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Much of human knowledge sits in large databases of unstructured text. Leveraging this knowledge
requires algorithms that extract and record metadata on unstructured text documents. Assigning topics
to documents will enable intelligent searching, statistical characterization, and meaningful classification.
Latent Dirichlet allocation (LDA) is the state of the art in topic modeling. Here, we perform a systematic
theoretical and numerical analysis that demonstrates that current optimization techniques for LDA often
yield results that are not accurate in inferring the most suitable model parameters. Adapting approaches
from community detection in networks, we propose a new algorithm that displays high reproducibility and
high accuracy and also has high computational efficiency. We apply it to a large set of documents in the
English Wikipedia and reveal its hierarchical structure.
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I. INTRODUCTION

The amount of data that we currently collect and store
is unprecedented. A challenge for its analysis is that a
significant fraction of these data is in the form of unstruc-
tured text. One of the central challenges in the field of
natural language processing is bridging the gap between
information in text databases and their organization within
structured topics. Topic-classification algorithms are key to
closing this gap.
Topic models take as input a set of text documents

(the corpus) and return a set of topics that can be used to
describe each document in the corpus. Topic models set the
foundation for text-recommendation systems [1,2], digital
image processing [3,4], computational biology analyses [5],
spam filtering [6], and countless other modern-day digital
applications. Because of their importance, there has been an
extraordinary amount of research and a number of different
implementations of topic-model algorithms [7–14].
At the core of every topic-model algorithm is the require-

ment to find the global maximum of a likelihood function
characterized by numerous local maxima. This optimisation

problem is also the challenge at the core of the study of
disordered systems in physics [15,16]. Additionally, topic
modeling is closely related to the problem of fitting
stochastic block models to complex networks [17–25].
Surprisingly, even though it is well established that the

problem of fitting topic models is computationally hard,
little is known about how the vastness and roughness of
the likelihood landscape impact algorithm performance in
practice. In order to get a grasp on the magnitude of this
challenge, we conduct a controlled analysis of topic-model
algorithms for highly specified sets of synthetic data. This
high degree of control allows us to tease apart the
theoretical limitations of the algorithms from other sources
of error that would remain uncontrolled with real-world
data sets [26–28]. Our analyses reveal that standard
techniques for likelihood optimization are significantly
hindered by the roughness of the likelihood-function
landscape, even for very simple cases. Significantly, we
show that the limitations of the current implementations of
topic-model algorithms can easily be overcome by using a
network approach to topic modeling.
Our manuscript is organized as follows. In Sec. II, we

present some background on topic models. Section II is
followed, in Sec. III, by an investigation of the performance
of topic models on an elementary test case. In Sec. IV,
we introduce our new algorithm, which we denote as
TopicMapping, and in Sec. V, we systematically compare
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the performance of the state-of-the-art topic-model algo-
rithms against that of TopicMapping.

II. BACKGROUND

The state-of-the-art methods in topic modeling attempt
to fit the values of the parameters of a generative model of
the documents in the corpus. The first major attempt to
develop a generative model was probabilistic latent seman-
tic analysis (PLSA) [9]. The current gold standard for the
field is latent Dirichlet allocation (LDA) [10,29,30]. For
the first time, topic models offered a principled approach
for clustering text documents, with a well-defined set of
assumptions. This approach spurred a consistent body of
research aimed at generalizing the models and relaxing
their assumptions.
The generative models underlying the PLSA and LDA

algorithms assume that each topic is characterized by a
specific word-usage probability distribution and that every
document in the corpus is a generated from a mixture of
topics. As an example, consider a corpus of documents
generated from two topics, mathematics and biology
(Fig. 1). Each document in the corpus will draw from
the set of topics with idiosyncratic probabilities. For
instance, a document dbio drawing mostly from the biology

topic might have pðtopic ¼ biologyjdbioÞ ¼ 0.9 and
pðtopic ¼ mathjdbioÞ ¼ 0.1.
Documents with different topic mixtures will use

words differently because the probability of using a given
word depends on the topic. Importantly, it is assumed
that some words will be strongly associated with a single
topic; otherwise, it would be impossible to fit the
model. For example, words such as “DNA” or “protein”
will primarily be used in biology-focused documents
because pðword ¼ DNAjtopic ¼ biologyÞ ≫ pðword ¼
DNAjtopic ¼ mathÞ. In contrast, words such as “tensor”
or “equation” will primarily be used in a math-focused
document because pðword¼ tensorjtopic¼biologyÞ≪
pðword¼ tensorjtopic¼mathÞ. There will, however, be
other words, such as “research” or “study,” that are generic
and will be used nearly equally by both topics. In practice,
one only has access to the word counts in each document,
while the actual topic structure is unobservable, that is,
latent. The challenge is thus to estimate the topic structure,
which is defined by the set of probabilities pðtopicjdocÞ
and pðwordjtopicÞ.
For concreteness, let us assume that a corpus comprised of

N documents is generated from K topics using Nw distinct
words. Then, one needs to estimate N × K probabilities
pðtopicjdocÞ and K × Nw probabilities pðwordjtopicÞ.
PLSA and LDA both aim to estimate the values of these
K × ðN þ NwÞ probabilities that have the highest likelihood
of having generated the data [9,10,31,32]. Thus, both PLSA
and LDA rely on maximization of a likelihood that depends
nonlinearly on a large number of variables, a non-deter-
ministic polynomial-time hard problem [33].
A major difference between the two models is that for

PLSA, the N × K probabilities pðtopicjdocÞ are free
parameters that must be estimated directly from the data,
whereas LDA assumes that the set of probabilities
pðtopicjdocÞ is random variables that have been drawn
from a Dirichlet distribution [34]. Thus, for LDA, one
only needs to estimate K parameters (one per topic)
fα1; α2;…; αKg. These α’s are called concentration param-
eters or hyperpriors. The number of parameters for LDA is
often reduced further, by assuming that all hyperpriors take
the same value, typically denoted by α. The “version” of
LDA that assumes a single value of the hyperprior is called
symmetric LDA, whereas the full model with the K
hyperpriors is called asymmetric LDA [35].

III. EVALUATION OF STATE-OF-THE-ART
TOPIC-MODEL ALGORITHMS

A. Theoretical limits on the performance of topic-model
algorithms on an elementary test case

Sophisticated practitioners know that a very large num-
ber of topic models can fit the same data almost equally
well. This model competition poses a serious challenge for
algorithmic stability. We begin our investigation of this

FIG. 1. Generative model for documents in the corpus. Docu-
ments are assumed to be a mixture of topics. The topic structure is
latent, meaning that one cannot access the “true” set of topics
used to generate the documents in the corpus. However, the set of
topics can be estimated using a topic-model algorithm. To this
end, one calculates the word frequencies in each document and
models them as mixtures of different topics, math and biology in
this example.
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issue by considering a well-defined elementary test case
[36], which we denote as the language corpus. Here, topics
are fully unmixed languages—that is, no word is used by
more than one language—and each document is written
entirely in a single language. In order to match this test
corpus to the assumed LDA generativemodel, we use a two-
step process to create synthetic documents. In the first step,
we select a language with probability pðlanguageÞ, which,
in practice, is equivalent to a Dirichlet distribution with a
very small hyperprior parameter (see the Supplemental
Material [37]). Given the language, in the second step,
we randomly sample Ld words from that language’s
vocabulary into the document. For the sake of simplicity,
we restrict the vocabulary of each language to a set of Nw
unique equiprobable words. Thus, an “English” document
in the language corpus is just a “bag” of English words.
For concreteness, consider a language corpus generated

from three languages and a distinct number of documents in
each language. Consider also that the number of documents
in English more than exceeds the sum of the number of
documents in the other two languages. Because of stochas-
tic fluctuations in how words are assigned to documents
generated from a single language, an implementation of
a topic-model algorithm could correctly infer the three
languages as topics, but it could also split English into
two or more “dialects” and merge the two other languages
into a single topic [Fig. 2(a)]. The latter, alternative model
is wrong on two counts: It splits English-topic documents
into two topics, and it assigns documents in the two
smaller languages into a single topic. Naïvely, one would
expect the incorrect alternative model to have a smaller
likelihood than the correct generative model. However, this
supposition is not always fulfilled for PLSA [9] or for
symmetric LDA.
In fact, dividing, that is, overfitting, the English docu-

ments in the corpus yields an increase of the likelihood.
As we show in the Supplemental Material [37], the log-
likelihood of the alternative model increases by as much as
log22 per English document. Similarly, merging, that is,
underfitting, the “French” and “Spanish” documents, results
in a decrease of the log-likelihood ofLd log 2 per French and
Spanish document, where Ld is the average length of the
documents. By comparing these two opposing changes, one
can identify a critical fraction of English documents above
which the alternative model will have a greater likelihood
than the correct generative model [Fig. 2(b)]. Moreover,
numerical simulations demonstrate that topic-model algo-
rithms fail before one hits the theoretical limit set by the
critical fraction of English documents [Figs. 2(c) and 2(d)].
The theoretical limit for using maximization of a like-

lihood function in order to infer the correct generative
model is not limited to topic modeling. Of particular
significance, this limit also holds for non-negative matrix
factorization [8] with Kullback-Leibler divergence,
which is equivalent to PLSA [38]. (Non-negative matrix

factorization is a popular low-rank-matrix-approximation
algorithm that has found countless applications, for exam-
ple, in face recognition, text mining, and many other high-
dimensional data-analysis applications.)
More generally, the critical threshold for the fraction

of documents belonging to the underfitted topic depends
on the typical number of words Ld in the documents
comprising the corpus. Specifically, the critical threshold
decreases as 1=Ld. In fact, by increasing the typical length
of the documents or using asymmetric LDA [35], one can
show, for the language corpus, that the generative model
always has a larger likelihood than the alternative model
(see the Supplemental Material [37]). The ratio of the log-
likelihood of the alternative model and the generative
model can be expressed as

FIG. 2. The language corpus. (a) We generate synthetic docu-
ments for a corpus where each document is a collection of words
from one of three languages or topics: English, French, and
Spanish. Even though the corpus is generated from three topics, if
one of the topics (in this example, English) is much more highly
represented in the corpus than the others, a typical topic-model
algorithm might assign English documents to two topics, while
French and Spanish documents may be assigned to a single topic.
(b) Consider the case where each language has a vocabulary of
20 unique equiprobable words and each document comprises
10 words. For these parameters’ values, the alternative model has
a larger log-likelihood (for PLSA or symmetric LDA) if the
fraction of English documents in the corpus is greater than 0.936.
(c) Performance of the symmetric LDA algorithm, assuming that
K ¼ 3 topics are used to generate the documents in the corpus.
The solid line and points indicate the median change in log-
likelihood of the model inferred by the algorithm, and the shaded
area delimits the 25th and 75th percentiles. Note that, in practice,
the LDA algorithm does not infer the correct generative model
(green curve) prior to the theoretical limit (gray shaded area).
(d) Probability that symmetric LDA infers the correct generative
model when setting K ¼ 3.
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hlogLalti
hlogLtruei

≃ 1 − fU log 2
logNw

; ð1Þ

where Lalt and Ltrue are the likelihoods of the alternative
and generative models, respectively, and fU is the fraction
of documents in the corpus belonging to the underfit-
ted topic.
Even though the generative model has a larger like-

lihood, the ratio on the left-hand side of Eq. (1) can become
arbitrarily close to 1. The reason is that the ratio is
independent of the number of documents in the corpus
and of the length of the documents. Thus, even with an
infinite number of infinitely long documents, the generative
model does not “tower” above other models in the like-
lihood landscape. The consequences of this fact are
important because the number of alternative latent models
that can be defined is extremely large—with a vocabulary
of 1000 words per language, the number of alternative
models is on the order of 10300 (see the Supplemental
Material [37]). Thus, while our analysis shows that asym-
metric LDA [35] assigns the largest likelihood to the
correct generative model regardless of the documents’
lengths, this result is countered by the fact that there
is an extremely large number of incorrect models that
will have likelihoods extremely close to that of the
correct model.
Unlike symmetric LDA, asymmetric LDA does not

assume that the hyperpriors all have the same values. The
assumption of equal hyperpriors results, however, in a
bias of the algorithm toward solutions in which all topics
“want” to contain the same number of documents. While
this bias vanishes for all methods (symmetric and
asymmetric LDA as well as PLSA) if the documents
contain a sufficiently large number of words, the problem
is that the differences in likelihood remain very small,
making the task of finding the global maximum extremely
challenging.

B. Numerical analysis of the performance of
topic-model algorithms on an elementary test case

Although the language corpus is a highly idealized
case, it provides a clear example of the challenges posed
by the existence of many competing models with nearly
identical likelihoods. Indeed, due to the high degeneracy
of the likelihood landscape, standard optimization tech-
niques are unlikely to infer the model with the highest
likelihood even in such simple cases and will likely
infer different models for different optimization runs, as
has been previously reported [11,35]. Moreover, because
topics comprising a small fraction of documents are the
hardest to resolve (see the Supplemental Material,
Sec. 1.6 [37]), standard algorithms will require one to
assume that there is an unrealistically large number of
topics giving rise to the corpus because “extra topics” are

needed in order to “resolve” topics with small fractions of
documents.
We next test these hypotheses numerically on two

synthetic language corpora. We denote the first corpus
as egalitarian. This corpus is generated from ten languages,
and each language is used to generate the same number
of documents. We denote the second corpus as oligarchic.
Again, this corpus is generated from ten languages,
but now, two large topics are used to generate 30% of
the documents each, while the other eight small topics are
used to generate 5% of the documents each. For both
corpora, we use the real-world word frequencies [39] of
the languages.
In order to determine the validity of the models inferred

by the algorithms under study, we calculate both the
accuracy and the reproducibility of the algorithms’ outputs
(Fig. 3). We use a measure of normalized similarity (see
Sec. VII) to compare the inferred model to the generative
model (accuracy) and to compare the inferred models
obtained from different optimization runs of the algorithm
(reproducibility).
Our theoretical analysis shows that PLSA and symmetric

LDA are unable to “detect” the existence of topics
comprising a small fraction of documents. In the synthetic
corpora that we now consider, the fraction of documents in
every topic is outside the critical region. Thus, for these
corpora, the generative model has the greatest likelihood
with both PLSA and symmetric LDA. In order to provide
a best-case scenario for their performances, we run the
standard algorithms [9,10] with the number of topics in the
generative model (as we show in the Supplemental Material
[37], estimating that the number of topics via model
selection would lead to a dramatic overestimation of the
number of topics).
We find that PLSA and the standard optimization

algorithm implemented with LDA (variational inference)
[10] are systematically unable to find the global maximum
of the likelihood landscape. As shown in Fig. 4, these
algorithms have surprisingly low accuracy and reproduc-
ibility, especially when topic sizes are unequal [40]. Taken
together, the results in this section clearly demonstrate that
the approach taken by standard topic-model algorithms for

FIG. 3. Performance of an algorithm on the analysis of
synthetic corpora. We define accuracy as the best-match sim-
ilarity (see Sec. VII) among the fitted model and the generative
model. Reproducibility is the similarity among fitted models
obtained in different runs.
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exploring the likelihood landscape is extremely inefficient,
whether one starts from random initial conditions or
by randomly seeding the topics using a sample of
documents (Fig. 4).

IV. A NETWORK APPROACH TO TOPIC
MODELING

One can take a corpus and construct a bipartite network
of words and documents, where a word and document are
connected if the word appears in the document [41]. This
bipartite network can be projected onto a unipartite network
of words by connecting words that coappear in a document
[42]. In the language corpora, separating documents using
distinct languages is as trivial as finding the connected
components of word network. For general corpora, how-
ever, inferring topics will be more difficult because words
will likely be shared by multiple topics.
In order to tackle the greater difficulty in inferring topics

when some words are shared by multiple topics, we
propose a new approach involving four steps, which we
denote as TopicMapping (Fig. 5). As we will see, the first
two steps have the single purpose to denoise the word
network [43].
Step 1: Preprocessing.—Many words in the English

language stem from the same root. Without preprocessing,
words such as “star” and “stars” would be viewed by an
algorithm as distinct, as would different tenses of the same
verb. In order to make the analysis more robust, we start by
preprocessing the documents in a corpus using a stemming
algorithm that replaces words by their stem [45].
Additionally, we remove a standard list of so-called “stop
words,” that is, words such as “the,” “we,” “from,” “to,” and
so on that will not provide useful topic information.
Step 2: Pruning of connections.—We calculate the dot-

product similarity [46] of each pair of words that coappear
in at least one document and then compare it against the
expectation for a null model where words are randomly
shuffled across documents. We find that the distribution of

FIG. 4. Numerical evaluation of algorithm performance. We
generate documents for the corpora according to a two-step
process. First, we assign a language to the document. Next, we
draw with replacement 100 words with the probability corre-
sponding to their frequency in the chosen language. For simplicity,
we use a vocabulary limited to the 1000 most frequently used
words in the language and exclude words that are not unique to the
language. When using LDA and PLSA algorithms, we assume that
we already know the correct number of topics in the corpora.
(a) Illustration of inferred topics using LDA standard optimization
for corpora with the equally and unequally sized topics. Each
“slice” in the pie charts represents the topic inferred by LDA for a
set of documents. Different colors indicate the languages assigned
to the documents in the generative model. In the equal-sized
topics, English and Italian documents are assigned a single topic
and Spanish documents are assigned to two different topics. In the
unequal-sized topics, English and French documents are split into
two topics each, whereas German and Finnish documents are
assigned a single topic, as are Swedish and Spanish documents.
(b) Reproducibility and accuracy of four topic-modeling algo-
rithms for the language corpora. The dashed lines indicate the
expected accuracy when overfitting one language and underfitting
two other languages (top line) or when overfitting two languages
and underfitting four (bottom line). The full lines show median
values, and the shaded regions denote the 25th to 75th percentiles.
LDA (r) and LDA (s) refer, respectively, to random and seeded
initializations for the optimization technique.

FIG. 5. Illustration of the TopicMapping algorithm. Step 1:
Consider a corpus comprising six documents, three in the topic
biology and three in the topic math. We exclude stop words from
those documents and stem words in order to denoise the data. We
then build a network connecting words with weights equal to
their dot-product similarity. Steps 2 and 3: We filter nonsignifi-
cant weights, using a p value of 5%, and we run Infomap [44] to
obtain the community structure of the network. In this case, we
find two clusters and two isolated words (study and research).
Step 4: We refine the word clusters using a topic model: The two
isolated words are now assigned to both topics.
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dot-product similarities of pairs of words for the null
model is well approximated by a Poisson distribution
whose average depends on the frequencies of the words
in the pair (see the Supplemental Material [37]). We set a p
value of 5% for determining whether the co-occurrence of
the pair of words can be explained by the null model and
retain only connections between pairs of words that appear
more frequently than would be expected from the
null model.
Step 3: Clustering of words.—We make the assumption

that topics in the corpus will give rise to communities of
words in the pruned unipartite word network. Under this
assumption, one can use one of the many well-performing
algorithms for community detection reported in the liter-
ature [25,47,48]. We choose here to use the Infomap
algorithm developed by Rosvall and Bergstrom [44].
In contrast to the standard topic-modeling algorithms,
community-detection algorithms determine the number
of communities in the network in an unsupervised manner;
that is, they do not require the user to guess the number of
topics present in the corpus. We take the communities
identified by Infomap as a guess for the number of topics
and word composition of each of the topics used to generate
the corpus.
Step 4: Topic-model estimation.—Because Infomap is an

exclusive clustering algorithm—that is, words can belong
to a single topic—we refine this first guess using one of
the latent topic models that allow for nonexclusivity. For
example, we locally optimize a PLSA-like likelihood in
order to obtain our final estimate of model probabilities (see
the Supplemental Material for more information [37]). One
may potentially refine the estimation of the topic model for
the corpus using asymmetric LDA likelihood optimization
[10] and taking as the initial guess of the parameters the
probabilities found in step 3 or the parameter estimates
obtained with PLSA. In practice, we find that if the topics
are not too heterogeneously distributed, the asymmetric
LDA algorithm converges after only a few iterations, as our
parameter estimation using PLSA is generally very close to
a LDA likelihood maximum.
The numerical results displayed in Fig. 4 demonstrate

that TopicMapping performs perfectly on the language test.
This result comes as no surprise since the words belonging
to different languages will never co-occur in a document,
and thus, the nodes in the word network will organize
into disconnected clusters. Clearly, this neat separation will
not happen in more realistic cases. When projecting the
bipartite network of documents and words onto a unipartite
network of words, we will be throwing away information
contained in the corpus. This projection will create par-
ticular difficulties when considering generic words, that is,
words that appear in all documents regardless of topic, or
words that are used by multiple topics. Generic words are
easily handled by the first two steps of the TopicMapping
pipeline. Words used by multiple topics will either be

assigned to a single topic or be identified as separate
communities by Infomap. However, using PLSA or LDA to
refine model estimation enables us to recover that infor-
mation. Finally, while Infomap is intrinsically stochastic, it
converges to extremely similar solutions upon different
runs [49]; thus, the TopicMapping algorithm yields
extremely reproducible results.

FIG. 6. Creating synthetic corpora using the generative
model. For each document, pðtopicjdocÞ is sampled from a
Dirichlet distribution whose hyperparameters are defined as
αtopic ¼ K × pðtopicÞ × α, where K is the number of topics,
pðtopicÞ is the probability (i.e., the size) of the word topic, and α
is a parameter that tunes how mixed documents are: Smaller
values of α yield a simpler model where documents make use of
fewer topics. We also have a parameter to fix the fraction of
generic words, and we implement a similar method for deciding
pðwordjdocÞ for specific and generic words (see Sec. VII). Once
the latent topic structure is chosen, we create a corpus drawing
words with probabilities given by the mixture of topics.

FIG. 7. Performance of topic-modeling algorithms on synthetic
corpora. We plot the (a) reproducibility and (b) accuracy
of the different algorithms. In all our tests, we generate a corpus
of 1000 documents, of 50 words each, and our vocabulary is
made of 2000 unique equiprobable words. We set the number of
topics K ¼ 20, and we input this number in LDA and PLSA.
“Equally sized” means all the topics have equal probability
pðtopicÞ ¼ 5%, while in the “unequally sized” case, four large
topics have probability 15% each, while the other 16 topics
have probability 2.5%. LDA (s) and LDA (r) refer to seeded
and random initializations for LDA (variational inference). The
plots show the median values as well as the 25th and 75th
percentiles.
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V. RESULTS

We will now systematically test the validity of the
TopicMapping algorithm and compare its performance
against that of standard LDA optimization methods.

A. Synthetic corpora

In order to systematically evaluate the accuracy and
reproducibility of the different algorithms, we must first
develop a validation system. To this end, we implement a
comprehensive generative model based on the assumptions
behind LDA (Fig. 6). Specifically, we generate documents
and assign them topics drawn from a Dirichlet topic
distribution. We tune the difficulty in separating topics
within the corpora by setting (1) the value of a parameter α
that determines both the extent to which documents mix
topics and the extent to which words are significantly used
by different topics and (2) the fraction of words that are
generic, that is, contain no information about the topics
(see Sec. VII).

Figure 7 presents results for a large number of synthetic
corpora. We calculate both accuracy and reproducibility of
the algorithms for several parameters’ values (see also the
Supplemental Material [37]). Our results make it plainly
obvious that LDA has low reproducibility and low accuracy
even for corpora that are generated according to its assumed
generative model. The reason for the low validity of LDA for
these corpora is the same as for the language test: While
the generative model has the highest likelihood if topics
are sufficiently equal in size, the sheer number of overfitting
models is so large, and they can have likelihoods so close to
theglobalmaximum that theoptimization procedure is almost
guaranteed to yield an incorrect estimation of the parameters.

B. Corpus of scientific publications

As a second test, we use a real-world corpus for which
one has a good a priori understanding of the topics.
Specifically, we collect a corpus of 23 838 documents
from Web of Science: Each document contains the title and

(a)

(b)

FIG. 8. (a) Performance of topic-model algorithms on an a prioriwell-characterized corpus of scientific publications. We represent the
topic model inferred by each algorithm as a pie diagram. Each slice of the pie indicates a single topic. Different colors correspond to
different journals, and the area taken by a given journal (color) in a given topic (slice) is proportional to the probability of the
corresponding journal given that topic: pðjournaljtopicÞ ¼ P

doc pðjournaljdocÞ × pðdocjtopicÞ. We identify as topic keywords the most
frequent words for documents inferred to have been generated by the topic. The * symbol indicates that the word shown is the stem of a
number of words [45]. The TopicMapping algorithm is nearly perfect in its ability to identify the source of the publication. The second
and third pies show the performance of standard LDAwhen we use the number of journals as our estimate of the number of topics. As we
find for the synthetic corpora, publications from large journals are split and publications from small journals are merged. The fourth pie
shows the performance of the standard LDA algorithm when we estimate the number of topics using model selection. Small topics are
now resolved, but big topics are split so that each topic is comparable in size. As we learned from the analysis of synthetic corpora, we
find a large decrease in reproducibility. (b) Effect of adding publications from the multidisciplinary journal Science. Many of the
publications in Science are assigned to the same topics as publications from the disciplinary journals. However, some of the publications
in Science are assigned to new topics. The total number of topics found is 19, but only topics with probability bigger than 2% are shown
in the figure (nine topics). In order to validate these results, we present both the keywords identified for each topic and the departments
most highly represented for the affiliations in the author lists of the publications assigned to the topic.
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the abstract of a paper published in one of six top journals
from different disciplines (geology, astronomy, mathemat-
ics, biology, psychology, and economics). Preprocessing
yields 106 143 unique words and approximately 8.7 × 106

connections.
We surmise a generative model in which each journal

defines a topic and in which each document is assigned
exclusively to the topic defined by the journal in which it
was published. We then compare the topics inferred by
symmetric LDA (variational inference) and TopicMapping
with the surmised generative model. It is visually apparent
that TopicMapping has nearly perfect accuracy and repro-
ducibility, whereas standard LDA optimization using the
known number of topics has a significantly poorer perfor-
mance [Fig. 8(a)]. When using held-out likelihood, the
recommended approach for estimating the number of topics
for the LDA algorithm, the results become dramatically
worse. Held-out likelihood maximization for different
numbers of topics estimates that the corpus comprises
20 to 30 topics (see the Supplemental Material [37]). Even
if the estimated number of topics were correct, the validity
of the LDA algorithm would be extremely low, since
reproducibility across runs is only 55%.
In order to further test the validity of these algorithms,

we add 16 688 documents from the multidisciplinary
journal Science [Fig. 8(b)]. Since Science regularly pub-
lishes papers in geology, astronomy, biology, and psychol-
ogy, we expect many of the papers to be assigned to the
topics defined by the disciplinary journals. However,
Science also publishes papers in other disciplines,

including chemistry, physics, and neuroscience; thus, we
predict that new topics will emerge. Indeed, the keywords
for topic 4 are consistent with papers in chemistry and
physics, and those are the departments most highly repre-
sented in the affiliations of the author lists of those papers
[Fig. 8(b)]. Similarly, the keywords for topic 9 are con-
sistent with papers in neuroscience, and the departments
most highly represented in the affiliations of the author lists
of those papers are medicine and neuroscience [Fig. 8(b)].
When considering the likelihood of the estimated

models, TopicMapping yields a slightly larger likelihood
than standard LDA optimization when considering only
models with the same effective number of topics. This
slight improvement is not surprising since overfitting will
yield larger likelihoods. However, the small difference
in likelihood between an algorithm with 0.7 accuracy
and reproducibility and one with 0.92 accuracy and 0.98
reproducibility raises clear theoretical concerns about trust-
ing likelihood as the only measure of performance of an
algorithm. (See the Supplemental Material for a more
detailed discussion of this matter [37].)

C. The English Wikipedia corpus

One of the most valued characteristics of the LDA
algorithm is its relatively low computational demand,
which enables the study of very large corpora. Because
TopicMapping involves an additional step (pruning of
connections) not required by LDA, it is important to
determine whether its computational requirements become
impractical when considering large corpora.

FIG. 9. Topic model of the English Wikipedia corpus obtained with TopicMapping. We showmodel estimates after one single iteration
of LDA refining. Further iterations result in a much greater number of topics and low reproducibility of the results (see the Supplemental
Material, Secs. 1.6 and 10 [37]). We highlight the top five topics by size, which together account for 80% of all documents. Four of the
five topics are very easy to identify. However, the largest topic, which we denote as “general knowledge,” is harder to grasp. However,
fitting of a (sub)topic model to the documents in the general knowledge topic yields a set of (sub)topics that are again quite
straightforward to interpret.
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In order to evaluate computational requirements for
large corpora, we apply TopicMapping to a sample of
the English Wikipedia acquired in May 2013. The whole
English Wikipedia comprises more than 4 × 106 articles,
but most are very short (stubs). We restrict our attention to
those articles with at least five inlinks, five outlinks, and
100 unique words. Additionally, we prune any words that
appear in fewer than 100 articles because these words
may be unusual given names or locations. Our English
Wikipedia corpus comprises 1 294 860 articles and approx-
imately 800 × 106 words (118 599 unique words, after
stemming and removing stop words).
The most time-consuming step in the TopicMapping

pipeline is step 2, the pruning of the connections between
pairs of words. Fortunately, this step can be easily paral-
lelized. Specifically, we use nine threads and assign to each
one a fraction of the total word pairs we had to consider.
Doing so, we are able to construct the pruned network of
words in roughly 12 h using our computing cluster. The next
step, clustering of the words using Infomap, is extremely
fast: Each run of the algorithm takes about 1 h, and we run it
10 times. After that, we run the PLSA estimation algorithm
with a single thread, taking less than 1 day.
Running our English Wikipedia corpus through LDA

turns out to be significantly slower. Thus, we also paral-
lelize the LDA optimization on about 50 threads. This
parallelisation reduces the computing time needed to
complete one iteration of the LDA algorithm to about 1 h.
The results after one single LDA refinement are shown in

Fig. 9. As mentioned above, for this system, the method
finds a very heterogeneous topic distribution, which the
full LDA optimization would change significantly (see
the Supplemental Material [37]). Thus, we decide to show
the results before the refinement and to find the subtopics
of the largest topic, running the algorithm on the subcorpus
of words assigned to it.

VI. CONCLUSIONS

Ten years since its introduction, there has been surpris-
ingly little research on the validity of LDA optimization
algorithms for inferring topic models [35]. Our systematic
analysis clearly demonstrates that current implementations
of LDA have low validity. Moreover, we show that
algorithms developed for community detection in networks
can be modified for topic modeling with remarkable
improvements in validity. Specifically, community-
detection algorithms yield an educated guess of the
parameter values in the latent generative model.
Interestingly, TopicMapping provides only slight improve-
ments in terms of likelihood but yields greatly improved
accuracy and reproducibility.
While topic modeling is likely a new and novel area of

interest for physicists, we believe that physics approaches
hold tremendous potential for advancing our understanding
of topic models and other “big data” algorithms. In

particular, in the area of community detection, a substantial
amount of work has recently been done on stochastic
block models, which, similarly in spirit to LDA, try to fit a
generative model of the network [18,19]. We would not be
surprised if similar techniques would offer new insights
into topic modeling.

VII. METHODS

A. Comparing models

Here, we describe the algorithm for measuring the
similarity between two models p and q. Both topic models
are described by two sets of probability distributions:
pðtopicjdocÞ and pðwordjtopicÞ. Given a document, we
would like to compare two distributions: pðt0jdocÞ and
pðt00jdocÞ. The problem is not trivial because the topics are
not labeled: The numbers we use to identify the topics in
each model are just one of the K! possible permutations of
their labels. Instead, documents have, of course, the same
labels. For this reason, it is easy to quantify the similarity of
topics t0 and t00 from different models, if we look at which
documents are in these topics: We can use Bayes’s theorem
to compute pðdocjt0Þ and qðdocjt00Þ and compare these
two probability distributions. We propose to measure the
distance between pðdocjt0Þ and qðdocjt00Þ as the one-norm
(or Manhattan distance): ∥pðdocjt0Þ − qðdocjt00Þ∥1 ¼P

doc jpðdocjt0Þ − qðdocjt00Þj. Since we are dealing with
probability distributions, ∥p − q∥1 ≤ 2. We can then
define the normalized similarity between topics t0 and t00

as sðt0; t00Þ ¼ 1 − 1
2
∥pðdocjt0Þ − qðdocjt00Þ∥1.

To get a global measure of how similar one model is with
respect to the other, we compare each topic t0 with all topics
t00 and we pick the topic that is most similar to t0. Thus,
the similarity we get best matching model p versus q is :
BMðp → qÞ ¼ P

t0 pðt0Þmaxt00sðt0; t00Þ, where BM stands
for best match and the arrow indicates that each topic in p
looks for the best-matching topic in q. Of course, we can
make this similarity symmetric, averaging the measure
with BMðp ← qÞ ¼ P

t00 qðt00Þmaxt0sðt0; t00Þ : BMðp; qÞ ¼
1
2
½BMðp → qÞ þ BMðp ← qÞ�.
Although this similarity is normalized between 0 and 1,

it does not inform us about how similar the two models
are compared to what we could get with random topic
assignments. For this reason, we also compute the average
similarity BMðp → qsÞ, where we randomly shuffle the
document labels in model q. Our null-model similarity is
then defined as BMrand ¼ 1

2
½BMðp → qsÞ þ BMðps ← qÞ�.

Eventually, we can define our measure of normalized
similarity between the two models as

BMn ¼
BM − BMrand

1 − BMrand
: ð2Þ

An analogous similarity score can be defined for words
using pðwordjtopicÞ instead of pðdocjtopicÞ.
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B. Generating synthetic corpora

The algorithm we use to generate synthetic data sets
relies on the generative model assumed by LDA. First, we
specify the number of documents and the number of words
in each document Ld. For simplicity, we set the same
number of words for each document Ld ¼ L. Next, we set
the number of topics K and the probability distribution of
each topic pðtopicÞ. Finally, we specify the number of
words in our vocabularyNw and the probability distribution
of each word pðwordÞ. For the sake of simplicity, we use
uniform probabilities for pðwordÞ, although the same
model can be used for arbitrary probability distributions.
All these parameters define the size of the corpus; the other
aspect to consider is how mixed documents are across
topics and how mixed topics are across words: This mixing
can be specified by one hyperparameter α, whose use
will be made clear in the following. The algorithm works
in the following steps.
(1) For each document “doc,” we decide the probability

this document will make use of each topic
pðtopicjdocÞ. These probabilities are sampled
from the Dirichlet distribution with parameters
αtopic ¼ K × pðtopicÞ × α. The definition is such
that “topic” will be used in the overall corpus with
probability pðtopicÞ, while the factor K is a nor-
malization that assures that we get αtopic ¼ α for
equiprobable topics. In this particular case, α ¼ 1
means that documents are assigned to topics drawing
the probabilities uniformly at random. (See the
Supplemental Material for more on the Dirichlet
distribution [37].)

(2) For each topic, we need to define a probability
distribution over words: pðwordjtopicÞ. For this
purpose, we first compute pðtopicjwordÞ for each
word, sampling the same Dirichlet distribution as
before [αtopic ¼ K × pðtopicÞ × α]. Second, we
get pðwordjtopicÞ from Bayes’s theorem:
pðwordjtopicÞ ∝ pðtopicjwordÞ × pðwordÞ.

(3) We now have all we need to generate the corpus.
Every “word” in document “doc” can be drawn, first
by selecting “topic” with probability pðtopicjdocÞ
and second by choosing “word” with probabil-
ity pðwordjtopicÞ.

Small values of the parameter α will yield “easy”
corpora where documents are mostly about one single
topic and words are specific to a single topic (Fig. 7).
For simplicity, we keep α constant for all documents
and words. However, it is highly unrealistic that all
words are mostly used in a single topic, since every
realistic corpus contains generic words. To account for
these generic words, we divide the words into two
classes, specific and generic words: For the former class,
we use the same α as above, while for generic words,
we set α ¼ 1. The fraction of generic words is a second
parameter we set.
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