. This feature is qualitatively identical to the
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behavior of the probability density of the magnetization for "xed values of the inverse
temperature.

2. Price !uctuations and market activity

Empirical evidence has been mounting to support the intriguing possibility that a
number of systems arising in disciplines as diverse as physics, biology, ecology, and
economics may have certain quantitative features that are intriguingly similar. These
properties can be conveniently grouped under the headings of scale invariance and
universality [1]. Scale invariance refers to a hierarchical organization that results in
power-law behavior over a wide range of values of some control parameter—such as
species size, heartbeat interval, or "rm size—and the exponent of this power-law is
a number characterizing the system. By universality, we mean a tendency for the set
of exponents found for diverse systems to partition themselves into distinct “univer-
sality classes”, with the property that all systems falling into the same universality
class have the same exponent—suggesting that there are features in common among
the underlying microscopic mechanisms responsible for the observed scale invariant
behavior.
Researchers have found new and surprising results by applying concepts and methods

of scale invariance and universality to the economy. The economy is perhaps the most
complex of all complex systems [2–8]. A very small piece of “bad news” in a remote
market may trigger a very large response in "nancial indices all over the globe. The
societal impact of such economic !uctuations can be devastating. Privately, economists
will con"rm that the probability of such an “economic earthquake”—a sudden and
disastrous “phase transition” from the present healthy state of our economy to a new
state of a completely devastated economy—is not entirely negligible. A celebrated
example of the societal devastation caused by economic earthquakes is the collapse of
the German economy following World War I, which directly contributed to the rise of
Hitler. Another example is the recent “devaluation” in Indonesia that has contributed
to the starvation of Indonesia’s poor.
In the case of economics, virtually every economic transaction has been recorded—

somewhere. The challenge is to obtain the needed data and to analyze them in such
a way as to reveal the underlying principles. Remarkably, one "nds that if one makes
a histogram of price changes for any stock (the analog of the Gutenberg–Richter his-
togram of earthquake magnitude [9,10]) this histogram is very close to a power-law
[11,12]. This discovery suggests that large shocks are related in a scale invariant fash-
ion to smaller, commonplace, economic !uctuations—i.e., large shocks and everyday
economic !uctuations are basically di&erent manifestations of the same phenomenon.
The greatest societal impact occurs when “the big one” occurs, whether it be a geophys-
ical earthquake or an economic earthquake. Hence scaling concepts make it possible
for scientists to understand these rare but catastrophic events through appropriately
designed research focused on everyday phenomena.
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Stock price !uctuations display distinctive statistical features that are in stark contrast
to those of a simple random walk (“di&usion”) model. Consider price change

G(t) ≡ ln S(t +#t)− ln S(t) ; (1)

de"ned as the change in the logarithm of price S(t) over an interval #t. Empirical work
shows that the distribution function PG{G¿x} has tails that decay as a power-law

PG{G¿x} ∼ x−# ; (2)

with # larger than the upper bound (#=2) for L%evy stable distributions [11–13]. In
particular, studies on the largest 1000 US-stocks [12] and 30 German stocks [11] show
mean values of # ≈ 3 on time scales #t6 1 day. Secondly, it is found that although
the process G(t) has a rapidly decaying autocorrelation function 〈G(t)G(t+ $)〉, which
at time scales $¡ 30 min, shows signi"cant anti-correlations (bid–ask bounce) for indi-
vidual stocks, but cease to be statistically signi"cant for larger time scales. Higher-order
two-point correlation functions show quite a di&erent behavior. For example, the auto-
correlation function of the absolute value of price changes show long-range persistence

〈|G(t)| |G(t + $)|〉 ∼ $−% ; (3)

with % ≈ 0:3 [14–16].
The problem of understanding the origin of these features is a challenging one

[17,18]. This paper reviews recent work which focuses on a much more modest goal of
trying to understand, starting from transactions, how these statistical features—fat-tailed
distributions and long-ranged volatility correlations—originate. We shall show that the
price changes, when conditioned on the volatility, have tails that are consistent with
those of a Gaussian. In addition, we shall show that the long-ranged correlations in
volatility arise from those of trading activity measured by the rate of occurrence of
trades N . However, the distribution characteristics of trading activity implies that the
fat tails of G cannot arise solely due to N . We relate the fat-tailed behavior of G to
those of “transaction-time” volatility W which, roughly speaking, measures the impact
of trades.
Let us start by examining the conventionally used “geometric”-variant of Bachelier’s

“classic di&usion” model. The rationale for this model arises from the central limit
theorem by considering the price changes G in a time interval #t as being the sum
of several changes &pi, each due to the ith transaction in that interval,

G ≡
N
∑

i=1

&pi ; (4)

where N is the number of transactions (trades) in #t. If N!1, and &pi have "nite
(constant) variance W 2, then one can apply the central limit theorem, whereby one
would obtain the result that PG(G) is Gaussian with variance '2 =W 2N , and therefore
prices evolve with Gaussian increments. It is implicitly assumed in this description that
N is almost constant, or more precisely, N has only narrow (standard deviation much
smaller than the mean) Gaussian !uctuations around a mean value. Let us start by
asking to what extent this is true.
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Let us "rst quantify the statistics of N . We "rst analyze the distribution of N for
1000 stocks, and "nd that P(N ) decays as a power-law,

PN{N ¿x} ∼ x−( ; (5)

with values of ( around the average value (=3:4 [19].
Since N behaves in a non-Gaussian manner, one can ask whether the exponent #

for the distribution of price changes PG{G¿x} ∼ x−# arises from the exponent ( for
PN . To address this problem, we must "rst quantify the relationship between G and
N . Consider the conditional distribution PG|N;W (G|N;W ) for given values of N and
W . If we assume that the changes &pi due to each transaction in #t are i.i.d., then
the variance of G(t) in that time interval will be W 2N . Thus, the width of the condi-
tional distribution PG|N;W (G|N;W )—probability density of G for given values of N and
W—will be the standard deviation W

√
N , which measures the local volatility. If we

next hypothesize that the functional form of PG|N;W (G|N;W ) does not depend on the
values of W or N , then we can express

PG|N;W (G|N;W )=
1

W
√
N
f
(

G
W
√
N

)

; (6)

where the function f has the same form for all values of W and N . 1 In other words,
during periods of large W

√
N , the conditional distribution PG|N;W (G|N;W ) will have

large width.
We seek to quantify the functional form of the conditional distribution PG|N;W . Under

our hypothesis, determining the conditional distribution is tantamount to determining
the functional form f, which is accomplished by considering a “scaled” variable

) ≡ G
W
√
N
; (7)

which is free of the e&ects of !uctuating W
√
N . Our examination of the distribution

P)()) shows that it is consistent with Gaussian behavior [19]. Thus, the conditional
distribution is consistent with the functional form 2

PG|N;W (G|N;W ) (
1√

2*W
√
N
exp

(

−G2

2W 2N

)

: (8)

We are now in a position to relate the statistical properties of G and N . One can
express the distribution of price changes PG in terms of the conditional distribution
PG|N;W (G|N;W ) or, equivalently, in terms of f,

PG(G)=
∫

1
+
f
(

G
W
√
N = +

)

PW√
N (+) d+ ; (9)

1 The hypothesis that the conditional distribution has the same form for all W and N might strike the reader
as surprising since one expects the conditional distribution to be increasingly “closer” to a Gaussian for
increasing N . Strictly speaking, if W and N are independent, then the hypothesis would be exact only for
a stable distribution for &pi such as a Gaussian (consistent with our "ndings later in the text).
2 The # sign is used because although the tails of the conditional distribution are consistent with Gaussian,
the central part is a&ected by discreteness of price changes in units of 1=16 or 1=32 of a dollar.
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where PW√
N denotes the probability density function of the variable W

√
N . Since f

is consistent with Gaussian, it is clear that the fat tails in G must arise due to the
mixing of the conditional distribution, averaged over all possible widths W

√
N .

Next, we examine how the statistics of W and N relate to the statistics of G. First,
we examine the equal-time dependence of W and N and "nd that the equal-time
correlation coe$cient is small, suggesting only weak interdependence [19]. Therefore,
the contribution of N to the distribution PW√

N in Eq. (9) goes like the distribution
of

√
N . We have already seen that the distribution PN{N ¿x} ∼ x−( with ( ≈ 3:4.

Hence

P√N{y ≡
√
N ¿x} ∼ x−2( (10)

with 2( ≈ 6:8. Therefore, N alone cannot explain the value # ≈ 3. Instead, # ≈ 3
must arise from elsewhere. In fact, when we repeat the analysis through to W#t [19],
we "nd that the distribution

PW{W#t ¿ x} ∼ x−, (11)

decays with an exponent , ≈ 3, which is also the contribution of W to the distribution
PW√

N . Therefore, the averaging in Eq. (9) gives the asymptotic behavior of PG to be a
power-law with an exponent ,. Indeed, our mean estimates of , and # are comparable
within error bounds [12,19]. Thus, the power-law tails of PG(G) appear to originate
from the power-law tail in PW (W ).
We also analyze correlations in N . Instead of analyzing the correlation function di-

rectly, we use the method of detrended !uctuation analysis [20]. We plot the detrended
!uctuation function F($) as a function of the time scale $. Absence of long-range cor-
relations would imply F($) ∼ $0:5, whereas

F($) ∼ $- (12)

with 0:5¡ -6 1; this implies a power-law decay of the correlation function,

〈[N (t)][N (t + $)]〉 ∼ $−-cf ; [-cf =2− 2-] : (13)

We obtain the value - ≈ 0:85 for the same "ve stocks as before. On extending this
analysis for a set of 1000 stocks, we "nd the mean value -cf ≈ 0:3 [19]. It is possible
to relate this to the correlations in |G|, which is related to the variance V 2 of G.
From Eq. (4), we see that V 2 ˙ N under the assumption that &pi are independent.
Therefore, the long-range correlations in N is one reason for the observed long-range
correlations in |G|. In other words, highly volatile periods in the market persist due to
the persistence of trading activity.
Naturally, the mechanisms that give rise to the observed long-range correlations in

N are of great interest. In Ref. [21], this problem is investigated using a continuous
time asynchronous model. Recently, it was argued that these correlations could arise
from the fact that agents in the market have the choice between active and inactive
strategies [22].
Finally, we discuss the role of the share volume traded to explain the statistical

properties of price !uctuations. Intuitively, one expects that the larger the trade size,
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the greater the price impact, and hence the larger the volatility. Therefore, one expects
the volatility to be related to the number of shares traded (share volume). Indeed, it
is a common Wall Street saying that “it takes volume to move stock prices”. We "nd
[23] that the number of shares qi traded per trade has a power-law distribution with
tail-exponents . which are in the L%evy stable domain. Therefore, one can express the
number of shares Q traded in #t as

Q=
N
∑

i=1

qi : (14)

Due to the L%evy stable tails of the distribution of q, Q scales like

Q= %N + N 1=.+ ; (15)

where + is a one-sided L%evy stable distributed variable with zero mean and tail exponent
., and % ≡ 〈qi〉.
Analyzing equal-time correlations, we "nd, surprisingly, that the correlation coe$-

cients 〈+N 〉, 〈+W 〉 are small (average values of the order of ≈ 0:1). This means that
even if the number of shares traded are large (large +), volatility

V =W
√
N (16)

need not be. Thus, the previously found [24–27] equal-time dependence of volatility
V =W

√
N and share volume arises largely because of N . This is quite surprising since

it means that the size of the trade, on average, does not seem to have a direct in!uence
in generating volatility [28].

3. Collective behavior of stock price movements

The problem of quantifying cross-correlations between the price movements of dif-
ferent stocks is important not only from the point of view of understanding collective
behavior between the constituents of a complex system, but also from the point of
view of estimating the risk of a investment portfolio. The usual way of quantifying
cross-correlations is either by estimating the relevant “factors” or by principal compo-
nent analysis [29]. Here, we review some results of a di&erent approach to this problem
by applying methods of random matrix theory [30–38].
In order to quantify correlations, we "rst calculate the price change (“return”) of

stock i=1; : : : ; N over a time scale #t de"ned in Eq. (1). We analyze L=6448 records
30-min price changes Gi(t) for N =1000 stocks (largest by market capitalization on
1 January 1994) for the two-year period 1994–1995. Since di&erent stocks have varying
levels of volatility (standard deviation), we de"ne a normalized return

gi(t) ≡
Gi(t)− 〈Gi〉

'i
; (17)
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where 'i ≡
√

〈G2i 〉 − 〈Gi〉2 is the standard deviation of Gi, and 〈· · ·〉 denotes a time
average over the period studied. We then compute the equal-time cross-correlation
matrix C with elements

Cij ≡ 〈gi(t)gj(t)〉 : (18)

By construction, the elements Cij are restricted to the domain −16Cij6 1, where
Cij =1 corresponds to perfect correlations, Cij = − 1 corresponds to perfect anti-
correlations, and Cij =0 corresponds to uncorrelated pairs of stocks. In matrix notation,
the correlation matrix can be expressed as

C=
1
L

GGT ; (19)

where G is an N × L matrix with elements {gim ≡ gi(m#t); i=1; : : : ; N ; m=0; : : : ;
L− 1}, and GT denotes the transpose of G.
We analyze the distribution P(Cij) of the elements {Cij; i *= j} of the cross-correlation

matrix C. We "rst examine P(Cij) for 30-min returns from the TAQ database for the
2-yr periods 1994–1995 and 1996–1997. We "nd, "rstly, that P(Cij) is asymmetric
and centered around a positive mean value (〈Cij〉¿ 0), implying that positively corre-
lated behavior is more prevalent than negatively correlated (anti-correlated) behavior.
Secondly, we "nd that 〈Cij〉 depends on time, e.g., the period 1996–1997 shows a
larger 〈Cij〉 than the period 1994–1995. We contrast P(Cij) with a control—a corre-
lation matrix R with elements Rij constructed from N =1000 mutually uncorrelated
time series, each of length L=6448, generated using the empirically found distribution
of stock returns [12,11]. We "nd that P(Rij) is consistent with a Gaussian with zero
mean, in contrast to P(Cij). In addition, we see that the part of P(Cij) for Cij ¡ 0
(which corresponds to anti-correlations) is within the Gaussian curve for the control,
suggesting the possibility that the observed negative cross-correlations in C may be an
e&ect of randomness.
Although by construction the elements of C are supposed to express the pairwise

correlations that exist in the system, in practice, their meaning is not clear because
of the time average involved in their calculation. Time averaging over a "nite time
series introduces measurement “noise” whereas the use of long time series amounts to
averaging over possibly changing correlations. This raises the following problem: how
can we extract from C, the cross-correlations that are signi"cant?
The approach followed here is to compare the empirical cross-correlation matrix

C against the “null hypothesis” of a random matrix of the same type (“symmetry”).
Therefore, we consider a random correlation matrix

R=
1
L

AAT ; (20)

where A is an N × L matrix containing N time series of L random elements with zero
mean and unit variance, that are mutually uncorrelated. By construction, R belongs to
the type of matrices often referred to as Wishart matrices in multivariate statistics [39].
The comparison between C and R is performed in the diagonal basis. Thus, we "rst

compute the eigenvalues /k and eigenvectors uk , where k =1; : : : ; N is arranged in order
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of increasing eigenvalues. Statistical properties of the eigenvalues of random matrices
such as R are known [40–42] in the limit of very large dimensions. Particularly, in
the limit N → ∞; L → ∞, such that Q ≡ L=N is "xed, it was shown analytically
[41] that the distribution Prm(/) of eigenvalues / of the random correlation matrix R
is given by

Prm(/)=
Q
2*

√

(/+ − /)(/− /−)
/

; (21)

for / within the bounds /−6 /i6 /+, where /− and /+ are the minimum and maxi-
mum eigenvalues of R respectively, given by

/±=1 +
1
Q

± 2

√

1
Q
: (22)

We now compare the eigenvalue distribution of C and compare against Prm(/). First,
we observe that the “bulk” of the eigenvalues of C are consistent with Prm(/) [30,31].
This suggests the randomness of the bulk which can be tested more rigorously by com-
paring against universal features of eigenvalue correlations of real symmetric random
matrices. Speci"cally, our examination of the eigenvalue spacing distribution shows
good agreement with the results for real symmetric (GOE-type) random matrices.
Secondly, we "nd deviations from RMT for the largest few eigenvalues [32,33].

These deviations are also evident when one examines the distribution of eigenvector
components [30,31]. We "nd that 0(u) for a typical uk from the bulk shows good
agreement with the RMT result 0rm(u). Similar analysis on the other eigenvectors
belonging to eigenvalues within the bulk yields consistent results, in agreement with
the results of the previous sections that the bulk agrees with random matrix predic-
tions. Consider next the “deviating” eigenvalues /i, larger than the RMT upper bound,
/i ¿ /+. For deviating eigenvalues, the distribution of eigenvector components 0(u)
deviates systematically from the RMT result 0rm(u).
Finally, we examine the distribution 0(u1000) of the components of the eigenvector

u1000 corresponding to the largest eigenvalue /1000. We "nd that 0(u1000) deviates
signi"cantly from a Gaussian. Speci"cally, we observe from 0(u1000) that all stocks
contribute almost equally, and the distribution is rather narrow, suggesting that this
eigenvector represents a collective mode in which all stocks participate. This notion can
be quanti"ed by comparing the price !uctuations of the portfolio de"ned by the u1000

against a standard measure of the !uctuations of the entire market—the !uctuations of
the S&P 500 index. This comparison results in an equal-time correlation coe$cient of
0:85 showing good agreement [38]. Thus, the eigenvector corresponding to the largest
eigenvalue represents a collective mode in which all companies participate.
The magnitude of the largest eigenvalue itself seems to re!ect the degree of collective

behavior, as can be seen by examining the time evolution of the largest eigenvalue. We
consider daily price !uctuations of 422 stocks for the years 1962–1996, and examine
the time evolution of the largest eigenvalue /422 compared against the time evolution
of the S&P 500 index and the S&P 500 volatility. The large downward movement of
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the index in 1987 corresponds to the 1987 crash, when all stocks in the market almost
simultaneously lost value; i.e., all stocks were moving more synchronously than usual.
We can also examine the remainder of the eigenvalues. Our analysis [40] shows that

the eigenvectors corresponding to these eigenvalues have signi"cant participants that
corresponds to major industry groups. Thus, remaining deviating eigenvectors quantify
collective behavior of stocks belonging to the same or related industries. We also
"nd that one of the deviating eigenvectors contains mainly stocks of "rms having
business in Latin America. It is possible that this collective behavior is related to the
large currency-devaluation in Mexico during the end of 1994 [38]. Similar results were
obtained by using ultra-metric concepts by Refs. [43,44].
These deviating eigenvectors also have interesting dynamical features. For example,

we "nd that the price !uctuations corresponding to the portfolios de"ned by the devi-
ating eigenvectors are characterized by time correlations that decay signi"cantly slower
than that for a random eigenvector or for an individual stock [38]. This is reminiscent
of the phenomenon of critical slowing down where collective modes of the system
display very large relaxation times in the vicinity of a critical point [45,46].

4. Some similarities with critical point phenomena

Just above, we mentioned one analogy between stock price !uctuations and dynamic
critical phenomena. Recent work suggests there may be additional analogies. For ex-
ample, it appears stock prices respond to !uctuations in demand, in a fashion that is
remarkably parallel to the way the magnetization of an interacting spin system responds
to !uctuations in the magnetic "eld. Periods with large number of market participants
buying the stock imply mainly positive changes in price, analogous to a magnetic "eld
causing spins in a magnet to align. Recently, Plerou et al. [47] addressed the question
of how stock prices respond to changes in demand. They quanti"ed the relations be-
tween price change G over a time interval #t and two di&erent measures of demand
!uctuations: (a) 1, de"ned as the di&erence between the number of buyer-initiated and
seller-initiated trades, and (b) ", de"ned as the di&erence in number of shares traded in
buyer and seller initiated trades. They "nd that the conditional expectations 〈G〉1 and
〈G〉" of price change for a given 1 or " are both concave. They "nd that large price
!uctuations occur when demand is very small—a fact which is reminiscent of large
!uctuations that occur at critical points in spin systems, where the divergent nature of
the response function leads to large !uctuations. Their "ndings are reminiscent of phase
transitions in spin systems, where the divergent behavior of the response function at
the critical point (zero magnetic "eld) leads to large !uctuations [48,1]. Further, Plerou
et al. [49] "nd a curious “symmetry breaking” for values of ! above a certain threshold
value !c; here ! is de"ned to be the local "rst moment of the probability distribution
of demand ", the di&erence between the number of shares traded in buyer-initiated
and seller-initiated trades. This feature is qualitatively identical to the behavior of the
probability density of the magnetization for "xed values of the inverse temperature.
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