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We investigate the relationship between structure and robustness
in the metabolic networks of Escherichia coli, Methanosarcina
barkeri, Staphylococcus aureus, and Saccharomyces cerevisiae, us-
ing a cascading failure model based on a topological flux balance
criterion. We find that, compared to appropriate null models, the
metabolic networks are exceptionally robust. Furthermore, by
decomposing each network into rigid clusters and branched me-
tabolites, we demonstrate that the enhanced robustness is related
to the organization of branched metabolites, as rigid cluster
formations in the metabolic networks appear to be consistent with
null model behavior. Finally, we show that cascading in the
metabolic networks can be described as a percolation process.

complex networks � metabolism � percolation � topological flux balance

A single overloaded line in a power transmission network can
lead to a blackout spanning millions of homes (1), conges-

tion on a single router can lead to large-scale internet collapse
(2), and the removal of a single enzyme from a metabolic
network—and consequently, its corresponding reaction(s)—can
cause the ‘‘knockout’’ of several additional reactions (3–6). In
each case, the relationship between structure and function is
central: How have these systems balanced the need for robust-
ness against perturbations while being adaptable in the presence
of dramatic changes? In man-made systems, this balance may be
the culmination of concerted human intervention; in natural
systems such as metabolic networks, it is the work of evolution.

Fundamental understanding of structure–function relation-
ships in metabolic networks is particularly elusive. On the one
hand, metabolic structure has been characterized extensively—
metabolic networks are known to exhibit broad-tailed degree
distribution [though they are not scale-free (7)], and are in–out
degree correlated (8), degree–degree correlated (9), modular
(10), heirarchical (11, 12), and self-similar (13). On the other
hand, numerical techniques in biology permit remarkably accu-
rate predictions of metabolic function (14–18). Yet, connecting
the two areas remains a major challenge. For example, a
deceptively simple question—‘‘Are metabolic networks robust,
and if so, why?’’—does not yet have a definitive answer.‡

Here, we use a topology-based cascading failure algorithm to
probe structure–function relationships in Escherichia coli, Sac-
charomyces cerevisiae, Staphylococcus aureus, and Methanosar-
cina barkeri metabolic networks.§ We show by comparison to
appropriate null models (i.e., rewired networks that preserve
degree distribution yet lack organizational motifs) that these
metabolic networks are robust—their structural features reduce
the likelihood of large failure cascades. By decomposing each
network into rigid clusters and nonrigid branches, we show that
enhanced network robustness is related to the organization of
nonrigid, branched elements. We also show that cascading can be
described as a percolation-like process that is, in the null model
case, subcritical with respect to rigid cluster formation and
supercritical with respect to branching.

Analysis
We represent the cellular metabolism as a directed, bipartite
graph, with two types of nodes—reaction nodes and metabolite

nodes. A directed edge connects a metabolite node to a reaction
node if the metabolite participates in the reaction as a reactant
(directed toward the reaction node) or product (directed toward
the metabolite node). Each node can then be characterized by an
incoming degree, kin, outgoing degree, kout, and total degree, k �
kin � kout, indicating the incoming, outgoing, and total number
of edges.

The Topological Flux Balance (TFB) Criterion. We define a viable
metabolite as one that can be maintained at a steady, nonzero
concentration in a metabolic steady state [this is essentially the
flux balance requirement imposed in flux balance analysis, a
numerical method commonly used to study metabolic robustness
(14, 24, 25)]. It follows that—as a minimum requirement for
viability—each metabolite must participate in at least one
generating and one consuming reaction; the concentration of a
metabolite that is consumed but not generated quickly dimin-
ishes to zero, whereas the concentration of a metabolite that is
generated but not consumed grows infinitely. The topological
equivalent is that each metabolite node must have at least one
incoming and one outgoing edge. Formally, we say that metab-
olite node i is viable if and only if ki,in and ki,out � 1.

Exceptions to the TFB criterion are (i) external metabolite
nodes—which represent extracellular compounds such as nutri-
ents and end-products—and (ii) dead-end metabolite nodes—
which represent metabolites that, because of incomplete in silico
reconstructions, appear to participate in either no generating or
no consuming reactions. We treat external and dead-end me-
tabolite nodes as infinite reservoirs; they are the only metabolite
nodes allowed to exist in the network with either kin or kout � 0.¶

Before node deletions, all metabolite nodes (excluding exter-
nal and dead-end nodes) meet the TFB criterion. However, the
removal of a reaction node, along with its associated edges, may
leave a neighboring metabolite node with either kin or kout � 0.
Such a node is said to be nonoperational and is subsequently
deleted from the network along with each reaction in which it
participates (a reaction is viable—i.e., can maintain a steady,
nonzero flux—if and only if each of its reactants and products are
viable).
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The Algorithm. To investigate the robustness of metabolic net-
works, we use an iterative algorithm where the removal of a
single reaction node can lead to large-scale cascading failure:

1. Initiate failure by deleting a reaction node and each of its
connecting edges (both incoming and outgoing edges are
removed).

2. Delete any metabolite node for which kin or kout � 0, along
with each of its remaining edges.

3. Delete any reaction node that shares an edge with a nonop-
erational metabolite, along with each of its remaining edges.

Steps 2 and 3 are iterated until all remaining reaction nodes and
metabolite nodes meet the TFB criterion (see Fig. 1). This
algorithm is similar, in spirit, to that used in ref. 3 and the
‘‘synthetic accessibility’’ algorithm used in ref. 17.

A subtle yet significant feature of the TFB failure algorithm is
that it permits bi-directional cascades. A reaction node deletion
affects both its product and reactant metabolites, so that failure
can cascade both forward (toward end-products) and backward
(toward nutrients) along the network. This has biological rele-
vance—assuming that there are no alternative pathways, path-
ways that ‘‘funnel’’ into a removed node are rendered non-
operational, as are those that emanate from it.

Reversible Reactions. Reversible reactions require particular at-
tention. Consider a metabolite that is both fed and consumed
exclusively by a single reversible reaction. Although the metab-
olite meets the TFB criterion, one can see that it and its
associated reaction are effectively nonoperational, since the
reversible reaction must have zero net flux. Approaches found in
the literature to handle these situations are inadequate; they
either treat reversible reactions as two separate reaction nodes
(which gives rise to the same problem) or treat reversible
reactions as directed reactions (which yields a less robust net-
work) (3).

We resolve the reversibility anomaly by representing each
reversible reaction as a coupled pair of reaction half-nodes,
where one half-node is deleted if the topology of a neighboring
node fixes the direction of positive reaction flux (Fig. 1). For
example, if the lone incoming edge of a metabolite node is
connected to the forward half-node of a reversible reaction, then
the reaction is necessarily fixed in the forward direction and the
corresponding reverse half-node is deleted. Our approach thus
precludes the possibility for self-producing, self-consuming me-
tabolites in the network.

Results
We initiate failure cascades by removing a single reaction node
(this could correspond to failure of an enzyme due to knockout,

Fig. 1. The failure algorithm. (A) We represent a metabolic network as a
bipartite graph, with directed edges connecting metabolite nodes (circles) to
reaction nodes (squares). Note that reaction 6 is reversible and thus repre-
sented as a coupled pair of reaction half nodes, 6f and 6r. (B) In this example,
we initiate a cascade by removing reaction 5 and its edges. This removal leaves
metabolites f and i nonoperational, i.e., with no outgoing and no incoming
edges, respectively. (C) Metabolites f and j must be removed, along with their
edges. Since the lone incoming edge of metabolite i comes from the reaction
half node 6f, reaction 6 is fixed in the forward direction, and thus 6r is deleted,
along with its edges. (D) The reactions associated with the deleted metabolites
(1 and 7) are removed, along with their edges. (E) Removal of reactions 1 and
7 leave metabolites a, b, m, and o nonoperational.
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Fig. 2. Damage distributions for cascading events in metabolic networks.
The cumulative distribution function, P(d� � d), for each species is shown on
log–log axes (data points). All species have similar, broad-tailed distributions,
decaying at a rate close to power-law for small d but tailing off at a rate closer
to an exponential decay at large d. Randomization typically results in net-
works with an increased susceptibility for large cascades, suggesting that
organizational features in the metabolic networks act to enhance robustness.
The solid curve indicates P(d� � d) for an ensemble of 100 randomly rewired
networks, with the shaded area denoting the 95% confidence interval.
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inhibition, or mutation), and characterize the resultant cascade
by its total number of reactions deleted, d (we refer to this as the
damage). Clearly, d is only a coarse indicator of the deleterious
effect of a node removal. A truly accurate assessment should
take into account the identity and function of each deleted
metabolite and reaction (it is possible for a small cascade to be
lethal, while a larger cascade in the same system may be
nonlethal). Such detailed analysis, however, is beyond the scope
of this work—our aim is to isolate generic trends relating cascade
behavior to network structure, and thus we take d as an
approximate indicator of network damage.

For each network, we generate a cumulative distribution
function, P(d� � d)—the probability that a reaction node re-
moval will yield a damage greater than or equal to d (Fig. 2). The
distributions P(d� � d) have a similar form for the species we
studied: they are broad-tailed, indicating that while most cas-
cades are small (�90% of cascades have d � 10, which corre-

sponds to �1% or less of the total number of reactions, depending
on the species), some are quite large (the largest cascades range
from d � 50 to d � 80, which is approximately on the order of 10%
of the total number of reactions). These large failures represent
catastrophic—and likely lethal—events, so that the behavior of P(d�
� d) at large d is of special interest. We find that P(d� � d) initially
decays at a rate close to power-law but appears to tail off at a rate
closer to exponential decay at large d. We explore the origins of this
behavior in greater detail later.

Null Model Comparison. We identify organizational effects on
network robustness by comparing metabolic networks to appro-
priate null models (i.e., networks that preserve identical degree
distribution to the original yet lack organizational motifs). The
null models are constructed via a random rewiring procedure:
starting with the original metabolic network, pairs of edges are
randomly switched, or rewired, conserving both node degree and
edge orientation (k, kin, and kout for each node are the same as
in the original metabolic network, so that in–out degree corre-
lations are preserved). We also impose the constraint that no
redundant edges can exist in the network. A minimum of (50L)
switching moves are performed to ensure equilibrium, where L
is the total number of edges in the network (switches are
performed according to the method discussed in refs. 26 and 27).
For each metabolic network, we generate an ensemble of 100
rewired networks, each having broad-tailed degree distribution
but lacking organizational motifs (26, 27).

We then assess metabolic robustness by comparing the cas-
cading behavior of each metabolic network to its ensemble of
rewired networks. We find that, typically, the probability for
large cascades is much smaller in the metabolic networks than in
the rewired ensembles, especially for d � 20 (see Fig. 2). The
result strongly suggests that organizational features in metabolic
networks act to enhance robustness. In the following sections, we
attempt to identify the origins of this robustness.

Rigid Clusters in Metabolic Networks. It is useful to distinguish
metabolite nodes according to node degree: uniquely produced,
uniquely consumed (UU) nodes have kin � kout � 1 (5); branched,
susceptible (BS) nodes have either kin or kout � 1, but not both; and
branched, nonsusceptible (BN) nodes have both kin and kout � 1.

Fig. 3. Rigid clusters and branching in the metabolic network. The metabolic
network can be decomposed into rigid and nonrigid elements. (A) A rigid
cluster, defined as a cluster of contiguous nodes that does not contain a
branched metabolite node (squares, reaction nodes; filled circles, uniquely
produced–uniquely consumed metabolite nodes; open circles, branched me-
tabolite nodes). The rigid cluster in A has size sc � 6, where sc is the number of
reaction nodes contained in the cluster. (B) A single failure cascade may
comprise multiple rigid clusters. If a rigid cluster is connected to the feeding
edge of a branched, susceptible metabolite node, it will produce a failure
cascade that propagates to other rigid clusters. In B, diamonds represent rigid
clusters, and open circles represent branched, susceptible metabolite nodes.
The elements inside of each shaded oval constitute a supernode.
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Fig. 4. Rigid cluster size distributions in metabolic networks. The rigid cluster
size distribution, P(sc � sc), for each metabolic network (data points) is close to
the expected result for its corresponding randomly wired network [each solid
curve indicates P(sc � sc) for an ensemble of 100 randomly rewired networks,
with the shaded area denoting the 95% confidence interval]. The distributions
are approximately described by the numerical solution for random percola-
tion on a Bethe lattice (dashed curves). All curves are consistent with subcritical
percolation (i.e., �c � 1).
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We can use this formulation to further analyze the cascading
behavior of metabolic networks.

Consider a cluster of UU metabolite nodes adjoined by reaction
nodes (i.e., a UU node feeds a reaction that has a UU product node,
which in turn feeds another reaction that has a UU product node,
and so on; see Fig. 3A). This cluster displays the special property
that if any of its reaction nodes are removed, the entire cluster will
necessarily be removed. At a minimum, a cascade will propagate
until it is bounded by branched nodes. For this reason, we say that
any cluster of nodes that does not contain a branched metabolite
node is rigid. We define the size of a rigid cluster, sc, as the number
of reaction nodes it contains, so that every reaction node is part of
a rigid cluster of at least size 1 (a rigid cluster with n reaction
nodes—and no loops—has n � 1 metabolite nodes).

We find that rigid clusters in the metabolic networks range in
size from 1 to about 20 reaction nodes. Specifically, P(sc � sc) is
broad tailed—most clusters comprise just 1 or 2 reaction nodes,
but a few can be large (Fig. 4). Notably, rewiring yields a virtually
insignificant change in the cluster size distribution—each met-
abolic network has a distribution that is very similar to that of its
randomly rewired ensemble. In other words, the distribution of
rigid clusters in the metabolic networks does not result from any
particular organizing principle. Next, we show that such random
rigid cluster formation can be described by a percolation model.�

Random rigid cluster formation can be modeled as bond
percolation, where reaction nodes are the vertices and metab-
olite nodes represent bonds (to avoid confusion, we refer to
components of the percolation model using vertex-bond nota-
tion, rather than node-edge notation). UU metabolite nodes
represent bonds that are turned ‘‘on,’’ and branched metabolite
nodes (both BS and BN) represent bonds that remain ‘‘off,’’ so
that each rigid cluster in the metabolic network corresponds to
a cluster of vertices connected by ‘‘on’’ bonds.

Cluster formation is then characterized by a critical parameter,

�c �
LUU(�r�1)

L
, [1]

where LUU is the number of edges connected to UU nodes, and
�r is the effective mean reaction node degree,

�� � �k r
2	��k r	. [2]

(The derivation of Eq. 1 is discussed in Methods.) A network with
�c � 1 is critical—it lies at the threshold for infinite percolation
of the rigid cluster and yields a rigid cluster size distribution that
decays as a power-law; a network with �c � 1 is supercritical,
yielding an infinitely percolating rigid cluster; and a network
with �c � 1 is subcritical, yielding a rigid cluster size probability
curve that decays faster than power-law. From Eq. 1, we find that

each species considered in this study is subcritical (�c � 1) with
respect to random rigid cluster formation (Table 1).

Since reactions in a metabolic network tend to have a similar
number of edges (roughly 4–6 products and reactants per
reaction), the above formulation roughly approximates perco-
lation on a tree of self-similar branches, i.e., a Bethe lattice. The
Bethe lattice (also known as a Cayley tree) is a popular model
for percolation problems and one of the few for which cluster-
size scaling can be solved analytically (28). For each metabolic
network, we compare the observed cluster-size distributions
(real and rewired) to the numerical solution for percolation on
a Bethe lattice, PBL(sc � sc), using the �c values calculated from
Eq. 1 and a branching coefficient, b � k � 1, equal to 4.†† The
results are in good agreement, with PBL(sc � sc) scaling as

PBL(sc
� � sc) 
 sc

�3�2exp[��sc] [3]

(see Table 1 and Fig. 4).

Branching in Metabolic Networks. A single cascade can comprise
multiple rigid clusters. If a rigid cluster is connected to the either the
lone incoming or lone outgoing edge of a BS metabolite node (we
refer to this edge, irrespective of direction, as the feeding edge), it
will produce a cascade that propagates to other rigid clusters (see
Fig. 3B, and recall that a BS metabolite node has kin � 1, kout � 1,
or vice versa). Thus, a failure cascade can be characterized by its
branching, i.e., the number of rigid clusters that it contains, sb. We
find that P(sb � sb), the probability that removal of a single rigid
cluster produces a failure cascade containing at least sb rigid
clusters, is broad-tailed for all of the metabolic networks consid-
ered—most cascades contain just one or two rigid clusters, but a few
contain many (i.e., 20–40 rigid clusters; see Fig. 5). P(sb � sb) is
typically smaller for metabolic networks than in the randomly
rewired ensembles, especially at large sb (rewiring results in a
significant probability for cascades with sb � 100). This suggests that
the organization of branched metabolites in metabolic networks is
nonrandom and has the effect of increasing robustness.

Branching in the null model also can be modeled as bond
percolation. Here, it is convenient to define a supernode—a
cluster comprising a BS metabolite node and the rigid clusters
connected to its nonfeeding edges (see Fig. 3B). Each supernode
is a ‘‘vertex’’ in the percolation model; branched metabolite edges
are bonds. Specifically, the feeding edge of a BS metabolite node
represents an ‘‘on’’ edge, and all other branched metabolite edges
represent ‘‘off’’ edges.

The relevant percolation problem is then similar to that
describing rigid cluster formation, and a critical parameter for
branching, �b, can be calculated for each metabolic network:

�What follows is a brief overview of the percolation model. Those interested in further
background on percolation concepts are referred to excellent texts by Stauffer and
Aharony (28), and Bunde and Havlin (29). Readers may also be interested in work by
Schwartz et al. (30) examining percolation in directed networks, although they use a
formulation that differs substantially from that used in our work herein.

††Node degree, k, in the Bethe lattice model corresponds to the effective mean node
degree, �r, in the rigid cluster model. Since the branching coefficient is, by definition,
integer-valued, we round �r to the nearest whole number (5) for all species, yielding a
branching coefficient of 4. Because the cluster size distribution is a strong function of �

and a weak function of b, this approximation introduces relatively little error.

Table 1. Metabolic network information and percolation parameters

Species Nr Nm (UU, BS, BN) �r �c �*c �c � �sn �b �*b �b

E. coli 2,082 1,669 (618, 322, 308) 4.81 0.14 0.26 0.53 0.29 39.6 0.032 0.026 1.25
S. cerevisiae 1,149 1,061 (367, 157, 227) 5.12 0.14 0.24 0.59 0.21 70.6 0.021 0.014 1.45
S. aureus 644 644 (223, 70, 113) 5.30 0.14 0.23 0.62 0.18 62.0 0.021 0.016 1.29
M. barkeri 619 628 (254, 83, 92) 5.22 0.17 0.24 0.73 0.09 86.6 0.024 0.012 2.09

For each species we show the number of reactions (Nr); the number of metabolites (Nm, with UU, BS, and BN metabolites in parentheses); effective mean degree
(�) of reaction nodes and supernodes (denoted by subscripts r and sn, respectively); bond probability (�), critical probability (�*), and critical parameter (�) for
the rigid cluster and branching percolation models (denoted by subscripts c and b, respectively); and the rigid cluster size scaling exponent (�).
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�b �
NBS(�sn�1)

L�LUU
, [4]

where NBS is the number of branched, susceptible metabolite
nodes; LUU is the number of edges connected to UU nodes; and
�sn, the effective mean supernode degree, is defined as in Eq. 2.
(The derivation of Eq. 4 is discussed in Methods.) From Eq. 4, we
calculate �b for the species considered in this study, finding that
all species are supercritical (�b � 1) with respect to random
branching (see Table 1). This is qualitatively consistent with the
observed behavior in the rewired networks, where p(sb) exhibits
a distinct peak at large sb [see supporting information (SI) Fig.
S1]. The result suggests that, in the absence of organizational
motifs, single reaction node failures would likely result in
network-spanning failure cascades.

Summary. We have used a cascading model—based on a topo-
logical f lux balance criterion—to describe metabolic network
failure as a percolation-like process. The approach yields several
valuable insights: we find that the metabolic networks consid-
ered are exceptionally robust and that this robustness is not due
to the structure of so-called rigid or UU clusters but rather arises
from the organization of nonrigid, branched metabolites. Further-
more, the rigid cluster formation and nonrigid branching processes
in the null model can be classified as subcritical and supercritical,
respectively. That the two types of structures form on different sides
of the percolation threshold is particularly intriguing.

The problem of identifying the exact robustness-enhancing
structural motifs in metabolism is formidable and remains open.
For example, it is quite plausible—although not obvious—that
the robustness of metabolic networks is related to their modular
structure (this hypothesis is not inconsistent with our finding that
robustness arises from the organization of branched metabo-
lites). However, a crucial hurdle here is the development of a
modularity-conserving null model; i.e., an algorithm that ran-
domizes a directed, bipartite network while preserving the
degree distribution and modular structure. Similar hurdles are
encountered when exploring robustness effects of other struc-
tural features (e.g., loop structure, hierarchical organization). As
the proper null models are developed, cascading studies may
provide even further insight into relationships between struc-
tural features and metabolic function.

Methods
Critical Parameter for Rigid Cluster Formation. In the rigid cluster model,
reaction nodes represent vertices, UU metabolite nodes represent bonds that
are turned ‘‘on,’’ and branched metabolite nodes represent bonds that remain
‘‘off.’’ The probability, �c, that two vertices are connected by an ‘‘on’’ bond is
equal to the number of edges connected to UU metabolite nodes divided by
the total number of edges:

�c � LUU�L . [5]

Here, we have made the assumption that the probability of forming multiple
connections between a single reaction node–metabolite node pair is negligible,
so that the percolation model adheres to the constraint prohibiting redundant
connections between node pairs. This assumption requires that the product of
therelativemetabolitenodedegree,km �km/L, andthereactionnodedegree,kr,
is small for each metabolite–reaction node pair. Specifically, we say that

�ij � �km,i�L)k r,j 	 1 [6]

for all node pair combinations. For the networks considered here, �ij � 10�3.
The critical probability, �*c, for percolation is a function of the vertex degree
distribution, or—since we have taken reaction nodes as vertices—kr. Specifi-
cally, it can be shown that

�c* � 1�(���1), [7]

where

�� � �kr
2	��k r	. [8]

(a derivation of Eqs. 7 and 8 can be found in ref. 31). Here, we have assumed
that the random network is a tree—i.e., the probability of loop formation is
negligible. This assumption holds when the number of vertices (reaction
nodes) is much larger than the mean vertex degree (kr). That is

Nr��kr	
1, [9]

where Nr is the total number of reaction nodes. The metabolic networks
considered in this work have Nr/�kr	 � 102.

The critical parameter is then

�c �
�c

�c*
�

LUU(���1)
L

. [10]

Critical Parameter for Branching. In the branching model, each supernode is a
‘‘vertex’’; branched metabolite edges are bonds. Specifically, the feeding edge
of a BS metabolite node represents an ‘‘on’’ bond, and all other branched
metabolite edges represent ‘‘off’’ bonds. The probability, �b, that two vertices
are connected by an ‘‘on’’ bond (feeding edge of a BS metabolite) is equal to
the number of BS feeding edges (or, equivalently, the number of BS nodes,
NBS) divided by the total number of edges connected to non-UU nodes (UU
nodes are disregarded in the ‘‘supernode’’ description):

�b � NBS�(L � LUU). [11]

Again, we have made the assumption that the probability of forming redun-
dant connections is negligible.

To calculate the critical probability, �*b, for percolation, we first define the
degree for any supernode i as

ki,sn � �
j

�kc,j � 1
 , [12]

where j is a rigid cluster in supernode i, and kc,j is the degree of the rigid cluster
(i.e., the number of edges in the rigid cluster connected to branched metab-
olites). Again, we have assumed that the network of supernodes is a tree—i.e.,
the probability of loop formation is negligible. The critical probability for
percolation in the branching model is then

�b* � 1�(�sn�1), [13]

where

�sn � �k sn
2 	��k sn	. [14]
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Fig. 5. Branch distributions in metabolic networks. P(sb � sb), the probability
that the removal of a single rigid cluster results in a cascade containing at least
sb rigid clusters, or branches, is shown for each metabolic network (data
points). P(sb � sb) for each metabolic network is typically smaller than the
expected result for its randomly rewired ensemble [each solid curve indicates
P(sb � sb) for an ensemble of 100 randomly rewired networks, with the shaded
area denoting the 95% confidence interval].
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The critical parameter is then

�b �
�b

�b*
�

NBS(�sn�1)
L � LUU

. [15]
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