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Abstract

Increased ability to predict protein structures is moving research focus towards

understanding protein dynamics. A promising approach is to represent protein

dynamics through networks and take advantage of well-developed methods from

network science. Most studies build protein dynamics networks from correlation

measures, an approach that only works under very specific conditions, instead of the

more robust inverse approach. Thus, we apply the inverse approach to the dynamics

of protein dihedral angles, a system of internal coordinates, to avoid structural align-

ment. Using the well-characterized adhesion protein, FimH, we show that our

method identifies networks that are physically interpretable, robust, and relevant to

the allosteric pathway sites. We further use our approach to detect dynamical differ-

ences, despite structural similarity, for Siglec-8 in the immune system, and the SARS-

CoV-2 spike protein. Our study demonstrates that using the inverse approach to

extract a network from protein dynamics yields important biophysical insights.
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1 | INTRODUCTION

Advances in experimental structure determination,1,2 computational

structure prediction,3 and molecular dynamics (MDs) simulations4

have set the stage for high-throughput characterization of protein

dynamics with atomic resolution. Combined with increased computa-

tional power, these advances have led to rapidly increasing numbers

of longer MD simulations for larger macromolecular systems.5 As a

result, large datasets of MD trajectories are available from individual

research labs5 and repositories such as MoDEL,6 Dynameomics,7

Dryad, NoMaD, and MolSSI.8

This wealth of MD trajectory data creates opportunities for

expanding our understanding of protein dynamics and function. While

snapshots from MD trajectories contain information about low energy

states and can be used to identify conformational changes, some

physical phenomena—such as dynamic allostery in proteins—may beLuís A. N. Amaral and Sinan Keten contributed equally to this study.
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better characterized by dynamics over the course of the trajectory.9

MD simulations can capture differences among protein variants, the

impact of mutations, and modulation by small molecule binding at spa-

tiotemporal resolutions that are difficult, or even impossible, to obtain

experimentally.4

Taking advantage of this growing wealth of MD trajectory data

will require the development of robust methods for automated analy-

sis. A common strategy for analyzing dynamics data involves creating

a network by directly calculating contact times and interaction

energies.10–13 An alternative strategy used in network science aims to

identify the underlying interactions of multicomponent systems by

inferring a network structure from dynamics.14 When compared with

interaction energy networks, building networks from dynamics is typi-

cally less computationally expensive and avoids less rigorous modeling

of water or entropic contributions to the free energy.15 Identifying a

network structure makes it possible to apply network analysis tools in

order to uncover emergent properties such as densely connected

communities,16 hotspots with many edges,17 and paths connecting

active sites and allosteric regulatory sites in distant protein

regions.11,18

In the study of proteins, the typical approach for constructing

networks from protein MD simulations has made use of correlation

measures that quantify how different protein regions “move

together.” These include a variety of methods that use linear19 and

non-linear17,20-24 correlation measures. Yet, a rigorous mathemati-

cal analysis demonstrates that inferring the network structure by

solving the inverse problem for a system that could produce the

observed correlations is a more accurate approach than using the

correlations directly, as described in Nguyen et al.,14 a review

paper that describes the statistical mechanics underpinnings and

applications in various fields. In brief, solving the inverse problem

means working backwards from the observed data to solve for the

parameters of a model that could have generated the data. The

most straightforward form of solving the inverse problem is simply

calculating the inverse of the covariance matrix.14 The inverse

approach has been successfully applied to study protein

coevolution,25 and the inverse covariance approach is used in pro-

tein elastic network models.26,27 Here, we apply the inverse covari-

ance approach to MD trajectory data, as an alternative to elastic

network models.

A remaining challenge is how to define the nodes in such a net-

work representation. An approach that has been used in elastic net-

work models is to assign a node to each Cα atom.26,27 This choice has

some appeal because the model describes “beads,” located in Carte-

sian coordinates, connected by linear springs.26,27 However, using

Cartesian coordinates requires a structural alignment step that can

introduce “artifacts” during hinged motion for multidomain proteins,

and even for small, single-domain proteins.28 Previously, we have

demonstrated that an internal coordinate system using dihedral angles

makes it possible to accurately localize motion that affects elements

distal to the hinge in fimH.29

Here, we show that network inference using inverse covariance

analysis is robust across replicates and that it uncovers strong

interactions among backbone dihedrals that form a contact-map pat-

tern. While the contact-map pattern is also seen in elastic network

models for single domains with high conformational stability, we con-

tinue to see this pattern even for multidomain proteins with hinged

motion when using inverse covariance analysis.

We demonstrate the value of the proposed approach by studying

three physiologically significant proteins: the bacterial adhesion pro-

tein, FimHL, the human immune adhesion protein Siglec-8,30 and two

domains of the SARS-CoV-2 spike protein involved in adhesion to the

human ACE2 receptor.31 In addition to comparing the different struc-

tures of wild-type and mutant FimHL, we are also able to detect local-

ized structural changes due to breaking a disulfide bond in silico. For

Siglec-8, we are able to detect differences between “apo” and “holo”
states, despite their structural similarity.30 For the SARS-CoV-2 spike

protein, we examined the receptor binding domain (RBD) and its con-

necting Subdomain 1 (SD1). While the hinge region connecting RBD-

SD1 is open in the "up" state and closed in the "down" state, the indi-

vidual domains remain structurally similar in the "up" and "down"

states.31 For Siglec-8 and spike RBD-SD1, which do not have large

structural changes within protein domains, comparing inferred net-

works allowed us to identify dynamical changes and contributions to

stability.

2 | MATERIALS AND METHODS

2.1 | Protein structures

We retrieved crystal structure for FimHL wild type and mutant,

Siglec-8 apo and holo, and SARS-CoV-2 spike protein from the Pro-

tein Data Bank, as detailed in Table 1. For FimHL, we used crystal

structures of the lectin domain without ligand for both the wild type

and the mutant. To compare dynamics with and without the disulfide

bond as a local perturbation, we used visual molecular dynamics

(VMD) to define the bond or two cysteines for FimHL. For Siglec-8,

we simulated the ligand 6'S sLex without the 3-amino-propyl linker,

which is not thought to interact with the binding pocket.30

For the SARS-CoV-2 spike protein, we started from the refined

structures on the CHARMM-GUI archive.31,32 To focus on one hinge

system that is thought to be different between the down and up

states, we isolated the RBD and SD1 protein subunits without the gly-

cans. For the "up" state, we used chain A where the RBD is accessible

for binding the ACE2 receptor on human cells,31 and for the two

"down" states, we used chains B and C. For the "off" state, we used

the trimeric structure with all trimers down, checked that the back-

bones were very close to rotationally symmetric, and selected

chain A.

We prepared all systems using VMD version 1.9.3.33 We solvated

each protein with at least 16 Å of TIP3P water molecules on each side

to prevent interactions with itself through the periodic boundary con-

ditions. We added sodium and chloride ions to neutralize the system

and achieve the desired salt concentration in Table 1. The natural

environment for FimH is urine, so we selected 50 mM NaCl.34
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2.2 | MD simulations

We performed all-atomistic MD simulations using the Nanoscale

Molecular Dynamics (NAMD) software,35 with the CHARMM force

field.36 Our NAMD simulation parameters and system details are

listed in Table 2.

After observing differences in correlated protein motions

between replicates, we performed three replicates of over 200 ns

each for wild-type FimHL. Due to the tradeoff between the number

replicates and simulation length, we also performed six replicates of

20 ns of FimHL to make comparisons of wild type and mutant FimH,

as well as wild-type FimH with and without the Cys3–Cys44 disulfide

bond. Qualitatively, the inferred networks are similar despite a

10-fold timescale difference.

Since 20 lowest-energy structures are reported for Siglec-8,

we performed a single replicate of 50 ns for each structure to com-

pare apo and holo Siglec-8. For the spike RBD-SD1 domains, we

performed six replicates of 60 ns. To determine the timescale, we

simulated a few replicates for longer to see when the inferred net-

works became qualitatively similar. We did this visually and by

comparing the distributions of the inferred coupling strengths for

adjacent residues along the peptide bond against those of distant

residues.

2.3 | Backbone and sidechain dihedral angle
dynamics

We used dihedral angles to capture protein dynamics because dihe-

dral angles identify localized regions responsible for the collective dis-

placement of regions distal from the angular rotation, such as in

hinged motion.37 Dihedral angles are also an internal coordinate sys-

tem that avoids the structure alignment step when using Cartesian

coordinates, which can introduce "artifacts".28 We use both backbone

(ϕ,ψ ) and sidechain (χ1�χ5) dihedral angles, except for Ala and Gly, as

previously described.29 We extracted protein features with

MDTraj 1.9.5.

2.4 | Inverse of the covariance matrix

In the literature, the covariance matrix is one approach used to iden-

tify protein regions with motions that are related to the motions of

many other regions; in particular, it is used to identify correlated

motions between distant regions in allostery.22,38 However, con-

structing networks from the covariance matrix, even with a threshold

to remove weak correlations, is susceptible to induced correlations

TABLE 1 PDB structures studied (RRID:SCR_012820)

Protein FimH Siglec-8 Spike RBD-SD1

Type Crystal NMR Cryo-EM

[NaCl] (mM) 50 150 150

State Wild type Mutant Full-length Apo Holo Up Down Off

PDBID 4AUU 5MCA 4XOD 2N7A 2N7B 6VSB 6VSB 6VXX

Resolution (Å) 1.6 1.604 1.15 — — 3.46 3.46 2.8

Year 2012 2017 2016 2016 2016 2020 2020 2020

Protein residues 158 158 279 145 276

Protein atoms 2360 2350 4270 2290 4286

System atoms 32 292 31 917 60 376 42 684 50 879 80 383 89 236 78 740

System size (Angstrom) 94 87 123 97 111 125 116 115

61 67 72 70 72 94 95 94

59 59 72 67 67 81 81 77

Note: We studied FimHL in the active (wild type) and inactive (Arg60Pro mutant) states; the human immune-inhibitory protein Siglec-8 in the apo and holo

(6'S sLex-bound) states; and the SARS-CoV-2 spike protein RBD-SD1 domains in the up and down states.

TABLE 2 Details of molecular dynamics simulations

Parameter Value

Setup VMD 1.9.3 (RRID:SCR_004905)

Simulation engine NAMD 2.13 (RRID:SCR_014894)

Ensemble NPT

Temperature 300 K

Pressure 1 atm

Nonbonded interactions Lennard–Jones potential (cutoff)

Electrostatic interactions Particle-Mesh Ewald sum method

Forcefield CHARMM c36 July 2018 update

Timestep 1 fs

Coordinate saved every 1 ps

Conjugate gradient algorithm in NAMD

Energy minimization ≥10 000 steps with protein fixed

≥10 000 steps with protein free

Abbreviation: VMD, visual molecular dynamics.
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when two nodes (e.g., A and C) are not directly connected but share a

connection with a third node (B).14 Borrowing from the field of network

reconstruction, we use the inverse of the covariance matrix to identify

the connections and weights, or edges, between nodes.14 This approach

is consistent with finding the inverse of a covariance matrix based on Cα

positions, which fits the Hessian matrix describing an elastic spring net-

work with anisotropy.26,27 We have found that the anisotropic elastic

network model has large errors when used to describe the motion of

FimH, which is consistent with errors for hinge-motion described in liter-

ature.39 As a result, we use dihedral angles. This approach is similar to

the torsional network model (TNM) which uses equal spring constants to

describe dihedral angles across the protein.40 In contrast, the inverse of

the covariance matrix uses the variances and the covariances of angles

to calculate spring constants for a network of torsional springs. The

nodes in our network are dihedral angles, the edges are like linearly

coupled torsional springs, and the inverse of the covariance matrix is the

Hessian matrix for a TNM.

To construct our network, we calculate the Moore–Penrose

pseudo-inverse of the covariance matrix using both the backbone and

sidechain dihedral angles. We use this approach to understand the rel-

ative contributions of backbone and sidechain dynamics to collective

motion. Since the sign describes whether the angles turn in the same

direction, we take the absolute value to get the interaction strength.

We do not apply distance filters. While we use the 97th percentile as

a value threshold for selecting strong interactions or visualizing the

network on the protein, we do not use any thresholds for network

comparisons. More generally, we recommend caution for applying

thresholds to these networks for analysis.

For purposes of illustration, we focus on the χ1 sidechain dihe-

dral. However, we calculate the inverse covariance matrix with χ1�5

dihedrals.

2.5 | Comparing networks of inferred interactions

To identify interactions that are stronger in one protein state than

another, we compare each edge. We select for large differences

between groups (e.g., WT vs. mutant), relative to the variability

within each group. To do this, we filter for differences larger than

twice the standard deviation for each group. To compare an edge

e between states a and b, each with an ensemble of m and

n networks, this is j ⟨ea⟩m� ⟨eb⟩n j >2σea and >2σeb . We apply this

rule without determining statistical significance with corrections

for multiple comparisons, in order to see the full effects of compar-

ing all interactions on the matrix. In Figure S11, we also show an

example of comparisons without filtering for large differences, in

order to illustrate the persistence of the contact-map pattern. We

perform the network comparisons in two ways: (1) for every edge

on the network (see Figure S11), (2) accounting for the multilayer

structure of the network by collapsing the backbone–backbone

interactions into residue–residue interactions (Figure 4). We ana-

lyzed data in python, using SciPy (RRID:SCR_008058) and custom

packages.

3 | RESULTS

We present results below for these three proteins (Figure 1A). We first

focus on the well-characterized allosteric protein FimHL. Separation of

the FimHL domain from its connecting domain (bottom in all figures) is

thought to induce an allosteric conformational change on the opposite

end of the protein (top in figures).41,42 This changes the binding pocket

from a state with low affinity for the ligand to one with high affinity

(Figure 1B).41 While wild-type FimHL is trapped in the high-affinity state,

a single-amino acid mutation (Arg60Pro) stabilizes FimHL in the low-

affinity state.43,44 The mutant FimHL is of interest because it undergoes

an allostery-like conformational change upon binding mannoside ligands

and has been proposed as a minimal model of allostery.44

Like FimHL, Siglec-8 binds a carbohydrate ligand and has an

immunoglobulin-like fold with two β-sheets (Figure 1C). Functionally

however, Siglec-8 binds to specific sugars found uniquely in human

airway tissues to prevent autoimmunity.30,45 For specific binding,

Siglec-8 has a surprisingly rigid binding pocket loop, leading to similar

structures for the apo and holo states.30 The SARS-CoV-2 spike pro-

tein RBD binds the human ACE2 receptor with a “hook” region.46 The
hook becomes accessible in the up state when the hinge between the

RBD and its connector opens (Figure 1A). While the hook and interdo-

main hinge regions are flexible, the bulk of the RBD is thought to be

structurally similar in the up and down states. Both Siglec-8 and the

spike RBD-SD1 present challenges for detecting differences in

inferred interactions because the protein state changes without major

structural changes within domains.

3.1 | Define and validate network inference from
inverse covariance analysis

Our approach for constructing a network representation of the

dynamics of a given protein is comprised of three steps. In the first

step, we obtain temporal dynamics for the nodes, which are the back-

bone (ϕ, Ψ ) and sidechain (χ1�5) dihedral angles for each residue.24,37

In the second step, we calculate the circular covariance for dihedral

angles,37 which can be thought of as the linearization of the interac-

tions captured by mutual information. In the third step, we invert the

covariance matrix using the Moore–Penrose pseudo-inverse to calcu-

late the best fit for a linear coupling system that can give rise to the

observed covariance matrix.14

Similar to mutual information calculations conducted on other

proteins,17,24 we find that backbone–backbone interactions computed

from the covariance are weak compared with sidechain–sidechain inter-

actions (compare red and blue boxes in Figure 1B and the mutual infor-

mation in Figure S4). In these networks, some dihedral angles have a

banding pattern, suggesting long-range interactions with many other

dihedral angles (Figures 1B and S1). In contrast, the inverse covariance

matrix has localized and specific interactions. In addition, the stronger

backbone–backbone interactions have a repeating pattern that resem-

bles the contact map of the protein, and this pattern appears to repeat

more weakly in backbone–sidechain interactions.

186 LIU ET AL.

 10970134, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26421 by N

orthw
estern U

niversity L
ibraries, W

iley O
nline L

ibrary on [28/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The banding pattern in the covariance matrix is also widespread

in mutual information matrices, where they have been interpreted as

long-range interactions important in protein allostery.17,24 The large

number of long-distance edges produce “hairball” networks, which led

to the use of pruning algorithms47,48 or distance filters22,38,49 in prior

studies, in order to make network analysis tractable. Thus, we won-

dered whether the long-range interactions are capturing a physical

feature of the dynamics. To answer this question, we investigate the

reproducibility of the covariance, correlation, and inverse covariance

matrices extracted from different replicates of MD simulations.

In Figure 2A, we contrast the matrix for one replicate in the

upper-diagonal with the second replicate in the lower-diagonal and

quantify the similarity in Figure 2B. For replicate MD simulations, we

used the same initial protein structure with randomized solvation and

initial velocities. Both covariance matrices have banding patterns sug-

gesting hotspots that interact with many residues across the protein.

However, each replicate has its own banding pattern, with interaction

strengths that are over 10 times greater than those found in the other

replicate, indicating high variability in the networks that one would

construct from replicate simulations.

Since the banding pattern is associated with dihedral angles with

high variance, we also consider the correlation matrix, which normal-

izes the covariance matrix by the variance of each dihedral angle. It is

visually apparent that the banding in the covariance matrix is not sim-

ply due to high variance because there are still bands in the

correlation matrix. While normalizing to the correlation matrix

uncovers some interactions in a contact map pattern, they are weak

compared with the banding pattern (see Figure S5 for a lower maxi-

mum value on the color map scale).

In contrast to the irreproducible results obtained with the covari-

ance matrix, for the inverse of the covariance matrix, we find a pattern

that is visually similar to the 12 Å contact map (Figure 2C). The diago-

nally symmetric contact map pattern in blue indicates similarly strong

interactions for two replicates (Figure 2A). After quantifying the

robustness across three replicates using the Jaccard similarity index,

we find that the inverse covariance has higher similarity (59%–72%

shared edges) than the covariance (8%–10%) or the correlation (13%–

16%) for ψ�ψ backbone interactions (Figure 2B). The χ1� χ1 similar-

ity values for inverse covariance are lower, but still higher than for the

other two methods. These data clearly demonstrate that networks

inferred from inverse covariance analysis are more robust than net-

works constructed from correlational measures.

3.2 | Inverse covariance analysis yields structural
networks

Prompted by the strong visual resemblance between the inverse

covariance network and the 12 Å contact map and the complete

absence of this pattern in the covariance network, we wondered if

F IGURE 1 Unraveling structural properties from protein conformational dynamics. (A) Cartoon illustrating the three adhesion proteins

studied here. FimH refers to the lectin domain of a bacterial adhesin found in uropathogenic Escherichia coli that binds mannose and undergoes a
conformational change under tensile force from urine flow. Siglec-8 refers to the lectin domain of a human immune-inhibitory protein found on
eosinophils and mast cells. The SARS-CoV-2 receptor binding domain (RBD) and Subdomain 1 (SD1) domains are thought to undergo a down-to-
up transition that makes the RBD available to bind ACE2. For each protein, we compare pairs of states: FimHL wild-type (PDB 4AUU) and mutant
(PDB 5MCA), Siglec-8 with ligand 6'S-sLex (PDB 2N7B) and without lig (PDB 2N7A), and RBD-SD1 in down and up (PDB 6VSB) states.
(B) Comparison of covariance analysis of the dynamics (top left) versus the inverse covariance analysis (bottom right) from the dynamics of wild-
type FimHL (see Figures S1–S3 for the other proteins). While many studies rely on the analysis of the covariance matrix, our data clearly show
that the structure of the covariance matrix is dominated by artifacts (vertical and horizontal lines) which are stronger for side-chain interactions
(red square for χ1� χ1). In contrast, the inverse covariance matrix clearly reveals a structure reminiscent of a contact map and is dominated by
backbone interactions (blue square for ψ �ψ )
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the inverse covariance matrix could be used to identify specific physi-

cal interactions. To answer this question, we overlaid the strongest

edges (≥97th percentile) on the 12 Å contact map, highlighting the

backbone–backbone edges as blue dots and the sidechain–sidechain

edges as red crosses (Figure 3A and Figure S10).

To correct for the high variability across replicates that we previ-

ously found for the covariance networks, we averaged networks

across the three replicates. Despite the averaging, the covariance net-

work shows strong interactions across distant protein regions and is

dominated by χ1�χ1 interactions.

To understand how these contrasting patterns affect interpreta-

tion, we next visualize strong interactions as edges drawn on the pro-

tein structure (Figure 3B). Since drawing all edges would make the

covariance network indecipherable, we only show the

χ1�χ1

edges originating from Lys4. In contrast, the inverse covariance net-

work uncovers edges that mostly connect physically close residues.

Specifically, we find a χ1� χ1 edge between Cys3 and Cys44 for the

sole disulfide bond in FimHL, and that this edge is missing from the

covariance network (red vs. green arrow in Figure 3A).

Examining the contact map pattern of the inverse covariance net-

work in more detail, we compare edge weight with the distance

between Cα atoms (Figure S9). We find that for backbone–backbone

interactions, the strongest interactions are between residues con-

nected by a peptide bond, followed by hydrogen bonds within β

sheets, and then nonbonding interactions.

After examining backbone–backbone interactions, we next

looked at the progressively weaker interactions involving sidechains

distal from the backbone (Figures 1B and S10). We find the contact

map pattern is still apparent for ϕ� χ1 or ψ� χ1 interactions, but

becomes very weak for ϕ�χ2 or ψ�χ2 interactions, and becomes

indistinguishable from noise for interactions between proximal and

distal sidechain dihedrals. The inverse covariance analysis thus sug-

gests that backbone dihedral motion is most strongly coupled to

nearby backbone dihedrals and has more dissipated effects on side-

chain dihedrals. This relationship is consistent with how backbone

motions can sterically trap or free sidechains, whereas sidechain

motions are more limited in their impact on backbone motion.50

F IGURE 2 Inverse covariance matrix is robust across replicates whereas covariance and correlation matrices are not. (A) Triangular regions
above and below the matrix diagonal show results from two replicates of wild-type FimHL starting from the same protein structure. We show
ψ�ψ interactions. We show interaction strength in blue with a normalization for each triangular region made based on the 97th percentile of
observed strengths. In red, we show the ratio for interaction strength between the two replicates. Purple indicates strong interactions that are
not reproduced in the other replicates (see Figure S5 for weaker interactions visible when normalized to the 95th percentile for ψ�ψ and
χ1� χ1). For covariance and correlation matrices, we find that backbone–backbone interactions are mostly quite weak, but the strong interactions
(darker blue) vary drastically between replicates. In contrast, for the inverse covariance matrix, the strongest backbone–backbone interactions
symmetric across the diagonal. (B) To evaluate the robustness of network inference, we calculate the Jaccard similarity coefficient for the
covariance, correlation, and inverse covariance analyses methods across three simulation replicates. We define edges above the threshold of
≥97th percentile (see Figure S7 for other thresholds). In gray scale, we show similarity separately for ψ�ψ and χ1�χ1 interactions. Darker gray
indicates results are similar across replicates for the inverse covariance approach and much less similar for the other two methods. (C) The inverse
covariance matrix resembles the contact map. We show the Cα inter-residue distance from the crystal structure. Darker gray indicates shorter
distance
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The different strengths of interactions for backbone-backbone

and backbone-sidechain edges suggests that qualitatively different

types of interactions have different properties. For two residues i and

j, the backbone-backbone edge ϕ�ψ i, j½ � are larger than the

backbone-sidechain edge χ1�χ1 i, j½ �, which is consistent with the

physical differences between these two edge types. Moreover, most

backbone-backbone edges within the same residue, ϕ�ψ i, i½ �, are

stronger than backbone edges connecting to other residues, ϕ�ϕ[i, j]

and ψ�ψ[i, j] (Figure S9).

3.3 | Detecting both large and small structural
changes in FimHL

3.3.1 | Conformational differences between wild
type and mutant

As a way to further validate our approach, we next test if we are able

to identify the well-characterized differences between wild-type

FimHL and the Arg60Pro mutant. To compare inferred networks for

the wild-type and mutant proteins, we identified edges where the

average difference was larger than two times the standard deviation

across each group of replicates. We performed this analysis once with

the entire set of edges (Figure S11), and again with only the backbone

interactions collapsed into a residue interaction network. For our

comparisons and the matrix visualization of the differences, we do not

apply a distance filter or a threshold for the edge-strength. However,

for the visualization on the protein, we only show differences with

magnitude larger than the 97th percentile.

The visualization of the differences enables us to identify several

interactions stronger in either the mutant or the wild-type proteins

(red or blue patches, respectively, in Figure 4A). This is consistent with

the difference in initial structure (root mean squared deviation,

RMSD = 3.15 Å), dihedral dynamics,29 and the residues that are rear-

ranged in the allosteric conformational change.43,51

For concreteness, we focus on two regions at the edge of the

protein structure that are easier to visualize: the binding pocket zipper

at the top of FimHL, and the insertion loop at the bottom. In the

pocket zipper, we found much stronger interactions for the mutant

protein (median: 2.8-fold, IQR: 2.0-fold to 5.2-fold), which correspond

to smaller dihedral fluctuations.29 On the other hand, in the insertion

loop, we identified changes in interaction that were stronger in the

wild type than the mutant protein (3.2-fold, 2.2-fold to 3.7-fold).

Structurally, this is consistent with how the insertion loop is stabilized

in the wild-type structure and exposed to solvent in the mutant pro-

tein.44,52 Dynamically, stronger interactions within the insertion loop

F IGURE 3 The inverse covariance matrix enables us to extract a “contact map”-like network from the protein dynamics. (A) Comparison of
strong interactions identified for the covariance matrix (top left) and for the inverse covariance matrix (bottom right) of wild-type FimH. To
provide context for our data, we plot the 12 Å contact map in gray within the matrix. On the top and right axes, we show helix (pink) and strand
(teal) secondary structures assigned by the Dictionary of Secondary Structure of Proteins algorithm. On the left and bottom axes, we show
putative allosteric pathway landmarks43: pocket zipper (red), clamp segment (yellow), swing loop (cyan), β-bulge (purple), α-switch (green),
insertion loop (blue), and linker loop (dark red). We only show strong edges, with the threshold set at the 97th percentile of all dihedral
interactions. See Figure S6 for other cutoffs. We averaged edge weight across three replicates. The blue dots represent the average of backbone–
backbone interactions by residue. The red crosses represent sidechain–sidechain interactions (χ1�χ1). The inverse covariance network is
predominantly backbone interactions that fall within the 12Å contact map. There is a ≥99th percentile χ1� χ1 interaction: the Cys3–Cys44
disulfide bond (red arrow). However, this interaction is only 80th percentile in strength (green diamond and arrow) for the covariance matrix,
which is dominated by other χ1�χ1 interactions. (B) Since the covariance matrix has many long-range interactions, we only show the backbone
interactions and limit the sidechain interactions to Lys4. In contrast, the inverse covariance network has mostly short-range interactions, including
the disulfide bond. We show backbone interactions on the Cα atoms and sidechain interactions on the fourth χ1 atoms. We show backbone
interactions in blue and sidechain interactions in red. Darker colors indicate stronger interactions

LIU ET AL. 189

 10970134, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26421 by N

orthw
estern U

niversity L
ibraries, W

iley O
nline L

ibrary on [28/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



are consistent with smaller dihedral fluctuations in the wild-type

protein.29

We further identify differences at the β-bulge, α-switch, and

swing loop regions of the allosteric pathway, consistent with struc-

tural differences between wild-type and mutant proteins. The mutant

protein has stronger interactions within the loop formed by the

β-bulge (2.0-fold, 1.2-fold to 2.3-fold) and also with a nearby loop. In

the wild-type protein, the loop is smoothed out into a β-strand. The

wild-type protein has stronger interactions (1.8-fold, 1.5-fold to

2.6-fold) in the α-helix, compared with the 310-helix in the mutant

protein, which is probably due to different hydrogen bonding pat-

terns. In the swing loop, we again find stronger interactions in the

wild-type protein (2.0-fold, 1.6-fold to 2.7-fold).

For these allosteric pathway landmarks, it is visually apparent that

we detect large differences in inferred interactions when structures

are closer in one state and stretched apart in the other state. Beyond

these regions, there are several other regions with similarly large

changes in interaction between the wild-type and mutant proteins,

shown in blue and red patches (Figure 4A).

3.3.2 | Quantifying the impact of disulfide bond
reduction

We next used wild-type FimHL to explore the impact of reducing the

single disulfide bond between Cys3 and Cys44 in silico on fast,

nanosecond-timescale dynamics. Using the inverse covariance analy-

sis, we correctly identified the 6-fold stronger χ1�χ1 interactions in

the presence of the disulfide bond, which was the largest difference

detected (Figure 4D). This matches our expectations because the

covalent bond between the most distal atoms forming the χ1 rotamer

angle directly couples χ1 dynamics. Together, these analyses show

that the inverse covariance analysis method is sensitive to both local

differences and conformational differences.

F IGURE 4 Inverse covariance analysis
can detect both large and small structural
changes in FimHL. (A) Comparing inferred
networks for wild-type and mutant
proteins, we show differences in the
backbone (top left in dots) and χ1�χ1
(bottom right in crosses). As in Figure 3A,
we annotate the 12Å distance cutoff,
secondary structures, and landmarks. The

black dots on the color bar mark the 97th
percentile in magnitude. On the adjacency
matrix, we show all differences greater
than 2σ. (B) On the protein, we show
large differences (≥97th percentile). Red
shows interactions stronger for mutant
FimHL; blue for WT FimHL. We highlight
the pocket zipper (red), insertion loop
(blue), and β-bulge/α-switch (green) and
(C) show isolated parts of the network.
(D) Comparing wild-type FimH with the
Cys3–Cys44 disulfide bond intact or
reduced in silico. (E) The blue lines show
that the Cys3–Cys44 χ1�χ1 (blue arrow)
and the Phe43–Cys44 backbone–
backbone interactions are stronger when
the disulfide bond is intact
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3.4 | Network inference detects key mechanisms
involved in Siglec-8 binding

Like FimHL, the human immune cell adhesion protein, Siglec-8, is also

a lectin with an immunoglobulin-like fold with a single disulfide bond.

For Siglec-8, we compare the apo (no ligand) and holo (bound to the

native 6'S-sLex ligand) states. Due to the rigid binding pocket loop

that only differs by a few sidechain rearrangements, apo and holo

Siglec-8 have extremely similar structures.30 Intriguingly, the rigidity

of the CC0 binding pocket loop in apo Siglec-8 occurs in the absence

of stabilizing secondary structure motifs30 and plays a major role in

recognizing specific ligands in the airway to avoid autoimmunity.45

One hypothesized mechanism for stabilizing the CC0 loop in apo

Siglec-8 is that the Arg70 sidechain forms hydrogen bonds with the

loop backbone at Pro57 and Asp60 (Figure 5A).30 We identified

Arg70–Pro57 or Arg70–Asp60 hydrogen bonds with occupancy

between 10% and 33% in seven out of 20 simulations from the

ensemble of NMR structures, and higher occupancy (80% and 83%) in

only two simulations. This suggests the hydrogen bond is rarely pre-

sent. Nonetheless, the unstructured CC0 loop has surprisingly small

fluctuations across the ensemble of MD simulations (Figure 5B–E).

Using our inferred interaction networks, we identified strong

interactions within the CC0 loop, as well as interactions from outside

the loop to its hinges at Ala53 and Pro62 (Figure S12). Consistent

with the hydrogen bonding analysis, we only identified strong interac-

tions with Arg70 in a few MD simulations, which disappeared after

averaging the networks across the ensemble. Counter-intuitively, in

the two structures where Arg70 does form stable hydrogen bonds

F IGURE 5 Inferred networks identify strong interactions and changes in interaction strength. (A) Illustration of Siglec-8 highlighting the CC0

loop of the binding pocket in orange, Arg70 in cyan, and hypothesized hydrogen bond acceptor carbonyl oxygens (black spheres) for ensemble of
20 NMR structures. From molecular dynamic simulations of all structures, we show snapshots every 10 ns for the (B) Cys31–Cs91 disulfide bond,
(C) Arg79–Asp102 salt bridge, and (D) CC0 loop. Structures were aligned to the backbone atoms for residues 13–135 to exclude the N-terminus
and C-terminus tails. These snapshots show the stability of the salt bridge and disulfide bond, and the surprising stability of the unstructured CC0

loop. However, the hypothesized interaction between Arg70 and the CC0 loop is much less stable, even with (E) structural alignment using the
backbone of the CC0 loop. (F) Beyond identifying strong interactions, our approach also identifies rearrangements of strong interactions without
large structural changes in Siglec-8 and the SARS-CoV-2 RBD-SD1. Siglec-8 with (holo) and without (apo) ligand have similar structures.
However, inverse covariance analysis reveals rearrangement of strong interactions in a region opposite the binding pocket, including the Cys31–
Cys91 disulfide bond (black spheres). We show interactions stronger in holo (red) and apo (blue) on the holo structure. (G) For the SARS-CoV-2
spike protein, rotation around the RBD-SD1 hinge exposes the RBD in the up conformation (Figure 1A), while the structures with the RBD
hidden are extremely similar (down1, down2, and off conformations). Comparing inferred network interactions, we detect differences near the
hinge, including the Cys336–Cys361 disulfide bond (black spheres) and nearby α-helices. For these regions, we show the interactions that are
stronger in the down2 (blue) and off (red) conformations on the corresponding structure. See Figure S15 for other comparisons
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with Pro57 and Asp60, the CC0 loop has paradoxically larger fluctua-

tions, especially at Tyr58 and Gln59 at the loop tip (Figure S12). Taken

together, we suspect that steric hindrance plays a role in stabilizing

the CC0 loop internally and externally at the hinge edges.

Of note, this example demonstrates an instance where the

inferred network approach provides more clarity than contact or

interaction energy networks, because the inverse of the covariance

matrix identifies the degrees of freedom that most strongly affect the

fluctuations at the CC0 loop.

After examining why the CC0 loop is similar in apo and holo

Siglec-8, we next compared inferred networks for the apo and holo

states. The holo state has stronger χ1� χ1 interactions corresponding

to the Cys31–Cys91 disulfide bond (Figures 5C and S13). The disul-

fide bond is conserved in the siglec family and is located on the sheet

of the β-sandwich opposite the binding pocket.30 Nearby, we also

observe other changes in interaction strength involving Asp90.

Although distant from the binding site, the Asp90–Cys91–Ser92 motif

in Siglec-8 is a variant of the Asn-Cys-Ser or -Thr motif that is con-

served in the rest of the siglec family.53 Differences in interaction

strength between apo and holo states identify changes in the dynam-

ics of this evolutionarily conserved region during ligand-binding.

In contrast, reducing the Cys31–Cys91 disulfide bond in the holo

state in silico has a different pattern (Figure S13). Both ligand-binding

and the presence of the disulfide bond correspond to stronger a

χ1� χ1 interaction at Cys31–Cys91. Both conditions also stabilize

Cys31, indicated by decreased backbone dihedral fluctuations and

increased duration within an extended secondary structure as

assigned by the Dictionary of Secondary Structure of Proteins algo-

rithm, and shorter Cys31–Cys91 Cα distance. Taken together, we find

that the network rearrangement that occurs with ligand-binding

increases Siglec-8 conformational stability near an evolutionarily con-

served disulfide bond, even though the region is not near the

binding site.

3.5 | Comparison of the spike protein RBD-SD1
fragments in the up, down, and off states shows
network rearrangements without large structural
differences

Next, we investigated whether there are differences in the networks

inferred from the “up,” “down,” and “off” states of the RBD-SD1

domains of the SARS-CoV-2 spike protein (Figure 1A). The RBD con-

nects to SD1 (Figure 5E) via two hinge-like loops that are more flexi-

ble in the up state than in the down or off states.54 While the up state

has a different orientation around the hinge than the down and off

states, they all have similar SD1 structures (Cα-RMSD ≤ 0.64 Å) and

somewhat similar RBD structures (Cα-RMSD ≤ 1.55 Å).

Opening the hinge angle in the down-to-up transition is thought

to make the binding site on the RBD available to attach to human

ACE2.31,46 To focus on the RBD-SD1 hinge, we isolated these

domains from the rest of the spike protein and ignored glycosylated

sugars. While these simplifications limit the strength of our

conclusions into the function of the spike protein, the RBD-SD1

structures nonetheless provide a useful system for comparing dynam-

ics in a system that initially resembles rigid-body motion around a

hinge.

Since the trimeric spike protein with one exposed RBD has two

hidden RBDs, we isolated one RBD-SD1 fragment in the “up” state,

and two fragments in the “down” state. We obtained another RBD-

SD1 domain in the “off” state from a structure with all RBDs hidden

and 3-fold rotational symmetry. We first compared the RBD-SD1

fragments in the down and off conformations. Despite the structural

similarity, we nevertheless detect differences in the inferred networks

(Figure 5E) based on dynamics. We find the networks for the two

down conformations are more similar to each other than to the net-

works for the off conformation (Figure S15).

We next compared RBD-SD1 fragments in the down and off con-

formations to the fragment in the up conformation (Figure S15). Sur-

prisingly, we find that the differences in inferred networks among the

down and up conformations are more localized, while the networks

for the off conformation are distinct from the others. The localized

differences are in the hook of the RBD that is exposed in the up con-

formation, and at an α-helix near the RBD-SD1 hinge. Intriguingly, we

also identified differences in the structural orientation and the

inferred network interaction at the Cys336–Cys361 disulfide bond. In

this region, one down conformation is more similar to the up confor-

mation, whereas the other down conformation resembles the off con-

formation (Figure 5E).

As a proof-of-concept, we investigated whether it is possible to

infer an interaction network for the trimeric SARS-CoV-2 spike pro-

tein, even though it is much larger than the RBD-SD1 domains. How-

ever, the amount of data required for network inference using the

inverse covariance method scales faster than the number of residues.

As a result, our approach required more data than was available from

the two sets of publicly accessible simulations for which the up and

down states are labeled.55,56 Instead, we chose the longer simulations

that explore the transition among the down, up, and open states pub-

lished by the Bowman lab.57 We randomly concatenated the short

simulations to create progressively larger datasets for calculating the

inverse covariance matrix. As the amount of data increased, the distri-

bution of coupling strengths between neighboring residues along the

peptide backbone also became distinct from those between distant

residues. Using 100 000 snapshots, we were able to infer an interac-

tion network for the 3363 residues of the spike protein (Figure S14).

The number of snapshots is an order of magnitude larger than those

currently available for labeled states. Thus, it may be feasible to com-

pare states for the entire S1/S2 complex of the spike protein if there

is sufficient data, or by choosing a less data-intensive method for solv-

ing the inverse problem.

4 | DISCUSSION

We identify some of the shortcomings of correlation-based

approaches for network inference from protein dynamics using the
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covariance, correlation, and mutual information matrices. These net-

works have low reproducibility among replicates and exhibit long-

range connections that are difficult to tie to physical explanations. To

address these shortcomings, we use the inverse of the covariance

matrix. This is a well-established technique from network inference14

for solving the inverse problem for a system that can produce the

observed correlated dynamics. Our approach builds networks where

each node is a dihedral angle, including both the backbone (ϕ, ψ ) and

the sidechains (χ1�5), and edges are inferred from the coupling inter-

actions between angles. We chose the internal coordinate system of

dihedral angles37 to easily include sidechain dynamics, localize hinges

that drive distal dynamics,29 and to avoid the alignment step in Carte-

sian coordinates that introduces “artifacts” in hinged motion.39

Using the inverse covariance approach, we detected differences

in conformation, subtle differences between protein states without

large conformational changes, and localized perturbations in the struc-

ture of biomedically important proteins. The inverse covariance net-

works capture a hierarchy of interactions that resemble the

qualitatively different types of interactions, suggesting a multilayer

network structure. The strongest edges connect dihedral angles with

covalently bonded atoms, with weaker interactions for greater dis-

tances. Moreover, the contact map-like pattern found in backbone–

backbone interactions is repeated more weakly in backbone–

sidechain and sidechain–sidechain interactions. This hierarchy of

inferred interactions is consistent with the view that smaller backbone

rearrangements are related to larger sidechain motions.50 Since stron-

ger coupling leads to smaller fluctuations and vice versa, a comparison

of coupling strengths may capture shifts in ensembles that have simi-

lar average structure, as shown for Siglec-8 and the hinge region of

SARS-CoV-2. The inverse covariance approach captured the role that

disulfide bond play on the dynamics of these adhesion proteins, in the

sense that disulfide removal strongly impacts coupling strengths and

major differences in networks tend to occur at disulfide bonds when

comparing different states of these proteins. More generally, compar-

ing inferred network properties may be useful in dynamic allostery9,58

and thermostable variants.59 Specifically, a multilayer network

approach may allow the use analytical tools to capture properties lost

by flattening networks.60

Our results suggest that solving the inverse problem uncovers the

underlying interactions that ultimately drive protein dynamics, but are

not well-captured by cataloging the observed correlated motions or

comparing static structures. Notably, inverting the covariance matrix

is the simplest of a variety of tools available for network inference

from dynamics used in network science.14,61 While the simplicity of

inverting the covariance matrix increases accessibility, there are some

obvious limitations.14 We calculate the circular covariance matrix on

dihedral angle distributions that are multimodal. The inverse of the

covariance matrix is analogous to linearly coupled torsional springs,

which do not represent the complexity of atomic interactions within a

protein. Moreover, network inference by inverting the covariance

matrix requires a large amount of data.14 Our work establishes a base-

line approach, which can be easily built upon by incorporating more

sophisticated14,18—and yet more involved—approaches that better

describe dihedral distributions25 or account for nonlinear

interactions.62

Despite these limitations, our approach yielded significant insights

for three adhesion proteins. Comparing the networks inferred for two

protein states at a time, we were able to tie differences in inferred net-

work structure to structural and dynamical differences. For FimHL, a

comparison of inferred networks for the wild-type and mutant proteins

identifies protein regions with conformational changes consistent with

the allosteric pathway sites.43 For Siglec-8 and the SARS-CoV-2 RBD-

SD1 construct, we were able to detect network rearrangements despite

the similar structures of Siglec-8 in the apo and holo states, and of the

individual RBD and SD1 domains in the up and down states. In Siglec-8,

we were also able to use strong interactions identified by the network to

propose a new mechanism for stabilizing an unstructured loop in the

binding pocket. This serves as an example where the network inference

approach has an advantage over contact and interaction energy net-

works. Taken together, our results show that the network inference

approach can identify protein regions of interest based on dynamical dif-

ferences that are rooted in physically interpretable interactions.
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