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Abstract. We use agent-based modeling to investigate the effect of conservatism and partisanship on the
efficiency with which large populations solve the density classification task – a paradigmatic problem for
information aggregation and consensus building. We find that conservative agents enhance the populations’
ability to efficiently solve the density classification task despite large levels of noise in the system. In
contrast, we find that the presence of even a small fraction of partisans holding the minority position will
result in deadlock or a consensus on an incorrect answer. Our results provide a possible explanation for the
emergence of conservatism and suggest that even low levels of partisanship can lead to significant social
costs.

PACS. 87.23.Ge Dynamics of social systems – 89.75.-k Complex systems

1 Introduction

Many practical and scientific problems require the collab-
oration of groups of experts, with different expertise and
background. Remarkably, it turns out that large groups of
cooperative agents are extremely adept at finding efficient
strategies for solving such problems [1,2]; the development
of the scientific method within the physical sciences or
the development of entire suites of computer software by
the open source movement [3] being perhaps two of the
most notable instances [4]. Indeed, even loosely structured
groups have demonstrated an ability to coordinate and
find innovative solutions to complex problems.

In the corporate world, several companies – including
IBM, HP and various consulting companies – have used
“the wisdom of the crowd” principle as the justification
for the creation of knowledge communities, the so-called
“Communities of Practice,” which have enabled organi-
zations to spawn new ideas for products and services [5].
Other companies, such as Intel, Eli Lilly, and Procter &
Gamble, which created company-sponsored closed knowl-
edge networks, are now opening them to outsiders [6].

Recognizing that knowledge exists not merely in
the members of the network but in the networks
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themselves – that is, in the members and in their interac-
tions – naturally leads to the question of what character-
izes successful communities and what measures could be
taken to improve the ability of groups and organizations
to innovate. Previous work investigated the importance of
group diversity [7,8], team formation [9], and the structure
of the interaction network [10–14]. Here, we focus instead
on the effect of micro-level strategies on macro-level per-
formance.

Recent work demonstrates that under quite gen-
eral conditions, well-intentioned and completely trusting
agents can efficiently solve information aggregation and
coordination tasks [11]. We investigate how changes in the
intention and trust level of agents affects the efficiency of
solving such tasks by considering three types of agents:
naives, conservatives and partisans. Naive agents are well-
intentioned and completely trusting. Conservative agents
are well-intentioned but not completely trusting. Partisan
agents are neither well-intentioned nor completely trust-
ing.

Remarkably, we find that conservative agents, despite
slowing the information aggregation and coordination pro-
cess, actually enhance the populations’ ability to effi-
ciently solve these tasks under large levels of noise. In
contrast, we find that even a small fraction of partisans
holding the minority position will result in deadlock or a
consensus on an incorrect answer. Significantly, only by
completely disregarding partisan opinions, can the popu-
lation recover its original ability to solve the task.

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2008-00406-4
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Fig. 1. Illustration of the different agent strategies. The strategy followed by an agent j is characterized by two parameters:
bj , which indicates the agent’s bias, and sj , which quantifies the strength of the bias. bj ∈ {aj(t),−1, 1}, whereas sj ∈ [0, 1].
Well-intentioned agents (whether naive or conservative) have bj = aj(t), whereas partisan agents have bj = ±1. If sj = 0, agents
are completely trusting. As sj increases, the level of distrust increases, so that, for sj = 1, agents will freeze once they attain
their preferred state.

2 The model

We use here the density classification task, a model of
decentralized collective problem-solving [15], to quantita-
tively investigate information aggregation and coordina-
tion. The density classification task is completed success-
fully if (i) all agents converge to the same state within a
determined time period, and (ii) that consensual state was
the majority state in the initial configuration.

Before proceeding, let us explain the reasons why the
density classification task is a good paradigm for the type
of problems into which we aim to gain insight. Consider a
population of agents tackling a problem in which there is
a large uncertainty and for which no agent will be able, by
herself, to demonstrate that a particular solution is cor-
rect. If one assumes that all agents are well-intentioned,
that is, that they want to find a good solution to the prob-
lem, then it is plausible to assume that the answer reached
by a specific agent “contains” a good answer distorted by
some noise. Under these conditions, an efficient strategy
is to aggregate the answers from all agents, as information
aggregation cancels the distorting component of the indi-
vidual answers. However, in many situations a centralized
structure may not be practical or desirable because it is
too inefficient, too costly, or because it would be difficult
to secure an unbiased central authority. For these reasons,

decentralized strategies may be preferable or even the only
ones feasible.

2.1 The agents

We consider a population of N agents. For simplicity, and
without loss of generality. The state of each agent is a bi-
nary variable aj ∈ {−1, 1} that represents the answer to a
stated problem. Updating occurs using Boolean functions.
As we indicated earlier, agents can hold various types of
intentions. Specifically, well-intentioned agents have a bias
bj toward their present state bj = aj(t), while “partisan”
agents have a bias toward a particular state, for exam-
ple, bj = −1. Naive and conservative agents are thus not
biased for or against either state per se, they merely pre-
fer whatever answer they currently hold. While all three
types of agents may change their state in response to peer
pressure, a partisan agent will defect back to his preferred
state if peer pressure decreases below a threshold value.

Both conservative and partisan agents can have dif-
ferent levels of trust on their neighbors, that is, differ-
ent thresholds for responding to peer pressure. We define
the “strength” sj ∈ [0, 1] of agent j’s “conviction” as the
threshold that must be exceed by Δj(t) – which is the
difference between the fraction of majority and minority
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positions among agent j’s neighbor – for agent j to change
states. If sj = 0, then the agent is completely trusting,
that is, naive, whereas if sj = 1, the agent is completely
distrusting and thus will never change his answer (Fig. 1).

Formally, one can write the update rule for agents with
naive, conservative, or partisan strategies as:

aj(t + 1) =

⎧
⎨

⎩

+1 Δj(t) > −bjsj

aj(t) Δj(t) = −bjsj ,
−1 Δj(t) < −bjsj

(1)

where Δj(t) is defined as:

Δj(t) =
1

1 + kj

⎛

⎝aj(t) +
kj∑

l=1

ãj
l (t)

⎞

⎠ . (2)

Here, kj is the number of neighbors of agent j and ãj
l (t)

is the perceived state of neighbor l by agent j at time t,
which may differ from al(t) due to noise [11]. We imple-
ment the effect of noise by picking with probability η a
value for ãj

l (t) that is drawn with equal probability from
{−1, 1}. If η = 0, then ãj

l (t) = al(t), whereas for η = 1,
ãj

l (t) is a random variable. Figure 1 illustrates the response
of each type of agent to different signals.

The model we study is, on the surface, quite similar to
the voter model which has been widely used to study social
dynamics and opinion formation [10,12,14]. A significant
difference, however, is that whereas in the voter model
the agent picks a single neighbor at random and adopts
its neighbor’s state, the model we use is more similar to
that of an Ising model with zero temperature Glauber dy-
namics, in which at each step the agent tries to align with
some local field exerted by the neighbors and herself. This
subtle difference leads the two models to quite distinct
dynamics.

Tessone and Toral [16] have recently studied opinion
formation in a model in which agents have preference to-
ward a specific opinion with a variety of strengths. Each
agent follows the simple majority of their neighbors to up-
date her state taking into account her bias. The authors
find that the system responds more efficiently to external
forcing if the agents are diverse, that is if each agent has
a different bias strength. In here, however, we focus on
the effect of opinion-bias on consensus formation without
external forcing.

2.2 Network topology

A large body of literature demonstrates that social net-
works have complex topologies [17], and yet have common
features [18,19]. We build a network following the model
proposed by Watts and Strogatz [20,21], which, despite
its simplicity, captures two important properties of social
networks: local cliquishness and the small-world property.
We implement the Watts and Strogatz model as follows.
First, we create an ordered network by placing the agents
on the nodes of a one-dimensional lattice with periodic

boundary conditions. Then, we connect each agent to its
k nearest neighbors in the lattice. Next, with probability
p, we rewire each of the links in the network by redirect-
ing a link to a randomly selected agent in the lattice. By
varying the value of p, the network topology changes from
the ordered one-dimensional lattice (p = 0) to a random
graph (p = 1). We verified that our results are robust to
changes in p as long as the network has a small-world
topology, which for N = 401 occurs for p ≥ 0.1 (Support-
ing Online Material). In this study, we investigate pop-
ulations of N = 401 agents placed on a one-dimensional
ring lattice where each agent has k = 6 neighbors. To
implement a small-world topology we rewire each connec-
tion with probability p = 0.15. Recent research demon-
strates that, under these conditions, the naive heuristic
enables the efficient convergence of the system to the cor-
rect consensus [11,22]. This finding is similar to what has
been reported for the voter model. Specifically, studies
of the voter model on complex topologies have shown
that finite systems convergence faster to a consensus in
small-world networks than in regular lattices in one di-
mension and that this effect is independent of the degree
distribution [10,12,14].

3 Results

3.1 Effect of conservatism

We first consider the effect of conservative agents on the ef-
ficiency of the system (see Appendix A for definition of ef-
ficiency). Let’s assume that the system has both naive and
conservative agents present, and that the fraction of agents
using conservative strategies is fc. The characteristics of
the population are then described by the distribution

P (bj, sj) = δbj ,aj(t) Ps(sj) . (3)

For simplicity, we set sj = s > 0 for the conservative
agents and sj = 0 for the naive agents. Thus,

Ps(sj) = (1 − fc) δ(sj − 0) + fc δ(sj − s). (4)

We study three values for the bias strength: s = 2/7, 4/7,
and 6/7 (Fig. 2A). For s = 2/7 and s = 4/7, the system
completes the density classification task with extraordi-
nary efficiency. Indeed, increasing fc results in greater ef-
ficiencies for high noise levels, which can be explained if
one considers the stabilizing effect of conservative agents
on the dynamics.

In order to further characterize the effect of conserva-
tive agents on the system’s efficiency, we next investigate
how the time needed for the system to reach the steady
state depends on fc (Fig. 3 and Supporting Online Ma-
terial). We find that the “convergence time” grows quite
rapidly with the fraction of conservatives in the system.
In particular, for fc > 0.3 the system can no longer reach
the steady state within 2N time steps.

These two findings suggest that a population of agents
trying to optimize strategies in order to reach maximum
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Fig. 2. Efficiency of a population of distributed autonomous agents in completing the density classification task as a function
of noise intensity and: (A) the fraction of conservative agents, (B) the fraction of partisan agents holding the minority state,
and (C) the total fraction of partisan agents in the population whose preferred states are equally distributed between majority
and minority states. We show results for three bias strengths, s = 2/7, 4/7, and 6/7. Our results suggest that (i) conservatism
can be beneficial because it enhances the ability of the population to efficiently solve the density classification task for grater
noise levels (panel A); (ii) partisanship can completely cancel the efficiency of a population in solving the task, even if a small
fraction of partisans (fp ≥ 0.15) is present (Panel B). Panel (C) shows how having partisans toward both answers leads to
deadlock, especially at high noise levels for which the population as a whole will be evenly split between the two states.

efficiency must balance the greater accuracy of the system
in completing the task for larger noise levels afforded by
larger fractions of conservative agents with the rapidly
increasing convergence time as fc increases.

3.2 Effect of partisanship

We next consider the effect of partisan agents on the ef-
ficiency of the system. Let’s assume that the system now
has both naive and partisan agents present, and that the
fraction of agents using partisan strategies is fp. Because
partisan agents can have bias toward two distinct answers,
we consider two scenarios. In the first scenario, all parti-
san agents have a bias toward “−1”, that is, they prefer
the incorrect answer to the density classification task the

population is trying to complete1. If sj = s > 0, then
the characteristics of the population in this scenario are
described by the distribution

P (bj , sj) = (1 − fp)δ(sj − 0)δbj ,aj(t) + fpδ(sj − s)δbj ,−1 .
(5)

We again study three values for the bias strength: s = 2/7,
4/7, and 6/7. Our results reveal that even when partisan
agents have a small bias strength s = 2/7, and there-
fore, yield to peer pressure easily, fp ≥ 0.15 is enough
to overcome the initial majority and lead the population
to converge to the incorrect answer (Fig. 2B).

1 If all partisan agents have a bias toward “1”, because the
preferred state matches the majority state, the efficiency is
high for any value of η, fp, and s.
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Fig. 3. Effect of conservatism on attaining the steady state.
(A) Time for a population to reach the stationary state as a
function of the fraction of conservatives. (B) Comparison of
the asymptotic efficiency (Eas), that is the efficiency in the
stationary state, and the efficiency E attained after 2N time
steps as a function of the fraction of conservatives. Note that
for fc > 0.3, the system cannot reach the stationary state in
the 2N time steps used in the simulations.

In the second scenario, we consider a balanced dis-
tribution of partisans with fp/2 agents partisan toward
answer “1” and fp/2 agents partisan toward answer “−1”
(Fig. 2C). For η < 0.4 and fp < 0.3, we find that the
strength of the initial majority is able to drive the pop-
ulation to a consensus on the correct answer. However, if
either the noise level or the fraction of partisans increases,
the population settles into a deadlock. One could naively
expect that in the high bias strength case the results for
partisans and conservatives should be identical. In both
systems, conservatives and partisans alike are frozen in
their preferred state. In the system with conservatives, the
distribution of preferred states is exactly the same as the
distribution of initial states, which is that 57% of agents
prefer state “1”. However, in the system with partisans,
the distribution of preferred states is such that 50% of the
agents prefer state “1”. Therefore, even though the distri-
bution of initial states is 57%, all partisans will switch to
their preferred state because of the high bias strength. As
a consequence, in the regions of lowest efficiency, there is
a difference in efficiency between the results for conserva-
tives and the results for partisans.

The effect of strongly biased partisans in opinion for-
mation, that is those partisans that never change opin-
ion, has also been studied in the context of the voter
model [23,24] showing that only one partisan is enough
to significantly slow down consensus formation and that,

in regular lattices and complete graphs, when an equal
number of partisans P of each opinion is present, the ef-
ficiency of the system in the steady state is Gaussian dis-
tributed with zero mean and variance ∝ 1/

√
(P ). Thus for

large systems, a vanishing fraction of partisans is neces-
sary to put the system in deadlock and prevent consensus
from happening. Such finding is consistent with our re-
sults. However, since we consider that partisans are biased
but can change state, our model shows that, in the pres-
ence of noise, the population can actually reach consensus
when there are large fractions of partisans.

3.3 Effect of distrust

Because partisanship appears to remove a population’s
ability to reach consensus on the correct answer, we next
investigate possible ways to counter the effect of partisan
agents. A plausible strategy for non-partisan agents is to
“discount” the signal of partisan agents. We thus define
a discount parameter d ∈ [0, 1] with which non-partisans
weigh the information held by partisan agents. As demon-
strated by a recent study [25], we must also enable par-
tisan agents to discount the signals of both non-partisan
and opposing partisan agents with at least the same dis-
count rate.

Surprisingly, we find that the increased distrust among
agents actually has a deleterious effect on the efficiency
of the system in solving the density classification task
(Fig. 5). The reason for this apparently counter-intuitive
result is that sj = s > 0 for partisans, so that when
d ≤ 0.5, partisan agents discount the answer of non-
partisan agents to such an extent that they will never
abandon their preferred answer. In fact, only for d = 0
is a system containing partisan agents able to efficiently
complete the density classification task.

4 Discussion

Common experience demonstrates the existence of par-
tisanship within groups of any kind. One possible inter-
pretation for partisanship is a strong a priori belief that
a certain answer is correct. Alternatively, one may con-
sider the case where agents have personal interests that
may in fact differ from the “common good.” In this case
individual decision rules, such as the degree of partisan-
ship, can be interpreted as the solution to a maximization
problem at the individual level. We model this question by
assigning to a set of rational agents an idiosyncratic utility
function that each agent tries to maximize, while the rest
of the agents use the naive strategy. The interesting case
is the one in which the agent’s self-interest comes from an-
swer “−1” being adopted while the “common good” comes
from “1” being adopted. A utility function for the rational
agents is:

Uj ≡ Ij
N−
N

+ (1 − Ij)E

=
(

1 − 3Ij

2

)

E +
Ij

2
, (6)



374 The European Physical Journal B

Fig. 4. Effect of selective distrust. We consider a system in which well-intentioned agents take partial consideration of partisan
agents’ opinions and vice-versa. The discount parameter d quantifies the weight a well-intentioned agent assigns to the opinion
of a partisan agent. We consider a population with a fraction fc of conservative agents and 5% of partisan agents, both of
them with bias strength s = 2/7, and 5% of population being partisans to the minority opinion. We show the efficiency of the
population as a function of fc and of noise. For d > 0.5, partisans may converge to the positive state if a qualified majority
of their neighbors are already in that state. In such case, the population can still attain a relatively high efficiency for a wide
range of parameter values. In contrast, when 0 < d ≤ 0.5, partisans are unlikely to change states even when all their neighbors
are in the opposite state. In such conditions, the small fraction of partisans acts as a constant bias toward the negative state,
resulting in a drastic reduction of the population’s efficiency. Only for d = 0, that is when the two groups, well-intentioned and
partisan agents, completely disregard each other does the system recover the ability to efficiently solve the density classification
task.

where Ij is the degree to which the agent values his own
“self-interest over the common good.” If I > 2/3, the
agent’s utility is maximized by minimizing E. Thus, if an
agent has I > 2/3 the optimal individual strategy is parti-
sanship with s = 1. If I ≤ 2/3, then the optimal strategy
depends on the strength of the noise (Fig. 4); the stronger
the noise, the more conservative the agents should be.

These findings thus provide a possible explanation for
the emergence of conservatism and partisanship as mech-
anisms to maximize individual rather than collective ad-
vantage. The question then arises of how one can reconcile
the advantage of self-interest with the evolution toward
cooperative societies. The answer is that for individual
decisions to serve common good, societies must develop
and adopt norms that regulate self-interest [26,27]. Impor-
tantly, only in the presence of norms and the “metanorms”
that support their enforcement [26], will individuals adopt
strategies that lead toward cooperation and better social
outcomes.

Our findings for the effect of partisan agents on the ef-
ficiency with which the system completes the density clas-
sification task are striking. Even a small fraction of parti-
sans can completely erase the efficiency of the system. It is
not difficult to envision the consequences of this result on
our daily lives. Democratic societies face many situations
in which “difficult” decisions must be made [28–36]. More-
over, the ability of policy makers to reach timely decisions
on difficult matters clearly increases when a strategy has
broad support. Reaching such broad consensus, unfortu-
nately, is unlikely to occur if partisan agents are present.
Sadly, partisanship is the rational individual strategy if
there are no norms against it.

We thank Roger Guimerà for discussions. M.S.-P. acknowl-
edges the support of CTSA grant 1 UL1 RR025741 from
NCRR/NIHNIH and of NSF SciSIP 0830338 award. L.A.N.A.
gratefully acknowledges the support of NSF awards SBE
0624318 and SciSIP 0830338.
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Fig. 5. Strategy evolvability. We show the utility function U of
an agent as a function of his self-interest Ij and the noise level

η, where Uj ≡ Ij
N−
N

+(1− Ij)E
∗(η) =

(
1 − 3I

2

)
E∗(η)+ I

2
. We

show results for populations with a 10% of non-naive agents
(see Figs. 2A and 2B), that is, for each set of values {Ij , η},
we select the combination {bj , sj} whose efficiency E∗(η) max-
imizes U . In the diagram, we also show that the specific com-
bination {bj , sj} that maximizes U defines well separated re-
gions of how different strategies can be optimal for different
self-interest and noise levels. Significantly, an agent will choose
to be partisan if Ij > 2/3, regardless of the value of η.

Appendix A

For concreteness, and without loss of generality, we assign
a 57% probability to state “1” in the initial configuration
of the system. By setting p = 0.57, we avoid finite size
effects (Supporting Online Material). We then define the
instantaneous efficiency of the coordination process as

ε(t) ≡ N+(t) − N−(t)
N

, (A.1)

where N+ is the number of agents that are in state “1”
and N− is the number of agents that are in state “−1”. For
each realization, we allow the system to evolve for 2N time
steps. In order to ensure that the strategies used by the
agents are scalable, we let the system evolve for a number
of time steps proportional to the number of agents in the
system N . We define the efficiency ε of a single realization
as

ε ≡ 1
τ

2N∑

t=2N−τ

ε(t) (A.2)

setting τ = N/4. The efficiency E for a given set of pa-
rameter values is the average of ε over 1000 realizations.
Crutchfield and Mitchell [15] allowed the system to con-
verge to a point where all the agents have the same state,
and a realization is considered to be successful provided
the converged state is the same as the majority state. In-
stead of requiring that the system reaches consensus, we
focus on the steady state configuration reached by the sys-
tem.
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