
Eur. Phys. J. B 67, 277–284 (2009)
DOI: 10.1140/epjb/e2008-00418-0

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Detection of node group membership in networks with group
overlap

E.N. Sawardecker1,a, M. Sales-Pardo1,2,3, and L.A.N. Amaral1,2,b

1 Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
2 Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
3 Northwestern University Clinical and Translational Sciences Institute, Chicago, IL 60611, USA

Received 5 August 2008
Published online 20 November 2008 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2008

Abstract. Most networks found in social and biochemical systems have modular structures. An important
question prompted by the modularity of these networks is whether nodes can be said to belong to a single
group. If they cannot, we would need to consider the role of “overlapping communities.” Despite some
efforts in this direction, the problem of detecting overlapping groups remains unsolved because there is
neither a formal definition of overlapping community, nor an ensemble of networks with which to test
the performance of group detection algorithms when nodes can belong to more than one group. Here,
we introduce an ensemble of networks with overlapping groups. We then apply three group identification
methods – modularity maximization, k-clique percolation, and modularity-landscape surveying – to these
networks. We find that the modularity-landscape surveying method is the only one able to detect het-
erogeneities in node memberships, and that those heterogeneities are only detectable when the overlap is
small. Surprisingly, we find that the k-clique percolation method is unable to detect node membership for
the overlapping case.

PACS. 89.75.Fb Structures and organization in complex systems

1 Introduction

Real-world networks including man-made and natural net-
works are strongly modular, that is, the pattern of connec-
tions among nodes is not homogeneous [1,2]. The modular-
ity of a network is a consequence of the fact that there are
groups of nodes in the network that preferentially connect
to one another [1–8]. However, the assignment of nodes
into those groups still remains a challenging task because,
typically, nodes also connect to nodes that are not in their
group [3,6,8]. Additionally, nodes may hold membership
in more than one group [6,8–11], resulting in groups that
“overlap.”

The question of whether there are nodes that belong
to more than one group and how important overlapping
groups are to the network’s organization is especially rel-
evant in social and biochemical systems, in which typi-
cally nodes are thought to belong to more than one group.
Consider, for instance, the network of scientific collabora-
tions within an institution: people with joint appointments
would be expected to appear in more than one group. Or,
consider the network of physical interactions between pro-
teins: topological modules are thought to have a strong
correlation with biological function [12]. Since many pro-
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teins are known to have more than one function, one would
expect these proteins to belong to more than one group.

Recently, methods to uncover the hierarchical organi-
zation of networks [13,14] have been proposed, opening
the possibility of performing multi-scale analysis on so-
cial, biological, and economical systems for which large
amounts of data are available. However, a potential caveat
of these methods is that they do not take into account the
fact that nodes could hold membership in more than one
group. Modularity maximization methods [7,15,16], which
have been successful at finding correlations between net-
work function and structure, suffer from the same prob-
lem. The impact of neglecting overlapping groups has not
been assessed so far, since there is neither a formal defi-
nition of overlapping group nor a set of models on which
to test overlap identification algorithms.

Here, we introduce an ensemble of networks [17] that
have overlapping groups by construction [11]. We then
apply three different group detection methods – modu-
larity maximization [1,15], k-clique percolation [8], and
modularity-landscape surveying [13] – to these networks.
We find that the modularity-landscape surveying method
is the only one able to detect heterogeneities in node mem-
berships, and that these heterogeneities are detectable
provided the overlap is significantly smaller than the size
of the modules involved.
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2 Model networks

Consider a network comprised of N nodes and L edges. Let
N = {ni: i = 1, . . . , N} be the set of nodes and G = {gx:
x = a, b, . . . } be the set of groups in which the nodes
can hold membership. Specifically, let Gi ⊂ G be the set
of groups in which node ni holds membership. Without
loss of generality, we assume that all groups with identical
membership lists have been merged and that all groups
have at least two members.

Here, we focus on the ensemble of random networks
in which the probability pij of the edge (ni, nj) being
present in a network is a function solely of the set of co-
memberships of the two nodes Mij = Gi ∩Gj . We restrict
our attention to the case where pij is a non-decreasing
function of the cardinality of Mij . For undirected net-
works, this is the most plausible case. Indeed, most clus-
tering algorithms used to investigate the modular struc-
ture of networks have at their basis the assumption that
this is the appropriate case. Such an assumption is sup-
ported by the fact that those methods return plausible
results for those networks [7,17–20].

We consider the case where pij = pl, where l = ||Mij ||
is the cardinality of Mij , and, further, we assume that
p0 < p1 ≤ p2 ≤ · · · . An implication of our choice for pij is
that if one selects a sub-set of N in which all pairs of nodes
have non-empty co-membership sets, then there will be
more edges connecting these nodes than one would expect
to find by chance. Or, in other words, we expect to find
more edges connecting these nodes than if all links had the
same probability p = 2L/N(N − 1) of being present. In
contrast, if one selects a sub-set of N in which all pairs of
nodes have empty co-membership sets, then there will be
fewer edges connecting these nodes than one would expect
to find by chance. These facts directly suggest that the
maximization of a modularity function such as that pro-
posed by Newman and Girvan [1] will enable one to iden-
tify node membership in modular networks (see [13,21,22]
for caveats to this argument).

The ensemble of networks we focus on comprises two
distinct sub-ensembles. The first sub-ensemble, which we
denote transitive, conforms to a transitive relationship
among co-membership sets. That is, if the co-membership
set Mij is non-empty and the co-membership set Mik is
also non-empty, then the co-membership set Mjk must
also be non-empty. The second sub-ensemble, which we
denote non-transitive, does not conform to a transitive re-
lationship among co-membership sets.

Networks in the transitive sub-ensemble have the prop-
erty that every node must hold membership in only one
group (if identical groups have been collapsed). In con-
trast, networks in the non-transitive sub-ensemble have
some nodes that hold membership in more than one group.
Most module detection algorithms in the literature deal
only with the transitive sub-ensemble [7,15,20,23], that is,
nodes are divided into “exclusive groups.” A notable ex-
ception is the work of Palla et al. [8], which highlights the
possibility that a network will contain nodes belonging
to more than one group, thus allowing for “overlapping

communities.” Regretfully, Palla et al. [8] do not define
ensembles of networks with overlapping groups.

Another significant exception is the work of Sales-
Pardo et al. [13], which determines community structure
even when hierarchical levels of structure exist. These hier-
archical levels of structure indicate that nodes may belong
to more than one group, but only when multiple layers
are considered. Here, we define an ensemble of networks
in which most nodes hold membership in a single group,
while a small fraction of nodes hold membership in two or
three groups (Fig. 1).

3 Community detection

3.1 Description of the methods

Let us now address the question of detectability of the
memberships of individual nodes. Ideally, one wishes to
detect all group memberships from the topology of the
network alone. For the case of transitive networks, it
has already been shown that when p1, the probability
that two nodes belonging to the same group are con-
nected, is not much larger than p0, it is impossible to
extract the correct membership assignment from the net-
work structure alone [15]. Here, we focus on the detection
of node membership for the ensemble of non-transitive
networks described above. We consider three different
classes of group detection algorithms: modularity maxi-
mization [1,15], k-clique percolation [8], and modularity-
landscape surveying [13].

Modularity maximization methods are the current
“gold standard” for group identification [23]. In this ap-
proach, nodes are classified into groups that maximize the
number of within group edges compared to those that
would be expected from chance alone [1,2,4,5,7]. Some of
the proposed algorithms, such as spectral decomposition,
are extremely fast and can handle networks comprised
of hundreds of thousands of nodes [7]. However, this ap-
proach is clearly geared toward networks with transitive
membership structures since every node must be classified
into a single group.

The k-clique percolation method introduced by Palla
et al. [8] is based on the observation that networks some-
times contain connected cliques of the same size [8]. In this
method, a group comprises chains of “adjacent” k-cliques –
where two k-cliques are adjacent if they share k−1 nodes.
A strength of this approach is that nodes can be classified
into more than one group, making it a priori well-suited
to investigate non-transitive networks. Two limitations of
this this approach, however, are that different values of
k will result in different group membership patterns, and
that sparse networks might contain a very small number
of cliques with k > 2.

The modularity-landscape surveying method [13], or
MLS, is based upon the observation that the modular-
ity landscape is very rugged and has many local max-
ima, which means that there are many partitions of nodes
into groups characterized by high values of the modularity
function. In analogy to disordered physical systems whose
landscapes are also rugged [24–26], one expects that the
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Fig. 1. (Color online) Random network models with overlapping groups. Consider a network with eight nodes, n1 through n8.
We assign these nodes to three different groups which we indicate by three different colors, blue, yellow, and purple. Moreover,
we allow the blue and yellow groups to overlap; nodes n3 and n4 belong to both yellow and blue groups. We highlight these
overlapping nodes in green. (a), Purple nodes connect to other purple nodes with probability p1 and to blue, green, and yellow
nodes with probability p0 < p1. (b), Blue nodes connect with other nodes in the blue group (n1, n2, n3, n4) with probability p1,
and to nodes outside their group (yellow and purple nodes) with probability p0. Note that yellow nodes have the same properties
as blue nodes. (c), Green nodes connect to blue and yellow nodes with the same probability p1. Since green nodes are not in
the same group as purple nodes, the probability of having a connection between a green and purple node is p0. For generality,
we assume that green nodes connect between themselves with probability p2. (d), Adjacency matrices for the model networks
with p2 = p1 and p2 = 2p1. We show both the adjacency matrix for a single realization of the model network and the average
adjacency matrix, that is the fraction of times two nodes are connected in the ensemble of networks defined by the model. Note
that p2 = 2p1 has an overlapping region that is more densely connected, hence the average adjacency matrix has more “black.”
We show results for networks of 112 nodes divided into four groups of 32 nodes. Two of the four groups overlap by sharing 16
nodes and the corresponding edges. We select p1 and p0 such that for nodes not in the overlapping region, the average degree
z is 16 and the ratio r between the external-degree and internal-degree is r = 0.125.

set of all local maxima conveys the relevant contribution to
the system’s physical properties. Thus, the method sam-
ples all the partitions P corresponding to local maxima
with probabilities proportional to the size of their basins
of attraction. Then, it builds a co-classification matrix A,
in which each element Aij corresponds to the expected
fraction of the time in which a pair of nodes (ni, nj) is clas-
sified in the same group. As discussed above, this method
does not restrict nodes to hold membership in a single
group, but rather, by collecting statistics, it reports the
likelihood that two nodes are members of the same group
(or sets of groups), and therefore it is a priori suitable to
identify node memberships in networks with both transi-
tive and non-transitive memberships.

3.2 Random network ensembles

In order to investigate the detectability of the mem-
bership structure of a network, we generate random

networks in which nodes can belong to five groups, G =
{ga, gb, gc, gd, ge}. We consider the cases in which most
of the nodes belong to a single group, {ga}, {gb}, {gc},
or {gd}, and the remaining nodes belong to two groups,
{ga, gb}, or to three groups, {ga, gb, ge}. We then assume
that if two nodes have membership in the same group,
they will be linked with probability p1 > p0. Similarly,
if two nodes have membership in the same two groups,
they will be connected with probability p2 ≥ p1. Note
that as r ≡ p0/p1 approaches one, the harder it becomes
to detect the co-membership structure of a network. Also,
since some nodes belong to multiple groups, the degree
of these overlapping nodes will be larger than that for a
node belonging to only one group. Henceforth, we denote
the average degree of a node belonging to only one group
by z.

If a node holds membership in only one group, say ga,
then it belongs to group A. If some nodes hold membership
in two groups {ga, gb}, then they belong to groups A and
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Fig. 2. (Color online) Output of methods for group detection. We apply three different group detection algorithms, the
spectral decomposition method, the modularity-landscape surveying method, and the k-clique method to model networks with
overlapping groups (Fig. 1). We show results obtained for a typical network realization for p2 = p1 and for two overlap sizes:
large overlap (s = 0.25 – first row), and small overlap (s = 0.125 –second row). We generate these networks with the same
parameters z and r that we use for the networks in Figure 1. The first column shows the adjacency matrix. The second column
shows the co-classification matrix obtained with the modularity-landscape surveying method (see text). The third column
displays the group classification matrix obtained with the spectral decomposition method. The next two columns show the
group classification matrices obtained with the k-clique method for k = 4 and k = 5. The final column shows the expected
group classification. The colorbar is the same as in Figure 1. In the group classification matrices, each row corresponds to a
node, and each column corresponds to a group. If a node belongs to the group, a black band appears in that group’s column. If
a node belongs to more than one group, multiple bands will appear; these are nodes that the belong to the “overlap” between
groups according to the algorithm. Dotted black lines indicate the nodes that by construction hold membership in more than
one group and thus comprise the overlap in the model network. The modularity-landscape surveying method indicates a region
of membership heterogeneity such that nodes in the overlapping groups have more in common with each other than with nodes
in the non-overlapping groups (grey region), but this effect is dependent on the value of s. The spectral decomposition method
yields three or four groups, depending on the value of s. The k-clique method yields at least four groups for k ≥ 4, some of
which only contain a few nodes.

B. If the latter case is true, then groups A and B overlap.
We define the “overlap size” s as

s =
||A ∩ B||
||A ∪ B|| , (1)

that is, the number of nodes in both A and B divided by
the combined size of groups A and B. Thus, an important
issue regarding co-membership detection when nodes hold
membership in more than one group is how the size of the
overlap affects the accuracy in detecting group member-
ship.

3.3 Mutual information

To quantify the similarity between two partitions of nodes,
we calculate the mutual information between the two par-
titions [23]:

MI =
−2

∑
P,Q Nij ln

(
NijN
NiNj

)

∑
P Ni ln

(
Ni

N

)
+

∑
Q Nj ln

(
Nj

N

) , (2)

where P is the list of groups in the first partition, Q is
the list of groups in the second partition, N is the total
number of nodes, Ni is the number of nodes in group gi in
the first partition, Nj is the number of nodes in gj in the
second partition, and Nij is the number of nodes that are

both in gi and gj . Note that this expression is symmetric;
thus, it is an unbiased metric to compare the similarity of
two partitions.

If the partitions are identical, MI = 1, whereas if the
two partitions are totally uncorrelated, MI = 0. Note,
however, that for the case in which each node is placed
into a separate group, one has MI = M∗

I > 0. We thus
report mI = MI−M∗

I

M∗
I

, so that values of mI greater than
zero indicate significant accuracy.

4 Results

To compare the performance of the methods for the en-
semble of model networks with overlapping groups previ-
ously introduced, we generate ten networks for each set
of parameter values and apply the three group detection
algorithms to each network. Figure 2 displays the typical
results obtained for a network with parameters r = 0.125,
z = 16, p2 = p1 or p2 = 2p1, and s = 0.125 or s = 0.25.

To determine the accuracy of each method, we com-
pare the partitions returned by each method to the
known division of nodes into groups. Specifically, we use
the normalized mutual information mI , which quantifies
the amount of information that two different partitions
share [23]. Figure 3 displays the average mI versus z for
p2 = p1 and s = 0.125 or s = 0.25 and different values
of r.
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Fig. 3. (Color online) Performance of modularity and k-clique methods for group detection. We generate ten networks for
each set of parameter values, z and r. We then compare the groups we obtain from the k-clique, spectral decomposition, and
modularity-landscape surveying methods to the expected group assignment and compute mI (see text). We show the normalized
mutual information, mI , versus average node degree z for networks with p2 = p1 and a large overlap (first row) and a small
overlap (second row) (Fig. 1). For the modularity-landscape surveying method, we computed mI with regards to the topmost
level only. The first column of plots corresponds to r = 0.1, the second column to r = 0.125, and the third column to r = 0.25.
Note that mI > 0 indicates that the method considered yields significant information on the network’s group structure. For
the k-clique method, mI ≤ 0 indicates either the lack of detectable cliques of that size or the tendency to put all nodes in the
same group. Note that for the spectral decomposition and modularity-landscape surveying methods, performance increases with
increasing average node degree z and decreasing r.

Since the average degree of a node should strongly af-
fect the ability of each group detection method to detect
the known group structure, we systematically investigate
degree effects. We expect that, as degree increases, the
difficulty of detection should decrease. Also, as the num-
ber of nodes having membership to two or more groups
increases, the difficulty of detection should increase.

4.1 Modularity maximization

The results obtained with the spectral decomposition
method exhibit different behaviors depending on the size
of the overlap: for small overlaps (s = 0.125), the method
identifies four groups, whereas for large overlaps (s =
0.25), it identifies three groups, such that the two overlap-
ping groups are combined into a single one, as predicted
by Fortunato and Barthélemy [21]. Note that there are
no significant differences between the cases p2 = p1 and
p2 = 2p1.

4.2 Modularity-landscape surveying

In contrast, the modularity-landscape surveying method
is able to uncover more information about the underlying
organization of the nodes in the network than either the

modularity maximization or k-clique percolation methods.
Even for small overlaps, the algorithm is able not only to
identify densely interconnected groups of nodes, but is also
able to detect that the overlapping groups have more in
common with each other than with the remaining groups
(Fig. 2).

4.3 k-clique percolation

The results obtained with the k-clique method depend
strongly on the value of k. For k = 3, the method is unable
to detect the modular structure of the networks; it places
all the nodes into a single group. For k = 4, the two over-
lapping groups are mostly combined into one group for
both large and small overlaps. Finally, for k = 5, the al-
gorithm does not identify any sizable group of nodes in
the network. In fact, the signal provided by the k-clique
method is weaker than that provided by the adjacency
matrix. Surprisingly, even though the k-clique method al-
lows nodes to belong to more than one group, the nodes
placed in multiple groups do not in general correspond to
the nodes belonging to the overlapping groups (Fig. 2).

We find that the accuracy of the k-clique method is
always much smaller than that of the spectral decomposi-
tion and modularity-landscape surveying methods. In fact,
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Fig. 4. (Color online) Effect of overlap size. We plot the average number of groups detected using the spectral decomposition
method for modularity maximization (black circles) versus the overlap size s (Eq. (1)) for model networks with groups of
100 nodes, z = 50, r = 0.1, and p2 = 2p1. We show the average and standard error obtained for forty networks. We also show
the co-classification matrix A obtained from the modularity-landscape surveying method for a typical network for four different
s values. In the co-classification matrices, each row/column represents a node and each element Aij corresponds to the fraction
of the time two nodes are classified in the same partition for the maxima in the modularity landscape (see text). Each element
is colored following the color code on the right hand side. To illustrate the differences for co-classification values close to one, we
also plot log(1 − Aij). Again, matrix elements are colored following the color code on the right hand side. Note that while the
spectral decomposition method can only detect whether the overlap is large enough to transition between four to three groups,
the modularity-landscape surveying method is able to capture the greater affinity between the nodes in two of the groups in
the organization of the network.

in order for the k-clique method to return results that are
significant, one must have r < 0.25. Moreover, for k = 4,
the accuracy of the method decreases as the density of
edges increases.

For low edge densities, the network does not contain
any 5-cliques, so the groups identified for k = 5 are un-
reliable. These results point to a severe limitation of the
k-clique method: similar networks require different k val-
ues in order to yield meaningful results, and even when
group detection is meaningful the method always performs
significantly worse than modularity based methods.

4.4 Overlap detectability

These results suggest that the detection of overlapping
groups may be essentially impossible when the overlap
is large. However, for small overlaps, the modularity-
landscape surveying method is able to detect hetero-
geneities in node group membership. The question that
arises is thus how small should the overlap be in order
to be detected and whether detection may ever be unam-
biguous. To answer this question, we analyze model net-
works with groups comprising 100 nodes, z = 16, r = 0.1,
and p2 = 2p1, for a wide range of overlap sizes s =
0.02, . . . , 0.25 (Figs. 4 and 6). The spectral decomposition

method shows a transition from identifying four groups
(s < 0.175) to identifying three groups (s > 0.2). For
s < 0.175, the modularity-landscape surveying method
is able to detect the signature of heterogeneities in node
membership. However, the “signal” fades as s increases.

Like the spectral decomposition method, the
modularity-landscape surveying method also indi-
cates that there are three different groups for s > 0.2.
Additionally, it is impossible to detect the overlap
between groups from the collection of edges alone. The
signal is only distinct for s ≤ 0.1, and even then it is not
clear whether one can distinguish between the case in
which two groups overlap and the case in which a group
comprises two sub-groups (Fig. 5) [13].

5 Conclusions

The ability to detect overlapping communities within
real-world networks would greatly enhance understand-
ing of phenomena such as synchronization [27]. How-
ever, our analysis reveals that the group detection meth-
ods in the literature are not entirely equipped to han-
dle such information. In some cases, these methods may
require tunable parameters, such as in the k-clique per-
colation method [8] and the method of Gfeller et al. [10].
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from applying the three different methods (spectral decomposition, k-clique percolation, and modularity-landscape surveying)
to (i) networks with a small overlap, and (ii) networks with a hierarchical structure. We show typical results for (i) a network
with overlapping groups of 100 nodes, z = 16, r = 0.1, p2 = 2p1, and s = 0.1 (top row – see Fig. 1 for details); (ii) a network
with hierarchical structure such that at the top level there are three groups (two of 100 nodes and one of 200 nodes), and the
largest group is comprised of two sub-groups of 100 nodes. We construct the latter network such that z = 16 and r = 0.1, for
nodes in the groups with flat organization. For edges involving nodes inside the large group, we link nodes (i, j) with probability:
(i) p1 if they belong to the same sub-group, (ii) with p2 < p1 if they do not belong to the same sub-group, but belong to the
same group at the top level; and, (iii) with p0 if they do not belong to the same group at the top level. Note that p0 is the same
for any pair of edges running across groups, and that p1 and p2 are selected such that z = 16. We show results for the case
r2 = p2/p1 = 1/3. There are very few differences in the results for both networks. The spectral decomposition method finds
four groups for both cases. The k-clique percolation method with k = 4 subtly outlines the underlying group structure of the
network shown by the adjacency matrix. Results for k = 5 are not shown because there are no cliques of that size for sparse
networks. Note that the signal detected by the k-clique percolation method has significantly decreased compared to that for the
smaller networks in Figure 2. In contrast, the signal detected by the modularity-landscape surveying method has not decreased.
Note that results for hierarchical and overlapping networks are very similar.
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for each overlap size and degree, and see that the
transition of detectability occurs over the same range as is indicated in the average number of effective groups. The transition
sites are circled.
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The promising method of Nepusz et al. [11] aims to obtain
the global organization of a network while determining
which nodes act as “bridges” between communities.
This method captures some of the same information
as the modularity-landscape surveying method, but re-
quires additional centrality calculations to correct for the
“bridgeness” score. Furthermore, even the recently pro-
posed modularity-landscape surveying method, which can
detect small overlaps, is not able to unambiguously differ-
entiate overlapping groups from hierarchically-organized
groups.
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for comments. L.A.N.A. gratefully acknowledges the support
of the Keck Foundation, an NIH/NIGMS K-25 award, and of
NSF.

Appendix A

To characterize how the degree and the size of the overlap
affect group detection, we generate forty networks com-
posed of four groups of 100 nodes each for every set of con-
ditions tested. We tested the degree of a non-overlapping
node at values of z = 10, 20, 30, 40, 50, and we tested the
size of the overlap, s, for s = 0.16 through s = 0.25. Each
of these networks was generated with p2 = 2p1, except for
the case z = 20, for which we also studied networks with
p2 = p1.

Since the spectral decomposition method is very fast
and is considered the gold standard for group detection,
we applied this method on each of the networks generated
(Fig. 6a). We expected the spectral decomposition method
to detect four groups for low overlap sizes for every degree
tested, and that it would detect three groups at higher
overlap sizes or at higher node degree. We expected also
that the higher the degree, the faster the transition be-
tween four detectable groups and three detectable groups.
Since some of the groups reported by the method were
very small, we calculated the effective number of groups,
Neffective

Neffective =
1

∑
G(Si

N )2
(A.1)

where G is the list of groups in the partition of the network
returned by the method, Si is the number of nodes in a
group within G, and N is the total number of nodes in
the network. For the networks with an average degree of
z = 20 and p2 = p1, we find a transition from detecting
four groups to detecting three groups for s ≈ 0.18, while
for z = 50, the transition occurs by s = 0.16.

However, we wanted to further investigate the de-
tectability for the degrees and overlap sizes chosen. Specif-
ically, we examine the detection resolution limits as out-
lined by Fortunato and Barthélemy in [21]. In their pa-
per, Fortunato and Barthélemy indicate that in order for
a group to be unambiguously detectable by spectral de-
composition, it must meet two criteria: (i) the number of
links within group g, or lg, should be less than the total
number of links L divided by four, or lg < L

4 ; and (ii)
the ratio of links leaving the module, lout

g , to links within

the module should be less than two, or a = lout
g

lg
< 2. All

of the detected groups for each of the networks satisfied
the second condition. Figure 6 shows 4 × lg

L versus s for
each degree. In this figure, a value less than one indicates
that the resolution detection limit is satisfied. Compar-
ing Figures 6a and 6b, we see that as soon as the reso-
lution detection limit is violated, the number of detected
groups decreases, so our results are consistent with those
of Fortunato and Barthélemy [21].
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