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Small-world networks and the conformation space
of a short lattice polymer chain
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Abstract. – We map the conformation space of a short lattice polymer chain to a network,
where i) the vertices of the network have a one-to-one correspondence to the conformations
of the chain, and ii) a link between two vertices indicates the possibility of switching from
one conformation to the other by a single Monte Carlo move of the chain. We find that the
geometric properties of this network are similar to those of small-world networks, namely, the
diameter of conformation space increases, for large networks, as the logarithm of the number
of conformations, while locally the network appears to have low dimensionality.

The physical properties of polymers are the focus of a lot of attention due to i) their role
in many new advanced materials with important technologic applications [1], and ii) their
role in biological processes [2]. An especially important unsolved problem in polymer studies
is protein folding. Solving this problem has recently become more urgent as several studies
suggest that a number of human diseases, including Parkinson’s, Alzheimer’s and British
dementia, may be due to the aggregation of misfolded proteins [3].

The kinetics of protein folding are controlled by the structure of the free-energy land-
scape [4]. Theoretical calculations predict that in some cases the barriers in the free-energy
landscape are quite small [5]. Hence, the diffusion of a protein’s conformation on its en-
ergy landscape may be determined mainly by the structure and connectivity of conformation
space. For this reason, much work has been done on the structure of conformation space and
many models have been proposed, including tree structures, random networks, and ultramet-
ric spaces [6]. In spite of all this work, very little is known about the conformation space of
polymers in general and proteins in particular.

Here, we present evidence supporting the hypothesis that the conformation space of a
lattice homopolymer chain may be a small-world network [7–13]. These networks —which
appear as the result of randomly replacing a fraction p of the links of a d-dimensional lattice
with new random links [7]— interpolate between the two limiting cases of a regular lattice
(p = 0) and a random graph (p = 1). The small-world regime is characterized by the properties
i) that a local neighborhood is preserved —as for regular lattices [7]— and ii) that the average
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Fig. 1 – The conformations of a lattice polymer chain and the mapping of the conformation space to
a network. (a) The five panels labeled c1 to c5 show 5 different conformations of a 15-mer constrained
to have the end monomers fixed a distance ∆ apart. We use circles with a light shade to represent
the fixed monomers, and dark circles to represent the moving monomers. For numerical convenience,
we constrain the chain to occupy the half-plane bounded by the thick black line. Note that the same
results are obtained for other boundary conditions. The conformation of the chain evolves by the
usual Monte Carlo elementary moves: the corner flip and the “crankshaft”. For example, the chain
can switch from conformations c1 to c2, c2 to c3, and c3 to c4 by single corner flips. In panels c2 to
c5, we use dashed lines and dashed circles to represent the position of the monomer moved from the
previous conformation. We use conformations c4 and c5 to illustrate the “crankshaft” move, which
involves the simultaneous movement of two monomers. (b) Mapping of the conformation space of a
chain to a network. We first allocate a vertex of the network to each allowed conformation of the
chain. We then create a link between two vertices if the two corresponding conformations differ by
a single elementary Monte Carlo move. For example, since we can switch between conformations c1

and c2 by a single move, we put a link between the vertices c1 and c2. On the other hand, because
c5 cannot be reached from c1 through a single elementary move, we do not place a link between the
corresponding vertices.

shortest distance between two vertices increases logarithmically with the number of vertices
n of the network —as for random graphs [14].

To gain some insight on the conformation space of real polymers, we consider here the
conformation space of a 2-dimensional lattice polymer chain. To study the geometrical prop-
erties of conformation space, we map it onto a network [15]. We first enumerate all allowed
conformations of the chain. We then identify i) each conformation of the chain with a vertex
of the network, and ii) the possibility of changing from one conformation to another, through
a single Monte Carlo move of the chain, with the existence of a link between the corresponding
vertices (fig. 1).

Our study relies on two important simplifications. The first simplification is to use a
lattice model. In this regard, note that, due to the limited number of allowed equilibrium
angles between two monomers, the modeling of a polymer by a linear chain on a lattice may
be experimentally justified [16]. In fact, even for the study of proteins, lattice models led to
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Fig. 2 – Average shortest distance between chain conformations. We generate all the possible con-
formations of the polymer chain defined in fig. 1 for ∆ = 1, . . . , 6 and for chains with m = 8, . . . , 17
monomers. For each pair of values (∆, m), we identify in the conformation space all the different
connected networks and calculate their size n. Note that the conformation space comprises several
disconnected sub-networks because the chain has to remain on the plane. We use different symbols for
sub-networks obtained from chains of different length m. We calculate the average shortest distance
between every pair of vertices using the breadth-first search algorithm. (a) Log-log plot of the average
distance, rescaled according to the value of average connectivity [7]. The full line corresponds to a
dependence of the form n0.52, which suggests a spatial dimension d = 1.92 ≈ 2. The long-dashed line
corresponds to a logarithmic dependence, and the tick dashed line indicates simulation results for the
small-world network model with d = 2 and p = 103. Each symbol indicates the average distance for
a single conformation network. For n < 100, the average distance � for the conformation networks
increases as n1/2, as it would for a 2-dimensional lattice. (b) Same data but in log-linear plot. For
n > 1000, we observe � ∼ ln n, as for a random network, and as predicted by eq. (1). Our results are
consistent with the case of a small-world network with p ≈ 10−3, clearly ruling out a low-dimensional
lattice as a model of conformation space. Note that, for this and all other figures, the results for the
small-world network have been averaged over 100 realizations of the network, while each symbol cor-
responds to a single conformation network. Hence, there is far less noise for the small-world network
model results.

important insights [15,16]. The second simplification is to neglect interactions. In this regard,
note that here we are only interested in determining the geometric and structural properties
of conformation space, and that interactions affect the rate of transfer between the allowed
conformations [3, 15, 17]. Moreover, our results will also apply to any polymer chain in the
limit of very high temperature for which the monomer interactions are mostly due to sterical
effects [18].

We first calculate the geometric properties of conformation space for the simplified lattice
polymer model and compare these properties with the predictions of several models for con-
formation space. This approach is different from the ones considered so far in the literature.
We do not start by postulating a particular type of structure with some theoretically desirable
properties but, instead, try to generate the full network describing conformation space and
compare its properties with different models.

As a first test, we study the dependence of the average shortest distance � between any
two vertices in the network on the number n of vertices. Note i) that the size of the network
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equals the number of allowed conformations of the chain, and ii) that the distance between two
vertices equals the minimum number of elementary moves of the chain necessary to switch
between the two corresponding conformations. For a tree structure or a random network
we expect a logarithmic increase of � with n, while for a d-dimensional lattice we expect an
algebraic increase: � ∼ n1/d. In contrast, for a small-world network, � follows the scaling
law [8]

�(n, p) ∼ (n∗)1/df(n/n∗) , (1)

where the scaling function f(u) has the limits f(u) ∼ u1/d for u � 1 and f(u) ∼ ln u for
u � 1; n∗ ∼ p−1 is a crossover size that separates the large- and small-world regimes, and p
is the fraction of “rewired” links [8, 9]. Figure 2 displays our results for the polymer chain,
which suggest that the conformation space can be described by a small-world network with
p ≈ 10−3. Figure 2 clearly rules out the possibility that, for n � 1, the conformation space is
a low-dimensionality lattice.

As a second test, we study the local structure of conformation space and compare it with
that of a random network [7]. To this end, we calculate the clustering coefficient C, which is
defined as the average ratio of the number of existing links between neighbors of a vertex and
the maximum number of possible links. For a random network [7], we expect C � z/n, where
z is the average connectivity of the network. In contrast, small-world networks have values of
C of the same order of magnitude as those of regular lattices, because only a small percentage
of links are different from those in the lattice [7]. In fig. 3(a), we compare the values of C
obtained for the networks with the values of C for random networks with the same size and
connectivity. Clearly, the measured clustering coefficients are much larger than the expected
values for random networks, ruling out a purely random structure for conformation space.

As a third test, we calculate the number of elementary loops in conformation space —
usually referred to as the cyclomatic number [19]— and compare the results with those for
a tree structure. For a tree structure the cyclomatic number is identically zero while for all
other networks it increases linearly with n. Figure 3(b) shows that the cyclomatic number
for the polymer conformation space clearly increases with n, consistent with a small-world
network but ruling out a tree structure for conformation space.

As a fourth test, we calculate the percentage of triplets {A,B,C} of vertices in confor-
mation space whose distances obey an ultrametric relation [6]: dAC ≤ max(dAB , dBC). Fig-
ure 3(c) shows the percentage of ultrametric triplets for conformation space. The percentage
of ultrametric triplets is significantly smaller than 100%, ruling out a purely ultrametric struc-
ture for conformation space. Moreover, the measured percentage of ultrametric triplets also
rules out the random network and the tree structure as descriptions of conformation space.

As a final test, we calculate the distribution of connectivities k. We find a binomial distri-
bution [10], which rules out the possibility of the network having a scale-free structure [11].

In summary, the regular lattice is rejected by the first test, the tree structure is rejected by
the first, third, and fourth tests, and the random network is rejected by the first, second and
fourth tests. Hence, we conclude that the geometrical properties of the conformation space
of a lattice polymer chain are consistent with those of small-world networks but not with the
geometric properties of the other geometries discussed in the literature.

Our results suggest that 2-dimensional lattice polymer chains have conformation spaces
that are small-world networks. This hypothesis raises a number of important questions. First,
will our findings still hold for chain conformations in 3 dimensions? This question is difficult
to answer for several reasons. The main difficulty of generalizing our approach to higher
dimensions is that the networks quickly become so large that the problem becomes computa-
tionally intractable. Moreover, it is well known that in 3 dimensions sterical constraints are
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Fig. 3 – Structure of conformation space. (a) Normalized clustering coefficients for the polymer chain,
C(n, z)/Crandom(n, z) � nC(n, z)/z, where z is the average connectivity. For a small-world network,
the clustering coefficient will be approximately a constant (for fixed p), and the normalized clustering
coefficient increases linearly with n. Our results clearly rule out a purely random structure for confor-
mation space since the normalized clustering coefficient for the polymer chain conformation space is
orders of magnitude larger than the value for a random network. Note that the apparently logarithmic
discrepancy between the two curves in the figure may be due to the logarithmic increase of z with
n, which is shown in the inset. (b) Cyclomatic number. The cyclomatic number for a tree structure
is identically zero because there are no loops. For a generic network [19], the cyclomatic number
increases as nz. Hence, we plot the cyclomatic number for the polymer conformation space normal-
ized by the connectivity z. As expected, we observe a linear increase with size n. (c) Percentage of
ultrametric triplets. We calculate the number of triplets obeying the relation dAC ≤ max(dAB , dBC).
For a purely ultrametric space, all triplets have distances obeying this relation. For 2-dimensional
square lattices and for small-world networks only slightly more than 2/3 of the triplets —which is the
lower bound— obey the ultrametric relation. In contrast, for random networks and tree structures,
we find a higher percentage of triplets to be ultrametric. It is apparent that values for the random
network and tree structure are not consistent with the measured values for the polymer conformation
space. Note that each data point for the polymer chain corresponds to a single conformation network
while the results for the small-world network represent an average over 100 networks.

much less severe than in 2 dimensions, which could dramatically change our results for higher
dimensions.
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We believe that the change in sterical constraints is indeed very important for homopoly-
mers but may not be as important for proteins close to the native state due to the effect
of the nucleus. In the region of conformation space close to the native state, a protein will
have several monomers that are “fixed” with regard to one another —the nucleus— while
the chains of monomers connected to them will be more free. One may hypothesize that the
spatial constraints due to the nucleus may be enough to recover our result for 2 dimensions.

Second, how will interactions in heteropolymers affect the structure of conformation space?
It is clear that energy considerations will effectively change the conformation-space network
as some links will be used very rarely because of energy considerations and may be viewed,
for all practical purposes, as if they were removed.

If one makes the assumption that all links in the conformation-space network are equally
likely to be “removed” due to energy considerations, then an approximately equal fraction of
“long-range” links will remain. But one knows [8,9] that a small fraction of “long-range” links
is sufficient to obtain a small-world network. Hence, one may surmise that our results may
still be valid even after the introduction of heteropolymer interactions.

Moreover, we feel that the description of the conformation space as a small-world network
may be useful for other complex disordered systems such as spin-glasses [20]. Specifically,
small-world networks combine the features of apparent infinite dimensionality and low con-
nectivity thought to be important for glassy relaxation [20–22]. It has been hypothesized
that, in order to reproduce stretched-exponential decays [17, 23], the space of accessible con-
formations must have a sparse random graph structure [21, 24]. Our results suggest that,
for conformation spaces with a small-world structure, stretched-exponential relaxation may
appear as an intrinsic feature of the space’s geometry.
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