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Energy metabolism modulates the regulatory impact of activators
on gene expression
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ABSTRACT

Gene expression is a regulated process fueled by ATP consumption.
Therefore, regulation must be coupled to constraints imposed by the
level of energy metabolism. Here, we explore this relationship both
theoretically and experimentally. A stylized mathematical model
predicts that activators of gene expression have variable impact
depending on metabolic rate. Activators become less essential when
metabolic rate is reduced and more essential when metabolic rate is
enhanced. We find that, in the Drosophila eye, expression dynamics
of the yan gene are less affected by loss of EGFR-mediated activation
when metabolism is reduced, and the opposite effect is seen when
metabolism is enhanced. The effects are also seen at the level of
pattern regularity in the adult eye, where loss of EGFR-mediated
activation is mitigated by lower metabolism. We propose that gene
activation is tuned by energy metabolism to allow for faithful
expression dynamics in the face of variable metabolic conditions.
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INTRODUCTION
The development of an organism occurs over a period of time that is
distinct for the species to which the organism belongs (Ebisuya and
Briscoe, 2018). Because development is coupled to the activities of
gene regulatory networks (GRNs) that operate within cells, the
dynamical properties of these GRNs are thought to influence the
timing of development. For example, the turnover rates of proteins
operating within a human neurodevelopmental GRN are slower than
for those proteins operating in the homologous mouse GRN, and
this difference is thought to partially explain the large difference in
developmental tempo between the two species (Matsuda et al.,
2020; Rayon et al., 2020).
The pace of development is also dependent upon extrinsic factors

such as cellular metabolism (Iwata et al., 2023). Gene expression
requires the continual synthesis of key metabolites and ATP, the

primary source of chemical energy. The energy budget of a cell is
composed of many competing processes that expend energy by
consuming ATP. For example, during embryogenesis, gene
expression and cell division account for a small fraction of the
energy expended, suggesting that the energy budget is devoted to
many biochemical processes (Rodenfels et al., 2019; Song et al.,
2019). Energy expenditure is balanced with the generation of
ATP, which depends on metabolic processing of nutrients. If an
organism’s nutrient uptake varies for whatever reason, then energy
expenditure must accordingly adjust to prevent exhaustion of ATP
stores (Locasale and Cantley, 2011). This principle has been
demonstrated in Drosophila larvae as they grow and develop.
Targeted ablation of insulin-like peptide (dILP) expression causes
larval cells to reduce their uptake of circulating sugars by ∼40%
(Zhang et al., 2009). There is a corresponding 30% decrease in
energy expenditure by the body, and, as a result, the animals
develop more slowly and grow into slightly smaller adults (Zhang
et al., 2009). Developmental gene expression dynamics are
correspondingly slower (Cassidy et al., 2019).

Although ATP content remains fairly constant in cells facing
limited respiration, the fluxes of ATP synthesis and turnover are
affected, manifesting in altered ratios of ATP to ADP and free
phosphate (Brown, 1992). Anabolic processes are highly dependent
on the ATP/ADP ratio (Atkinson, 1977). Because cells adjust their
gene expression dynamics to variable energy budgets, this could
theoretically occur in an unregulated manner simply based on
dependence on the ATP/ADP ratio. However, there might also exist
regulatory mechanisms within GRNs that provide coupling of
expression dynamics to energy budgets. One such mechanism has
been described for developmental GRNs in Drosophila (Cassidy
et al., 2019). Using ablation of dILP-secreting cells to reduce energy
expenditure in larval cells, it was found that repressors of gene
expression became dispensable for their regulatory functions on
target genes. This phenomenon was so pervasive that when energy
metabolism was reduced, the entire family of microRNA repressors
could be eliminated with minimal effect on Drosophila
development (Cassidy et al., 2019). In contrast, under normal
metabolic conditions, Drosophila microRNAs are essential for life
(Pressman et al., 2012).

A stylized mathematical model was developed to explain this
phenomenon, predicated on the observed expression dynamics of
many genes involved in development (Cassidy et al., 2019).
Developmental genes are often expressed in a succession of pulses,
acting to successively restrict cell potential (Orkin and Zon, 2008;
Jaeger et al., 2012; Cepko, 2014; Pollington et al., 2023). If genes
require repressors to relax the pulse back to an off state, then when
energy metabolism is reduced, the kinetics of pulse relaxation are
naturally slowed, mitigating the need for a full complement of
repressors as repressor molecules have more time to completely act
on their targets (Cassidy et al., 2019). The model, despite its
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simplicity, captures the processes at play, explaining why many
genes are individually regulated by multiple repressors. When
energy metabolism is elevated, auxiliary repressors would provide
supplementary aid in relaxing expression pulses, thus giving cells
greater robustness to fluctuations in nutrient availability.
The broad implication of the findings by Cassidy et al. (2019) is

that successful development is conditional upon the ability of GRNs
to faithfully couple gene expression dynamics to variable levels of
energy metabolism. However, the study only probed that
relationship in the context of repressors operating at or below
normal levels of energy metabolism. In this study, we explore two
complementary possibilities. First, that activators of gene
expression likewise become dispensable in developmental GRNs
when energy metabolism is reduced, and second, that increasing
metabolism beyond normal levels results in a greater need for
auxiliary regulation. Both theoretical modeling and experiments
support these two hypotheses. Thus, auxiliary gene activators also
provide greater robustness to fluctuations in nutrient availability.

RESULTS
A dynamical model describes the relationship between gene
activation and energy metabolism
We modified the mathematical model previously developed by
Cassidy et al. (2019) to test the hypothesis that activators of gene
expression become dispensable when energy metabolism is
reduced. Conceptually, the modified model describes a simplified
pathway of gene expression that represents the expression of a single
gene (Fig. 1A). If the gene encodes an activator of other genes in a
cascade, then simple GRN circuits can generate pulsatile dynamics
(Fig. 1B). Indeed, such circuits are commonly found in
developmental GRNs (Orkin and Zon, 2008; Jaeger et al., 2012;
Pollington et al., 2023).
In our control theoretic model, activators transiently stimulate

expression of a gene, with the associated protein expression as the
output (Fig. 1C). Each step of gene expression is potentially
mediated by one or more activators acting in parallel at the levels of
mRNA transcription, mRNA processing/stability, and protein
translation (Fig. 1A). Combined, these activators help determine
the size of the output’s pulse amplitude. mRNA and protein
turnover lead to a relaxation in output back to a baseline level
(Fig. 1C). Because gene expression is noisy (Arias and Hayward,
2006), we used a stochastic simulation approach to infer the entire
distribution of possible dynamic trajectories in protein output. There
was a broad distribution of pulsatile trajectories from 5000 such
stochastic simulations (Fig. 1D, purple traces).
We then compared the output dynamics when gene activation was

reduced by 50% (i.e. one or more activators were absent) (Fig. 1D,
green traces). The two distributions partly overlapped but a large
fraction of simulations with partial activation gave diminished protein
output. This effect was consistently observed over a broad range of
model parameter values, with 1000 parameter sets tested (Fig. S1A).
Because each pulse must trigger subsequent events in the GRN

cascade, propagation of the cascade is contingent upon sufficient
peak expression of each gene. Activators are crucially important for
the peak level (amplitude) of each pulse; peak output level was
generally reduced when gene activation was reduced (Fig. 1E). We
defined a minimum amplitude that the output level must reach
before a subsequent event is triggered. This threshold was defined
such that exactly 99% of simulations with full activation achieved
sufficient pulse amplitude to trigger a subsequent pulse (Fig. 1E).
The remaining 1% of trajectories that failed to reach the threshold
level were denoted ‘errors’. Errors becamemuch more frequent with

partial gene activation (Fig. 1E,F). This property was observed over
a broad range of model parameter values (Fig. S1B,C), and
regardless of whether activators function in transcription, RNA
processing, or protein translation (Fig. 1G).

We next investigated whether gene activation is less essential for
peak protein output when energy metabolism is reduced. We
reduced the rate parameters of each ATP-utilizing reaction by 50%
to reflect conditions of reduced energy metabolism and compared
simulation outcomes with full gene activation versus partial gene
activation. The error frequency induced by partial gene activation
was significantly diminished when ATP-dependent rate parameters
were lowered (Fig. 1G). This effect on activator loss occurred when
activators function in transcription, RNA processing, or protein
translation (Fig. 1G), and it persisted across a wide range of parameter
values (Fig. 2A). The same effect was also evident when comparing
cumulative output protein expression rather than the instantaneous
peak levels reached by each expression pulse (Fig. 2B). Furthermore,
the effect persisted when (1) an upper bound of two alleles was placed
on the gene’s transcription output (Fig. 2C,D), (2) cooperative
transcription kinetics were taken into account (Fig. 2E,F), and (3)
there was a non-zero basal level of gene expression (Fig. 2G).

We then examined whether elevating energy metabolism above
normal exacerbates error frequency. To simulate the effect of
elevating energy metabolism above normal, we increased the rate
parameters of each ATP-dependent reaction by 50% and found that
error frequency was enhanced when gene activation was impaired
(Fig. 1G). This effect on activator loss occurred when activators
function in transcription, RNA processing, or protein translation
(Fig. 1G), and it was observed across a wide range of parameter
values (Fig. 2H). Combined, all of our simulations predict that
protein output of gene expression is differentially sensitive to
changes in gene activation when energy metabolism is varied.

Experimental validation of the dynamical model
We experimentally tested the model’s key prediction by measuring
the expression dynamics of the Yan (Aop) protein in theDrosophila
larval eye. Yan exhibits pulsatile expression in progenitor cells of
the eye, and its expression is activated by a wave of transient
signaling through the Epidermal Growth Factor Receptor (EGFR)
(Boisclair Lachance et al., 2014; Peláez et al., 2015). Eye progenitor
cells rapidly upregulate Yan protein abundance to a peak; the
protein then decays back to initial levels over the course of 40 h
(Fig. 3A). Loss of EGFR results in a twofold reduction in peak Yan
expression in progenitor cells (Peláez et al., 2015). As progenitor
cells achieve peak levels of Yan, some of them are induced to
transition to photoreceptor fates (Fig. 3A) (Peláez et al., 2015;
Bernasek et al., 2023). Yan protein does not promote the transition
but actually inhibits the transition (Voas and Rebay, 2004).
Interestingly, a second wave of transient EGFR signaling induces
these fate transitions by triggering the rapid downregulation of Yan
protein levels (Fig. 3A) (Voas and Rebay, 2004). Thus, EGFR acts
as an activator of Yan in progenitor cells and a repressor of Yan in
photoreceptor cells.

To measure Yan protein precisely in the progenitor cells, we used
aDrosophila strain in which the Yan protein is tagged with YFP and
is still fully functional (Boisclair Lachance et al., 2014; Peláez et al.,
2015). Confocal microscopy of the eye disks was coupled with a
computational pipeline for segmentation and analysis, yielding a
composite picture of Yan dynamics sampled from thousands of cells
per condition (Peláez et al., 2015; Bernasek et al., 2023).

Previous observations show that the pulse of Yan expression in
progenitor cells is activated by EGFR (Peláez et al., 2015). When we
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transiently raised a temperature-sensitive (ts) EGFR mutant at a
semi-permissive temperature of 26.5°C, peak output of Yan protein
was reduced by ∼35%, whereas Yan output was unaffected by
the EGFRts mutant at a permissive temperature of 18°C (Figs S2
and S3).
We genetically ablated the insulin-producing cells (IPCs) of the

larval brain (Fig. 3C) by driving expression of the pro-apoptotic
protein Reaper (Rpr) in IPCs using a dILP2-Gal4 driver. dILP2
(Ilp2) is a major insulin-like peptide produced by the IPCs (Rulifson
et al., 2002). Ablation of the IPCs using this system causes a 40%
reduction in cell uptake of circulating sugars, a decrease in
mitochondrial oxidative phosphorylation, and a 70% slowdown in
overall fly development (Cassidy et al., 2019; Rulifson et al., 2002).
We ablated the IPCs and observed that, under these conditions, loss
of EGFR had little to no effect on Yan expression (Fig. 3F), in

contrast to the effect seen under conditions of normal metabolism
(Fig. 3E). This behavior resembled the simulated modeling
dynamics under conditions of normal and reduced energy
metabolism (Fig. 3D). Model simulations predicted that the
amplitude of protein output will be less sensitive to impaired gene
activation if energy metabolism is reduced.

Recently, it was found that EGFR acts in a set of IPC-connecting
neurons (ICNs) (Meschi et al., 2019). When EGFR is activated in
ICNs, they stimulate secretion of dILP2 from the IPCs. This raised
the possibility that the dependence of Yan on EGFR might simply
be due to an indirect effect of EGFR acting in the ICNs to modulate
dILP2. Consequently, if activation of Yan expression is mediated by
dILP2, then ablation of the IPCs would naturally suppress this
dependence. To test the possibility, we measured dILP2 protein
levels in IPCs from the EGFRts mutant raised at 26.5°C. There was

Fig. 1. Mathematical modeling of gene activation and the effects of energy metabolism. (A) Schematic of generic regulation of gene expression.
Multiple activators may act in concert to regulate expression at several levels. (B) Cascade of successive pulses in expression of three genes, products of
which regulate one another as indicated at top. This program of gene expression occurs as a cell passes through a series of developmental states. The
model focuses on transient expression of a single gene within the cascade. (C) Schematic of protein output from a single gene over time with a transient step
function in gene activation followed by repression, turnover, and dilution to relax expression to a baseline state. (D) Model simulations showing protein output
over time in response to a transient input signal. Shown are 5000 simulated trajectories, which merge into a continuous band of trajectories. Green and
purple denote simulations with 50% (partial) and 100% (full) activation of gene expression, respectively. Dark purple denotes overlap of trajectories.
(E) Frequency distribution of peak-level protein output from all simulations. A threshold is set (dashed line) where 99% of simulations with full activation are
greater in peak output. (F) With partial activation, fewer simulations cross the threshold. Each failure to cross the threshold is an error. (G) Error frequency is
greater with impaired activation at the transcriptional, RNA and translational steps of gene expression. However, impaired activation imparts fewer errors
when ATP-dependent parameter values are reduced by 50%, and impaired activation imparts more errors when ATP-dependent parameter values are
increased by 50%, regardless of how activators act on gene expression.
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Fig. 2. Model predictions are robust to model feature variation. Each of the seven model parameters was varied by one order of magnitude centered
around the default value as defined in the Materials and Methods section. For each parameter set, 1000 parameter sets were generated, and 5000
simulations with full and partial activation were performed. (A-G) Systematic modification of model conditions showing the difference between reduced (slow)
versus normal metabolism for all parameter sets. For A,C,E,G, protein output at the peak of expression was compared between full and partial activation.
Error frequency from partial activation was estimated using a threshold in peak expression. Shown are the distributions of the difference in error frequency
between reduced and normal metabolism for all parameter sets. For B,D,F, protein output was calculated over the entire time course of gene expression, and
the frequency with which output reduction occurred with partial activation was estimated for all parameter sets. Shown are the distributions of the difference in
output reduction between reduced and normal metabolism for all parameter sets. (A,B) The default model. (C,D) Model in which an upper bound of two is
placed on the number of alleles transcribing the gene. (E,F) Model in which cooperative transcription kinetics are considered. (G) Model where a non-zero
basal stimulus is applied. (H) In the default model, error frequency from partial activation was estimated using a threshold in peak expression. Shown are the
distributions of the difference in error frequency between elevated and normal metabolism for all parameter sets.
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no significant difference in dILP2 accumulation in mutant IPCs
compared with wild-type control (Fig. S4). If dILP2 secretion had
been inhibited in the mutant, we would have observed elevated
dILP2 accumulation in IPCs, as occurs when secretion is inhibited
(Meschi et al., 2019; Agbu et al., 2020). We conclude that the
knockdown of EGFR activity at the semi-permissive temperature of
26.5°C has no significant effect on dILP2 secretion and therefore
EGFR is not indirectly acting on Yan through this process.
The extinction dynamics of Yan, which the model predicts to be

similar under reduced metabolism conditions (Fig. 3D), appear to
be slower under EGFR mutant conditions (Fig. 3E,F). The shaded
regions shown for the experimental data correspond to 95%
confidence intervals for the moving average Yan-YFP level as a
function of developmental time. These confidence intervals were
estimated by re-sampling both independent eye disks and the cells
within them, then computing the moving average at each time point
for each sample. Thus, the shaded region is a measurement statistic
that reflects the variance of the estimate for the average trajectory. In
contrast, the variance among independent simulation trajectories is a
population statistic that reflects the expected spread among the

entire population of potential trajectories. Because the two types of
intervals measure different things, it is not expected that the trends
qualitatively match between model and experiment.

Our model also predicted that elevating metabolism to above-
normal levels would enhance the dependence of gene expression on
activators (Figs 1G and 2H). To test this prediction, we
overexpressed the transcription factor Myc in eye cells. This
induces elevated cellular growth and reconfigures cellular
metabolism so that oxidative phosphorylation is displaced by
aerobic glycolysis (Dang, 1999; Johnston et al., 1999; Secombe
et al., 2007; de la Cova et al., 2014). There is an apparent increase in
metabolic rate because glucose consumption is increased in wing
disk cells that overexpress Myc (de la Cova et al., 2014). Myc
overexpression also increases mitochondria density in cells (de la
Cova et al., 2014), which we observed when overexpressing Myc in
Drosophila cells (Fig. 4A).

We specifically overexpressed Myc in eye epithelial cells
(Fig. 4B,C). A pulse of Yan expression occurred although there
appeared to be a sharper decline in Yan abundance over time. This
might be due to enhanced protein and mRNA turnover in the hyper-

Fig. 3. EGFR activation of Yan expression is dispensable when metabolism is slowed. (A) Schematic of Yan expression dynamics in eye progenitor
and photoreceptor cells. Depth of purple color indicates level of expression. (B) Yan expression is positively dependent on EGFR in eye progenitor cells.
(C) The 14 IPC cells in the larval brain are killed by specific expression of the pro-apoptotic protein Rpr. (D) Simulated protein output under the control of an
auxiliary transcriptional activator (purple), and when the activator is removed (green). All simulations (purple and green) are also under control of a
constitutive activator. Shown are ten randomly chosen samples from a total population of 5000 trajectories for each condition. Left: Simulations performed
with normal ATP-dependent reaction rates. Right: Simulations performed following a 50% reduction in the rate of ATP-dependent reactions. (E,F) Yan-YFP
expression dynamics in eye progenitor cells that are wild-type EGFR (EGFRtsla/EGFR+) or mutant EGFR (EGFRtsla/EGFRf24) raised at the semi-permissive
temperature. Time 0 marks the time at which Yan expression begins. Solid lines are moving averages. Shaded regions denote 95% confidence intervals.
Each line average is calculated from a composite of measurements of between 4448 and 5406 cells. (E) Yan-YFP dynamics under normal metabolic
conditions in with either UAS-Rpr or dILP2-Gal4 in the genetic background. (F) Yan-YFP dynamics when the IPCs have been ablated (dILP2-Gal4/UAS-
Rpr). a.u., arbitrary units.
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growing cells. When we compared the effect of the EGFRmutant in
Myc-expressing cells, we observed a greater impact of EGFR on
Yan output. Peak expression was reduced by 34% in a wild-type
Myc background, (Fig. 4B), and by 45% in the Myc overexpression
background (Fig. 4C). Thus, modulating metabolic activity to be
lower or higher than normal demonstrates how activators have
variable effects on target gene expression depending on metabolic
conditions.

Developmental outcomes are dependent on
metabolism–gene activator interactions
We had previously found that ablation of IPCs suppressed
developmental phenotypes caused by mutations in gene
repressors (Cassidy et al., 2019). Therefore, we wondered whether
IPC ablation also suppressed phenotypes caused by loss of
activators. Yan is important for the proper specification of
photoreceptors in the eye (Voas and Rebay, 2004), and transient
loss of EGFR activity results in mispatterned adult compound eyes
in which the highly regular hexagonal lattice of unit eyes
(ommatidia) becomes disordered (Peláez et al., 2015; Kumar
et al., 1998). To measure precisely the degree of disorder in such
eyes, we developed a new image-based analysis pipeline.
Brightfield microscopy of adult compound eyes captured the
reflection points of individual ommatidium lenses (Fig. S5A-E).
After computational segmentation of reflection points, triangulation
of their centroids allowed us to measure the distance between each
ommatidium and all its immediately adjacent neighbors (Fig. 5A,
Fig. S5F-I). For each ommatidium, we calculated the difference
between its distance to its closest neighbor and its distance to its
farthest neighbor. This value, D, normalized by the average
interommatidial distance, was calculated for all ommatidia in all

eye samples (Fig. 5B). TheDmetric is a measure of lattice disorder.
Errorless measurements on a perfectly regular lattice yield an
average D of zero; measurement errors on the order of 10% of the
average distance yield a D≈0.15. Disordered lattices will yield even
higher values for D (Fig. 5C). We applied the method to measure
disorder in the compound eyes of wild-type and mutant flies. EGFR
activates and the miRNA miR-7 represses expression of Yan in the
eye (Peláez et al., 2015; Li and Carthew, 2005). Visual inspection of
EGFR and mir-7 mutant eyes showed a qualitatively greater
disorder compared with wild type (Fig. S6). Quantitatively, both the
EGFR and mir-7mutant adults exhibited greater eye lattice disorder
as their mean values for the Dmetric were significantly higher than
wild-type controls (Fig. 5D,E).

We then measured eye lattice disorder in EGFRmutants in which
IPCs had been ablated (Fig. 6A, Fig. S7). The mean D metric was
significantly lower in EGFR mutants with IPC ablation than in
EGFR mutants with normal metabolism. Hence, lowering energy
metabolism suppresses the developmental phenotype of the EGFR
mutant. We also measured disorder in EGFR mutants that
overexpressed Myc in eye cells (Fig. 6B, Fig. S7). There was a
significant increase in the mean D metric relative to controls with
normal metabolism. Thus, raising metabolism enhances the EGFR
developmental phenotype. Overall, these results are consistent with
the results of Yan expression experiments, implicating energy
metabolism as a modulator of gene regulation through activation.

DISCUSSION
Development and growth are fueled by energy metabolism,
suggesting that the tempo of development depends on metabolic
rate. Thus, the dynamics of developmental GRNs must faithfully
adjust to a variable time scale. Previously, we found that auxiliary

Fig. 4. Yan expression is more dependent on EGFR when metabolism is elevated. (A) Larval salivary gland cells from ptc-Gal4/+ (left) and ptc-Gal4/
UAS-Myc (right) animals. Tissue was stained for active mitochondria (red) and nuclei (blue). Note the higher density of mitochondria in cells overexpressing
Myc. Scale bar: 25 μm. (B,C) Yan-YFP expression dynamics in eye disk progenitor cells that are wild-type EGFR (EGFRtsla/EGFR+) or mutant EGFR
(EGFRtsla/EGFRf24) raised at the semi-permissive temperature. Time 0 marks the time at which Yan expression begins. Purple and green solid lines are
moving averages of wild-type and mutant cells, respectively. Shaded regions denote 95% confidence intervals. Each line average is calculated from a
composite of measurements of between 4448 and 8653 cells. (B) Yan-YFP dynamics under normal (GMR-Gal4/+) metabolic conditions. (C) Yan-YFP
dynamics in GMR-Gal4/UAS-Myc eye disks. Although it appears that overall Yan-YFP output is not increased with Myc overexpression, it is important to
keep in mind that Yan repressors are also likely more active, contributing to a more normalized expression output. Dotted lines indicate peak Yan-YFP levels
a.u., arbitrary units.
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repressors of gene expression become non-essential when
metabolism is decreased (Cassidy et al., 2019). However, it was
unclear whether auxiliary activators are also non-essential when
metabolism is decreased. Moreover, what are the effects of gene
regulators when metabolism is increased above the normal level? In
this study, we have shown that auxiliary gene activators have
differential effects on target gene expression when metabolism is set
to above- or below-normal conditions. Activation by EGFR is
required for proper Yan expression and developmental outcome
when energy metabolism is normal, and EGFR becomes
functionally redundant when metabolism is lowered. EGFR
becomes more necessary for proper developmental outcome when
metabolism is increased above normal. A stylized mathematical
model predicts that this relationship between gene activators and
below-normal and above-normal metabolism is not limited to Yan
expression but exists for many genes and their activation factors. In
this way, auxiliary gene activation allows for reliable development

across a much broader range of metabolic conditions than would
otherwise be tolerated.

The intuition for understanding this relationship resides in the fact
that limiting ATP turnover reduces the rates of reactions, and the
resulting slower dynamics of synthesis and degradation allow for
weaker activation to nevertheless achieve peak output. A different
interpretation of our findings has to do with the fact that gene
expression is inherently stochastic, a feature that our model also
incorporates. In our modeling, the relative error in gene expression
(signal-to-noise ratio) scales with peak expression levels such that
higher peak expression is related to lower relative error. Thus, when
metabolism is reduced and peak expression is consequently lower,
the relative error is increased. This results in more overlap between
the distribution of gene expression with full activation and the
distribution with partial activation. The enhanced overlap can be
viewed as greater similarity between full and partial activation
when metabolism is reduced. In contrast, enhancing metabolism

Fig. 5. Quantification of lattice disorder in mutant compound eyes. (A) Pipeline of analysis involving segmentation of ommatidia, triangulation of their
centroids to recreate the overall lattice, and local lattice analysis of every ommatidium and its nearest neighbors. (B) Local lattice disorder is estimated as the
difference between the longest distance from one ommatidium to a nearest neighbor and the shortest distance from that ommatidium to a nearest neighbor.
This normalized difference D is calculated for every ommatidium in the region of interest. (C) Schematic of ommatidia with varying values of D and therefore
varying levels of disorder. (D) Density distributions of the mean D estimated for ommatidia from wild-type (EGFRtsla/EGFR+) (purple) and EGFR ts mutant
(EGFRtsla/EGFRf24) (green) eyes. Animals were raised at 18°C except for an 18-h interval as late L3 larvae when they were incubated at 26.5°C. The
numbers of ommatidia analyzed for each dataset were 1321 and 1438, respectively, and these were each imaged from ten animals. (E) Density distributions
of the mean D estimated for ommatidia from wild-type (purple) and mir-7 mutant (green) eyes. The numbers of ommatidia analyzed for each dataset were
1333 and 1130, respectively, and these were each imaged from ten animals.
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decreases relative error, resulting in less overlap in the two
distributions, and, therefore, less similarity between full and
partial activation.
Developmental tempo and metabolic rates vary with temperature,

making it possible that temperature-dependent gene expression
dynamics are coupled to a metabolism-dependent time scale. We
have explored this notion using our modeling framework, and the
results are inconclusive (S.B., N.B. and L.A.N.A., unpublished
results).
Our model is not limited to developmental genes but could be

relevant for any genes that are expressed with pulsatile dynamics.
Many genes in both unicellular and multicellular organisms have
these features (Levine et al., 2013; Dalal et al., 2014). Examples
include stress response genes, and genes involved in signal
transduction (Hansen and O’Shea, 2016; Hafner et al., 2017). It
will be interesting to discover whether our model predictions of
metabolism and gene control extend to such situations.
The insect eye is an example of a system with remarkable spatial

order that is driven by a demand for optimal visual acuity and
sensitivity (Nilsson, 1989; Land, 1997). We have developed an
imaging-based analysis tool that precisely measures spatial order in
the Drosophila compound eye. It is sufficiently sensitive to detect
differences in spatial order due to genetic background. It is
amenable to population averaging and statistics. The method is
readily adaptable for general use and is potentially applicable for
insect species other than Drosophila melanogaster. Here, we apply
it to measure disorder in genetic mutants, but it can be used to study

the effects of other perturbations, and its sensitivity will potentially
be useful for even the weakest of perturbations.

MATERIALS AND METHODS
Drosophila growth and genetics
For all experiments,Drosophila melanogasterwas raised using standard lab
conditions and food. All experiments used female animals unless stated
otherwise. Stocks were either obtained from the Bloomington Drosophila
Stock Center, from listed labs, or were derived in the laboratory of R.W.C.
Experiments with EGFR were performed using trans-heterozygous mutants
in order to minimize phenotypes induced by secondary mutations on
relevant chromosomes. Trans-heterozygous allele combinations used
were Egfrtsla/Egfrf24 (Peláez et al., 2015). Genetic mosaic animals bearing
mir-7△1 homozygous mutant eyes were generated using the ey-FLP/FRT
system as described (Cassidy et al., 2019).

The BAC genomic transgene Yan-YFP was inserted on chromosome 3 at
the attP2 site. The Yan-YFP chromosome was homozygosed so that animals
had two copies of the transgene, and placed in a yan443/yan884 mutant
background so that the endogenous yan gene did not make any protein.

To genetically ablate the IPCs of the brain, yw animals were constructed
bearing a dILP2-Gal4 transgene on chromosome 3 and a UAS-Reaper (rpr)
transgene on chromosome 1. rpr is a pro-apoptotic gene that is sufficient to
kill cells in which it is expressed (Lohmann et al., 2002). dILP2-Gal4 fuses
the Insulin-like peptide 2 gene promoter to Gal4, and specifically drives its
expression in brain IPCs (Rulifson et al., 2002). Examination of dILP2-
Gal4; UAS-Rpr larval brains showed that they almost completely lacked
IPCs (Cassidy et al., 2019). Previous studies found that IPC-deficient adults
are normally proportioned but of smaller size. It takes 70% longer to
complete juvenile development, and juveniles have a 40% elevation in

Fig. 6. EGFR loss affects disorder of the eye lattice dependent on energy metabolism. (A,B) To compare EGFR genotypes, the density distribution of
the mean D estimated for ommatidia from wild-type EGFR eyes (purple) was adjusted to center around zero, and the EGFR mutant distribution (green) was
normalized accordingly. (A) Disorder of EGFR mutants when metabolism is normal or is reduced by IPC ablation. (B) Disorder of EGFR mutants when
metabolism is normal or is elevated by Myc overexpression.
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blood glucose, consistent with dILPs being essential regulators of glucose
metabolism in Drosophila (Cassidy et al., 2019; Rulifson et al., 2002; Ikeya
et al., 2002; Broughton et al., 2005). Moreover, animals generate 30% less
heat output as measured by whole-body calorimetry (Zhang et al., 2009),
and ATP synthase abundance is reduced in cells from IPC-ablated larvae
(Cassidy et al., 2019). For all wild-type controls, we tested animals bearing
either the dILP2-Gal4 or UAS-Rpr gene in their genomes.

To overexpress the Drosophila transcription factor Myc in cells, animals
were constructed with a UAS-Myc.Z transgene located on chromosome 2 or
3. This transgene was activated using either a GMR-Gal4 transgene or ptc-
Gal4 transgene located on chromosome 3 or 2.GMR-Gal4 drives UAS gene
expression in all larval eye cells posterior to the morphogenetic furrow
(Freeman, 1996), whereas ptc-Gal4 drives UAS gene expression in larval
salivary gland cells (Aza-Blanc et al., 1997). Ptc>Myc causes salivary gland
cells to grow faster owing to enhanced translation capacity (Grewal et al.,
2005). GMR>Myc causes eye cells to grow 33% bigger (Secombe et al.,
2007). Myc overexpression reconfigures cellular metabolism in imaginal
disks so that oxidative phosphorylation is displaced as the predominant
source of energy production by increased glycolysis, resembling the
Warburg effect (de la Cova et al., 2014). Expression of Myc increased the
mitochondrial network, consistent with Myc’s regulation of mitochondrial
biogenesis (de la Cova et al., 2014).

EGFR activity was conditionally reduced by placing Egfrf24 (Clifford and
Schüpbach, 1989) in trans to the ts mutant allele Egfrtsla (Kumar et al.,
1998). Flies were raised at the permissive temperature (18°C) and shifted to
a semi-restrictive temperature (26.5°C) as third instar larvae for 18 h.
Genetic wild-type controls were heterozygotes of either Egfrf24 or Egfrtsla

over a wild-type chromosome. These controls were also shifted to 26.5°C as
third instar larvae for 18 h. At 26.5°C, developing eye cells had
compromised EGFR activity in Egfrtsla/Egfrf24 animals as when
transferred back to the permissive temperature and allowed to eclose, they
had rough eyes (Peláez et al., 2015). In mutant eye disks, there were signs of
some cells undergoing apoptosis: a significant reduction of nuclear
diameter, a strong Yan-YFP brightness, and anomalous nuclear position
along the apical-basal axis. Apoptosis was more prevalent in disks from
mutant animals treated at temperatures greater than 26.5°C (Peláez et al.,
2015). Therefore, we chose this temperature for EGFR activity reduction so
as to minimize apoptosis but still achieve effects on Yan expression. We
only included in our analysis cells corresponding to classical anatomical
positions and apical basal migration patterns.

Quantification of Yan-YFP expression dynamics in the eye
Eye disks fromwhite-prepupae of the correct genotype (yan443/yan884; Yan-
YFP/Yan-YFP) were dissected, fixed and imaged by confocal microscopy,
as previously described (Peláez et al., 2015; Bernasek et al., 2023).
These prepupae also had the appropriate combinations of Egfr alleles, Gal4
driver genes, and UAS transgenes for controlled manipulation of EGFR
activity and cell metabolism. Eye disks were fixed for 45 min at room
temperature in 4% (w/v) paraformaldehyde in PBS. Disks were washed in
PBS and then incubated in 1:1 (v/v) PBS:VECTASHIELD with DAPI
(Vector Laboratories) for 45 min, followed by a 45 min incubation in
100% VECTASHIELD with DAPI. Samples were then mounted with
VECTASHIELD with DAPI and imaged using a Leica TCS SP8 confocal
microscope equipped with a 40× oil objective (NA=1.3) with a digital zoom
of 1.2-1.4. Yan-YFP and DAPI were separately detected by HyD detectors
(GaAsP). During imaging, disks were oriented with the morphogenetic
furrow parallel to the y-axis of the image. Optical slices were captured as
1024×1024 8-bit images, in which at least six rows of ommatidia on either
side of the dorsal-ventral equator were recorded. Optical slices were set at
0.7 μm thickness, and 45-60 optical slices were captured in a z-stack to
completely image eye disks from basal to apical surfaces. All disks for a
given condition were fixed, mounted and imaged in parallel to reduce
measurement error. Sample preparation, imaging and analysis were not
performed by operators who were aware of the sample groupings. See
Fig. S3 for examples of typical imaging data.

Image data were processed for automatic segmentation and quantification
of DAPI and YFP nuclear fluorescence as described (Peláez et al., 2015;
Bernasek et al., 2023). Briefly, cell segmentation was performed using the

DAPI signal as a reference channel for identification of the boundaries of
cell nuclei. Each layer of the reference channel was segmented
independently. A single contour containing each unique cell was
manually selected and assigned a cell type using a custom graphic user
interface called Silhouette. For each annotated cell contour, expression
measurements were obtained by normalizing the mean pixel fluorescence of
the YFP channel to the mean fluorescence of the DAPI channel. This
normalization serves to mitigate variability due to potentially uneven sample
illumination, segment area, and differences in protein expression capacity
between cells. We assigned cell-type identities to segmented nuclei by using
nuclear position and morphology, two key features that enable one to
identify eye cell types unambiguously without the need for cell-specific
markers (Wolff and Ready, 1993). This task was accomplished using
Silhouette, an open-source package for macOS that integrates our image
segmentation algorithm with a graphical user interface (GUI) for cell-type
annotation. Subsequent analysis and visualization procedures were
implemented in Python using the FlyEye package, open source software
developed by our group.

Using FlyEye, cell positions along the anterior-posterior axis were
mapped to developmental time as described previously (Peláez et al., 2015;
Bernasek et al., 2023). This is predicated on two assumptions: (1) the furrow
proceeds at a constant rate of one column of R8 neurons per 2 h; and
(2) minimal cell migration occurs. For each disk, Delaunay triangulations
were used to estimate the median distance between adjacent columns of
R8 neurons (Fortune, 1992). We used the median rather than the
mean distance because it minimized the influence of non-adjacent R8s
that were falsely identified by the triangulation (Peláez et al., 2015).
Dividing the furrow velocity of 2 h per column by this median
distance yields a single conversion factor from position along the
anterior-posterior axis to developmental time. This factor was applied to
all cell measurements within the corresponding disk, yielding expression
time series. Notably, these are not single cell dynamics, but rather aggregate
dynamics across the development time course of a spatially organized cell
population.

Moving averages were computed by first-order Savitzky–Golay filtration
(Savitzky and Golay, 1964). This method augments the simple windowing
approach used in by Peláez et al. (2015) by enabling visualization of
expression trends at early time points that are otherwise obscured by large
window sizes. A secondary first-order filtration with one-fifth the original
window sizewas applied to smooth lines for visualization purposes. None of
our conclusions was sensitive to our choice of filtration or smoothing
method. A primary window size of 250 cells was used for reporting the
expression of cells, unless noted otherwise. Confidence intervals for the
moving average were inferred from the 2.5th and 97.5th percentile of 1000-
point estimates of the mean within each window. Point estimates were
generated by bootstrap resampling with replacement of the expression levels
within each window.

To align multiple eye disk samples using FlyEye, cells of each sample
were aligned with a reference population by shifting them in time as
described by Bernasek et al. (2023). The magnitude of this shift was
determined by maximizing the cross-correlation of progenitor Yan-YFP
expression Y(t) with the corresponding reference time series X(t). Rather
than raw measurements, moving averages within a window of ten cells were
used to improve robustness against noise. This operation amounts to:

argmax
dt

E
ðY ðt þ dtÞ � mY ÞðX ðt þ dtÞ � mX Þ

sYsX

� �
; ð1Þ

where, μ and σ are the mean and standard deviation of each time series, and
dt is the time shift by which the population should be shifted.

For each experimental treatment, a disk was randomly chosen and shifted
in time such that time ‘zero’ corresponds to the first annotated R8 neuron.
This disk then served as the reference population for the alignment of all
subsequent biological replicates within the treatment. Similarly, different
experimental treatments (e.g. control and perturbation) were aligned by first
aligning the disks within each treatment, then aggregating all cells within
each treatment and repeating the procedurewith the first treatment serving as
the reference. To plot the moving line averages of each aggregate dataset, we
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adjusted time on the x-axis such that −10 h became the new 0 h and all other
time intervals were adjusted accordingly. Yan-YFP was first detectable in
cells no earlier than the −10 h time point.

We analyzed 6-12 replicate eye discs for each treatment in two separate
experiments. In total, we measured 5406 and 4870 cells under normal
metabolism for EGFR wild-type and EGFR mutant samples, respectively.
We measured 4448 and 5186 cells from Dilp2>Rpr animals for EGFR
wild-type and EGFR mutant samples, respectively. We measured 4668 and
8853 cells from GMR>Myc animals for EGFR wild-type and EGFRmutant
samples, respectively.

Immunohistochemistry of dILP2 in IPCs
Larvae of the genotypes Egfrtsla/Egfrf24 or Egfrtsla/Egfr+were raised at 18°C
and then shifted to 26.5°C for 16 h before harvesting. Larval brains were
fixed in 4% (w/v) paraformaldehyde for 30 min at room temperature (RT),
washed with PBS containing 0.1% Triton X-100 (PBST) three times for
15 min each, and blocked at RT using PBST+5% (v/v) bovine serum
albumin (BSA) for 2 h. Samples were incubated in primary antibody (1:400;
rat anti-dILP2, gift of P. Leopold) (Meschi et al., 2019) diluted in PBST+5%
BSA at 4°C overnight. Brains were washed in PBST three times for 5 min
each then incubated in secondary antibody (1:500; Alexa Fluor 647 goat
anti-rat, Thermo Fisher Scientific, A21247) diluted in PBST+5% BSA for
2 h at RT. After washing three times for 5 min each with PBST, brains were
mounted in VECTASHIELD. Samples were imaged using a 40× oil
immersion objective on a Leica SP8 laser-scanning confocal microscope.
dILP2 fluorescence signal was excited with a 2% powered 638 nm laser and
captured by using a HyD detector with 100% gain, with each z-step size
being 0.5 μm/slice in a 512×512 µm xy field of view. Microscopy
parameters were kept constant for both the heterozygous controls and
mutants, and all imaging was performed in one session. Image analysis was
performed using Fiji. Average fluorescence intensity was measured for
multiple IPC termini, where dILP2 is stored prior to secretion. These
measurements were corrected by subtracting the background fluorescent
intensity in the images.

Imaging of adult compound eyes
For imaging compound eyes, 2- to 3-day-old adults of different genotypes
were collected and stored in 100% ethanol. Before imaging, samples were
progressively rehydrated by successive 24-h incubations in 75% ethanol,
50% ethanol, 25% ethanol, and water. Blu Tack (Bostik Smart Adhesives)
was cut into a 1.5 cm piece and pressed using a thumb onto a microscope
slide. The rehydrated flies were transferred onto a Kimwipe to briefly dry,
and then were placed laterally onto the Blu Tack with their left eyes facing up
and oriented horizontally (Fig. S5A). Mounted animals were imaged with a
Leica DM6B bright-field microscope with a 10× objective (NA=0.40) and
DFC7000T camera. To illuminate the samples, gooseneck fiber-optic lights
(Schott, KL 1500 LCD) were positioned above the stage on opposing sides
of the specimen. The two lights were positioned facing one another, and the
angle of the fiber-optic cables was parallel to the stage (Fig. S5B). Because
image quality is affected by positioning of the light source, a criterion for a
good quality image is determined by avoiding (1) uneven distribution of the
light, (2) double reflective images from each ommatidium, and (3) reflection
from non-ommatidia regions (Fig. S5D,E). All objectives except the one in
use must be removed from the microscope to prevent these lighting/imaging
aberrations. In addition, the gooseneck lights must be subtly adjusted for
each sample to avoid lighting aberrations. Exposure time was adjusted
according to the eye color and eye size of each sample to ensure a uniform
field of reflective points. An example of a high-quality image is shown in
Fig. S5C. Optical slices were captured at 10-μm intervals along the z-plane
using the Leica Application Suite X. The stack of raw image files for each
sample was imported into Zerene Stacker (Zerene Systems), from which
DMAP images were generated as described (Iyer et al., 2016). Zerene
Stacker projects the entire stack into a DMAP image. The DMAP files from
Zerene Stacker were then used for further analysis.

Pipeline for quantification of eye disorder
To computationally segment ommatidia, the raw DMAP images were pixel-
classified into two classes of pixels: (1) pixels representing light reflected

from ommatidia (identified by the reflection from each ommatidia lens), and
(2) pixels representing all other features of the images. This pixel
classification step was achieved using the ‘Pixel Classification’ workflow
in Ilastik, which is open-source software that provides machine-learning
image analysis (Berg et al., 2019). Briefly, Ilastik was trained on 12 DMAP
images from six different genotypes (two images were chosen from each
genotype). This was to ensure good representation of the variability
contained within the complete dataset. For the 12 images, pixels were
manually annotated as belonging to the light reflected from ommatidia or
not. This process was repeated until the model learned to classify pixels
satisfactorily, determined using the live prediction feature of Ilastik. Once a
satisfactory model was trained, the remaining 48 images in each dataset were
pixel-classified using the trained Ilastik model.

Custom MATLAB scripts were developed that (1) import the pixel
classification maps generated by the model trained in Ilastik, (2) threshold
the pixel classification maps to obtain binary maps where 1 represents an
ommatidia light reflection, and 0 represents all other pixels, (3) detect all
isolated binary objects (contiguous pixels of value 1 that correspond to each
ommatidium), and (4) compute the centroid of each binary object, which
then becomes the defined center of each ommatidium. Because each binary
object was typically 10-20 pixels in size, it necessitated calculation of the
object’s centroid to have a single pixel that defines the location of each
ommatidium.

Because ommatidia were detected via light reflections, the automated
workflow led to some misclassification of other reflections as originating
from ommatidia. These reflections often occurred at ommatidial boundaries
(particularly for rough eye phenotypes) and outside the eye field on the
cuticle of the head. Therefore, a custom GUI was developed in MATLAB
that allowed for manual correction of the data derived from the above-
described workflow. Briefly, this GUI displayed the DMAP images overlaid
with all identified centroids, allowing the user to add new centroids for
ommatidia that were not classified as ommatidia. It also allows the user to
delete centroids that were improperly classified as ommatidia. This GUI was
used to thoroughly correct the classification of ommatidia from the data.

For each analyzed image, the ommatidial lattice was defined using
Delaunay triangulation of the centroids, implemented using a built-in
MATLAB function. Because a triangular lattice is dual to a hexagonal
lattice, Delaunay triangulation allows for analysis of the component
triangles of each hexagonal unit of the compound eye, i.e. for wild-type
eyes, each ommatidial unit is composed of six triangles that define the space
between one ommatidia and its six closest neighbors; together, these six
triangles create one hexagonal unit.

Interommatidial distances were calculated for all ommatidia except for
those along the boundary of the region of analysis. This is because
ommatidia along the boundary had neighbors that were not identified,
preventing proper calculation of their local disorder. Boundary ommatidia
did, however, contribute to the calculation of local disorder for ommatidia to
which they were neighbors. Boundary ommatidia were identified by finding
the convex hull of segmented ommatidia using the built-in MATLAB
function.

Because we had generated a 2D image of a 3D curved structure, there
were inherent distortions of the derived lattice that contributed to our
estimation of lattice disorder. To minimize this curvature-based distortion of
interommatidial distances, we only analyzed ommatidia within a fixed
distance from the center of each eye, where there was minimal curvature.
The distance chosen was 200 pixels and the center of each eye was estimated
as the center of mass of segmented ommatidia. By limiting the analysis to a
small region of the eye, effects of curvature were minimized.

Definition of the ommatidial lattice by Delaunay triangulation creates
several easy-to-measure features of lattice order. These features include
(1) the length of each triangle edge, (2) the area of each triangle, and (3) the
angles formed at the vertices of each triangle. In a perfectly regular lattice,
each of these three features would be uniform, i.e. all sides of every triangle
would be the exact same length. We initially calculated lattice regularity by
analyzing the distributions of the aforementioned lattice features. Variation
was estimated as either the coefficient of variation or the Fano factor.
Although these estimates are descriptive of lattice order/disorder, they are
not sensitive to infrequent or mild lattice defects.
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Therefore, we devised a more sensitive measurement of lattice order.
Local regularity of the lattice was defined as the variability in the distances
that connect one ommatidium to its nearest neighbors. By finding the
largest (Xmax) and smallest (Xmin) distance connecting one ommatidium to
its nearest neighbors, the difference in those two distances can be
calculated as a measure of local order. For example, if Xmax−Xmin is zero,
then the local lattice has perfect order. The larger the value for this
difference, the greater the local disorder. We then normalized the
difference to estimate:

Di ¼ ðXmax � XminÞi
kX l

; ð2Þ

where Di is the degree of disorder for ommatidium i, and <X> is the mean
distance between every ommatidium and its nearest neighbors. This D
metric was calculated for every ommatidium analyzed in all eye samples
from a given condition.

Another benefit of analyzing the regularity of the lattice on such a
local scale is that it controls for distortion from eye curvature of the
eye. When we calculated lattice order using the aforementioned three
lattice features described above, a large contributor to the variability
came from curvature-based distortion. As Di is a local measurement, the
scale of curvature is much greater than the scale of the measurement.
Therefore, curvature contributes much less to the variability of Di

measurements.
For statistical analysis, we performed bootstrapping on the thousands of

measurements of D for each genetic condition (ranging from 993 to 1473).
Bootstrapping was performed in MATLAB 10,000 times, and the mean
value of D was calculated per bootstrap sample. The distribution of means
was plotted as a histogram, and shown in the figures are the smoothed fits to
each of the histograms.

The complete computational pipeline for segmentation, correction, and
analysis that is described above is freely available as a MATLAB software
package called roughEye.

Mitochondria staining
Second instar larvae (either ptc-Gal4 genotype or ptc-Gal4/UAS-Myc
genotype) were dissected, and salivary glands were incubated in PBS
supplemented with 500 nM MitoTracker Red CMXRos (Thermo Fisher
Scientific) for 30 min at room temperature. This reagent localizes to
mitochondia, and its fluorescence depends upon the membrane potential
found in active mitochondria. Glands were then washed several times with
Schneiders medium for 10 min at room temperature. Glands were fixed in
4% (w/v) paraformaldehyde in PBS for 20 min. After washing in PBS,
glands were mounted in VECTASHIELD (Vector Laboratories) with DAPI
(to visualize nuclei). The samples were imaged with a Leica SP5 confocal
microscopy system.

Mathematical modeling
Our modeling framework is based on the one we developed previously
(Cassidy et al., 2019). It directly describes the emergent expression
dynamics of a single gene within a cascade of developmental gene
expression. It leverages two key concepts from control theory. The first is
the notion of Lyapunov stability; that is, systems tend to remain near
stable equilibria. The second is the Hartman–Grobman theorem, which
posits that systems deviate approximately linearly about these fixed
points (Arrowsmith and Place, 1992). We therefore developed a model
that describes the time evolution of linear deviations about the basal
protein level that exists before gene expression is induced and after it
subsides.

Specifically, a linear time-invariant system describes the time evolution
of deviations (Δ) in activated DNA (ΔD), mRNA (ΔR) and protein (ΔP) state
variables in response to a change in stimulus (ΔI ) that induces gene
activation. These discrete state variables depict the extent to which gene
expression has deviated from its basal level at any point in time. Transitions
between each of the variables’ states are governed by the stochastic
processes listed given in Table 1.

In the continuum limit, this model yields a deterministic system of
differential equations:

dDD

dt
¼ ðk1 þ h1ÞDI � g1DD

dDR

dt
¼ ðk2 þ h2ÞDD� g2DR

dDP

dt
¼ ðk3 þ h3ÞDR� g3DP

; ð3Þ

where ki are activation, transcription or translation rate constants, ηi are their
auxiliary counterparts, and γi are degradation constants. In control parlance,
three sequential first-order transfer functions relate input disturbances to
deviations in output protein level.

The key distinction between this model and the model used in our
previous study is that we have replaced the auxiliary repression terms with
auxiliary activation terms (ηi). The models are otherwise the same, and still
include the linear degradation kinetics (γi) required to drive the system back
to basal levels once the transient input subsides. We do not expect that
including auxiliary repression terms equivalent to those in our previous
study would yield any qualitative changes in the results or conclusions
presented here.

Dependence of model parameters on metabolic conditions
IPC ablation reduces cellular glucose consumption. Presumably, this would
affect the production and consumption of ATP. Given that ATP
concentration remains fairly constant when respiration is limited (Brown,
1992), ATP flux (and ATP synthesis) is assumed to decrease. Because
transcription, translation and protein degradation all require ATP turnover,
we halved their rate parameters under conditions of reduced glucose
consumption. All auxiliary activator strengths were reduced in an equivalent
manner to their primary counterparts. That is, rate constants for auxiliary
activators driving either transcription or translation were each halved under
conditions of reduced glucose consumption. These assumptions are
incorporated as changes to the model’s rate parameters as listed in
Table 2. Conversely, to model the effects of increased ATP consumption we
instead increased each of the relevant rate parameters by 50%.

Model simulations
Default parameter values were based on approximate transcript and protein
synthesis and turnover rates for animal cells reported in the literature (Milo
and Phillips, 2015), whereas gene activation and decay rates were arbitrarily
set to a significantly faster time scale. Default strengths for auxiliary
activators acting at the gene, transcript or protein levels were chosen such
that ∼60% of simulations failed to reach the threshold protein level under
normal conditions when the auxiliary activator was lost. Population-wide
expression dynamics were estimated by simulating 5000 output trajectories
in response to a 3-hour transient step input to the gene activation rate.
Simulations were performed using a custom implementation of the
stochastic simulation algorithm (Gillespie, 1977). The algorithm
constrains solutions to the set of discrete positive values, consistent with

Table 1. Transitions between variable states

Reaction
State
transition Propensity

Parameter value
(min−1)

Gene activation ΔD→ΔD+1 k1 ΔI 1
Transcription ΔR→ΔR+1 k2 ΔD 1
Translation ΔP→ΔP+1 k3 ΔR 1
Gene deactivation ΔD→ΔD−1 γ1 ΔD 1
Transcript decay ΔR→ΔR−1 γ2 ΔR 1×10−2

Protein decay ΔP→ΔP−1 γ3 ΔP 1×10−3

Auxiliary gene
activation

ΔD→ΔD+1 η1 ΔI 0.5×k1

Auxiliary
transcription

ΔR→ΔR+1 η2 ΔD 0.5×k2

Auxiliary translation ΔP→ΔP+1 η3 ΔR 0.5×k3
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linearization about a basal level of zero gene activity. This simplifying
assumption is based on the near-zero basal activities expected in the
experimental systems, but is not required to support the conclusions of the
model (Figs S2C and S4C).

Evaluation of error frequencies and changes in expression
dynamics
Gene expression trajectories were simulated both with (full activation) and
without (partial activation) auxiliary activators. Protein expression
dynamics were compared by evaluating the fraction of partial-activation
simulation trajectories that fell below the top 99% of full-activation
trajectories at each point in time, t. We refer to this under-expression value as
E(t). The time point at which the full-activation simulations mean level
reached 30% of its maximum value was taken to be the commitment time.
Under-expression was averaged across the time course, beginning with the
reception of the input and ending at the commitment time, τ:

Percent under � expression ;
100

t

ðt
0
EðtÞdt: ð4Þ

Percent under-expression reflects the net extent to which the expression
dynamics differ between the two sets of simulated trajectories.

To estimate the error frequency due to loss of auxiliary activators, the
instantaneous error rate was computed by evaluating E(t) at the time at
which the full-activation simulations mean level reached its maximum
amplitude. Because the threshold was set at the bottom 1% of full-
activation protein levels, the minimum possible error frequency is 1%. For
simplicity, we subtracted this percentage point from all reported error
frequencies.

This definition of error frequency differs from that used in our prior study
in that it quantifies the frequency of failure to reach a minimum required
level for successful development, rather than the frequency of failure to
attenuate expression below a maximum allowable level. This change was
made in order to define a framework for evaluating the influence of
activators of gene expression, which are generally responsible for increasing
target protein levels.

Parameter variation and sensitivity to model assumptions
We conducted parameter sweeps to confirm the robustness of each
computational result. In each sweep, all model parameters were varied
across a tenfold range (± ∼threefold). We quasi-randomly generated 1000
such parameter sets, then independently ran four sets of 5000 simulations
for each: (1) full activation with normal metabolism, (2) partial activation
with normal metabolism, (3) full activation with reduced metabolism,
and (4) partial activation with reduced metabolism. Partial-activation
systems were assigned a single primary activator for each stage of
synthesis. In addition to these primary activators, each full-activation
system was assigned an additional set of auxiliary activators the strengths
of which relative to the primary activators were specified by a free

parameter we refer to as ‘severity’. Error frequencies were evaluated as
described above.

Each sweep sampled a seven-dimensional space. Projecting the results
of all simulations onto each of the 21 orthogonal 2D planes revealed that
error frequency is greater than 1% for almost all combinations of
parameter values (Fig. S1A). Although it helps illustrate our parameter
sweep methodology, the 2D visualization does not offer sufficient insight
into the global trend to justify its complexity. We instead opted for a
condensed 1D projection (Fig. S1B), which clearly indicated that loss
of auxiliary activators induces an increase in error frequency across a
broad parameter range. Auxiliary activator loss also decreased protein
levels throughout the time course for the vast majority of parameter sets
(Fig. S3A).

The difference in error frequency between simulations with normal
metabolism and reduced metabolism are shown in Figs S1C and S2 for all
parameter sets. There was a general trend of decreased error frequency with
partial activation under reduced energy metabolism conditions. The
difference in protein under-expression between simulations with normal
versus reduced metabolism are shown for all parameter sets in Figs S3B
and S4. Most parameter sets showed less under-expression in the absence of
auxiliary activators when metabolism was reduced.

Alternate models
The number of active sites firing transcription within a cell is limited by
gene copy number, but the activated-DNA state in our simple linear
model is unbounded. To test whether error frequency suppression persists
when an upper bound on gene activity is introduced, we considered a
simple two-state transcription model for which deterministic representation
is given by:

dGon

dt
¼ðkG þ hGÞGoff I � gGGon

dGoff

dt
¼� dGon

dt

dR

dt
¼ðkR þ hRÞGon � gRR

dP

dt
¼ðkP þ hPÞR� gPP

; ð5Þ

where Gon and Goff are the on- and off- states of a gene; I, R and P are
the input, RNA and protein levels; and ki, γi and ηi are the primary
synthesis, decay and auxiliary synthesis rate constants for species i,
respectively. Rate parameter dependencies upon metabolic and protein
synthesis conditions were analogous to those used in the linear model, and
are shown in Table 3.

We performed a parameter sweep of this model in which all simulations
were initialized as diploid (Goff=2). Despite the limitation placed on gene
activity, error frequency remains elevated under normal growth conditions
and partially suppressed when metabolism is reduced (Fig. S2A).

Gene expression models also frequently utilize cooperative kinetics
in order to capture the nonlinearities and thresholds encountered in

Table 2. Metabolic changes to the rate parameters of the model

Parameter
Normal
metabolism

Reduced ATP
consumption

Increased ATP
consumption

Transcription rate
constant

k2 (0.5)k2 (1.5)k2

Translation rate
constant

k3 (0.5)k3 (1.5)k3

Protein decay rate
constant

γ3 (0.5)γ3 (1.5)γ3

Auxiliary
transcription
activator rate
constant

η2 (0.5)η2 (1.5)η2

Auxiliary translation
activator rate
constant

η3 (0.5)η3 (1.5)η3

Table 3. Metabolic changes to parameters in gene-bounded model

Parameter
Normal
metabolism

Reduced
metabolism

Elevated
Metabolism

Transcription rate
constant

kR (0.5)kR (1.5)kR

Translation rate
constant

kP (0.5)kP (1.5)kP

Protein decay rate
constant

γP (0.5)γP (1.5)γP

Auxiliary transcription
rate constant

ηR (0.5)ηR (1.5)ηR

Auxiliary translation
rate constant

ηP (0.5)ηP (1.5)ηP
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transcriptional regulation. We reformulated our gene expression model in
terms of Hill kinetics:

dR

dt
¼ ðkR þ hRÞ

1þ 1

2I

� �H � gRR

dP

dt
¼ðkP þ hPÞR� gPP

; ð6Þ

where I, R and P are the input, RNA and protein levels; ki, γi and ηi are
the primary synthesis, decay and auxiliary synthesis rate constants for
species i; and H is a transcriptional Hill coefficient. The stimulus level
corresponding to half-maximal transcription rate was fixed at 0.5 because
we only consider a binary input signal. Rate parameters were again scaled
with metabolic conditions in a manner analogous to the linear model
(Table 4).

Another parameter sweep revealed that, despite the incorporation
of cooperative binding kinetics, error frequency remains elevated under
normal metabolic conditions and is broadly suppressed when metabolism is
reduced (Fig. S2B).

Quantification and statistics
Confidence intervals for the moving average of Yan-YFP expression were
inferred from the 2.5th and 97.5th percentile of 1000 point estimates of the
mean within each moving-average window. Point estimates were generated
by bootstrap resampling with replacement of the expression levels within
each window. Differences in dILP2 levels were tested by a Welch’s t-test.
Histogram distributions for the mean value of the D metric were calculated
from 10,000 point estimates of the mean as generated by bootstrap
resampling with replacement ofDmetric measures for each condition. Best-
fit Gaussian distributions were fit onto each histogram. There was no
exclusion of any data or subjects.
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Fig. S1. Model expression dynamics are dependent on gene activators - related to Figure 1.  Each of 
the seven model parameters was varied by one order of magnitude centered around the default value as 
defined in the Methods. 1,000 such variable parameter sets were generated. Simulations with full and partial 
activation were performed for each parameter set. (A) Protein output was compared between full and partial 
activation over the entire time course of gene expression. Shown is the frequency in which output reduction 
occurs with partial activation when compared to full activation for all parameter sets. (B) Error frequencies 
with partial activation were calculated using a threshold set at the lowest 1% of peak protein output from full 
activation. Shown is a grid of all 21 pairwise combinations of parameter variations. Error frequencies are 
projected as color heat maps on the 21 squares. Error frequencies are high (light brown) for many 
combinations of parameter values. (C) Distribution of error frequency for all parameter sets under conditions 
of normal energy metabolism.
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Fig. S2. Transient loss of EGFR activity causes lower Yan output - related to Figure 3.  (A) Yan 
expression dynamics in Egfrf24/+ heterozygous eyes after incubation in vivo at either 18°C or 26.5°C for 18 
hours before fixation and analysis. N refers to number of single cells in which Yan measurements were 
made. (B) Yan expression dynamics in Egfrtsla/+ heterozygous eyes after incubation in vivo at either 18°C or 
26.5°C for 18 hours before fixation and analysis. N refers to number of single cells in which Yan 
measurements were made. (C) Yan expression dynamics in Egfrtsla/Egfrf24 trans-heterozygous eyes after 
incubation in vivo at either 18°C or 26.5°C for 18 hours before fixation and analysis. N refers to number of 
single cells in which Yan measurements were made.
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Fig. S3. Representative images of Yan expression in eye discs - related to Figure 3. All panels show a 
single optical slice through cell nuclei in the field of view taken of eye discs from animals that were incubated 
at 26.5°C for 18 hours. Left panels, DAPI channel; middle panels, Yan-YFP channel;  right panels, merged 
channels with DAPI (purple) and Yan-YFP (green). Scale bars = 8  μm. (A) An EGFR wildtype animal with 
normal unperturbed metabolism. (B) An EGFR mutant animal with normal unperturbed metabolism. (C) An 
EGFR wildtype animal that is also dILP2>Rpr. (D) An EGFR mutant animal that is also dILP2>Rpr. (E) An 
EGFR wildtype animal that is also GMR>Myc. (F) An EGFR mutant animal that is also GMR>Myc.
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Fig. S4. dILP2 accumulation levels in IPCs - related to Figure 4. (A,B) dILP2 levels in the termini of IPCs, 
which are outlined. Animals had been incubated at 26.5°C for 16 hr prior to analysis in order to transiently 
inactivate the EGFRtsla ts allele. Scale bars = 50 μm. (A) EGFRtsla / + wildtype. (B) EGFRtsla / EGFRf24 mutant. (C) 
Fluorescence intensity measurements of dILP2 in multiple IPC termini from larvae that were incubated at the 
semi-permissive temperature. Mean and standard deviations are shown. A Welch’s t-test was performed to 
compare the two treatments.
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Fig. S5. Workflow for quantitative analysis of disorder in the compound eye - Related to Figure 5. (A) Sample 
adults mounted on Blu-Tack. (B) Correct configuration of fiber-optic lighting of samples on the Leica microscope 
stage. (C) Raw image of an eye using correct lighting and exposure conditions. Scale bar = 35μm. (D) Example of 
incorrect configuration of lighting in which extraneous objectives distort the lighting. (E) Resulting images with 
incorrect lighting and exposure are shown. (F,G) An image of an eye after segmentation of the ommatidia (F) and 
subsequent erosion of the segmented region of interest (G) to minimize distortion due to eye curvature. (H) Centroids 
within segmented ommatidia are interconnected by a Delaunay triangulation. The nearest neighbors of each centroid 
are identified. (I) Distances from each centroid to its nearest neighbors are calculated.
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Fig. S6. Brightfield images of adult compound eyes - related to Figure 5.  Shown are representative 
raw images of eyes for disorder quantitation. Lighting and exposure are adjusted to generate pointillistic 
reflection of light from ommatidial lenses. Scale bar = 35 μm. (A) Egfrf24 / + wildtype. (B) Egfrtsla / Egfrf24 

mutant. (C) mir-7Δ1 / + wildtype. (D) mir-7Δ1 mutant.
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Fig. S7. Density distributions of the mean D for EGFR mutants with normal or reduced metabolism 
- related to Figure 6.  Density distributions of the mean D were estimated for ommatidia from wildtype 
(purple) and EGFR ts mutant (green) eyes. All animals were raised at 18°C except for an 18-hour interval 
as late L3 larvae when they were incubated at 26.5°C.  (A,B) Eye disorder in animals with normal 
metabolism. (C) Eye disorder in animals with reduced metabolism due to IPC ablation.
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