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We report on an extensive characterization of the cracking noise produced by charcoal samples when
dampened with ethanol. We argue that the evaporation of ethanol causes transient and irregularly
distributed internal stresses that promote the fragmentation of the samples and mimic some situations found
in mining processes. The results show that, in general, the most fundamental seismic laws ruling
earthquakes (the Gutenberg-Richter law, the unified scaling law for the recurrence times, Omori’s law, the
productivity law, and Båth’s law) hold under the conditions of the experiment. Some discrepancies were
also identified (a smaller exponent in the Gutenberg-Richter law, a stationary behavior in the aftershock
rates for long times, and a double power-law relationship in the productivity law) and are related to the
different loading conditions. Our results thus corroborate and elucidate the parallel between the seismic
laws and fracture experiments caused by a more complex loading condition that also occurs in natural and
induced seismicity (such as long-term fluid injection and gas-rock outbursts in mining processes).
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Earthquakes and the fracture of materials are phenomena
deeply connected by the crackling noise idea [1,2], in
which systems under slow perturbation respond through
discrete events with a huge variety of sizes. The most
fundamental seismic laws also emerge in laboratory-scale
experiments related to the fracture of materials [3–16] and
have been recently reproduced by numerical discrete
element simulations of porous materials [17,18]. In these
experiments, an external and constant loading is applied to
the material and the system’s response is usually obtained
by recording acoustic emissions. A constant and compres-
sive loading is considered the most suitable analogy to
natural seismicity, since the main stresses underlying
tectonic earthquakes are considered compressive and sta-
tionary [19]. In fact, a very complete parallel between the
acoustic emissions produced by a porous material under
constant (uniaxial) compression and earthquakes was
recently reported by Baró et al. [20]. However, there exist
other important situations related to natural and induced
seismicity that do not fit the previous conditions. This is
the case with seismic events produced by long-term fluid
injection [21,22] and gas-rock outbursts caused by the
release of gas, which is common and represents a serious
threat in coal mining [23].
In these situations (where the loading is internal,

transient, and irregular), a complete parallel between the
cracking noise of materials and the fundamental seismic
laws has not been established yet, despite considerable
interest in mining processes. Here, we design a simple
experiment that captures the previous features. Specifically,
we study the acoustic emissions of charcoal samples
damped with ethanol. At room temperature, we observe
that the ethanol is absorbed through the pores of the

samples and soon evaporates, creating different and irregu-
larly distributed internal stresses that promote the fragmen-
tation of the samples and somehow mimic the situations
found in mining. We show that these acoustic events fulfill
the Gutenberg-Richter law [24–27] (with a power-law
exponent smaller than those reported for earthquakes)
and the unified scaling law for the recurrence times
between events [28–33] (with parameters very close to
those reported for small mine-induced seismicity [22]). We
also characterize the sequence of aftershocks and fore-
shocks, where the Omori decay [34–36] is observed to hold
only for short times (∼6 sec), from which these rates
display a stationary behavior. Still on the aftershock
sequences, we investigate the productivity law [37], where
a double power-law relationship between the number of
aftershocks and the energy of the triggering mainshock is
found (the first power-law exponent is much smaller than
those reported for earthquakes, while the second is in the
range of earthquakes). We also find that the relative
difference in energy magnitude between the mainshock
and its largest aftershock approaches the value of 1.2 as
the mainshock energy increases (that is, an approximate
quantitative agreement with Båth’s law [38]). Thus, in
general, we verify that the fundamental seismic laws hold in
a fracture experiment caused by an internal, nonstationary,
and irregular loading; however, our results also reveal
some significant differences (a smaller exponent in the
Gutenberg-Richter law, a stationary behavior in the after-
shock rates for long times, and a double power-law
relationship in the productivity law), which we attribute
to the different loading conditions.
In the experiment, charcoal samples [Fig. 1(a)] for

domestic use (∼200 g), made of Eucalyptus sp., are
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dampened with ∼30 ml of ethanol (for domestic use,
hydrated with 7% water), and most of it is absorbed
through the pores of the samples. The results we report
are based on six samples of about the same size. After
∼5 min, the samples start to produce a cracking noise that
is recorded by a condenser microphone (Shure Microflex
MX202W/N) positioned ∼20 cm from the samples with a
sampling rate of 48 kHz. The samples emit sound for
∼30 min and during the processes they also crack, ending
up very fragmented [Fig. 1(b)]. Figure 1(c) shows the
normalized sound amplitudes (that is, the original ampli-
tudes divided by the aggregated standard deviation)
AðtÞ recorded during this process. Notice that the sound
emissions occur in discrete events with different magni-
tudes. The normalized energy associated with an event i is
evaluated (analogously to other fracture experiments) via

Ei ¼
R tendi
tinii

IðtÞdt, where IðtÞ ¼ ½A2ðtÞ�=fmax½A2ðtÞ�g and
tinii (tendi) represents the start (end) time of the event. The
value of tinii is chosen as the time for which IðtÞ initially
exceeds a threshold Imin, whereas tendi represents the time
for which IðtÞ stays below Imin for more thanΔt in seconds.
All results presented here were obtained with Imin ¼ 10−5

and Δt ¼ 0.1; however, different values for these param-
eters (we have tested with Imin from 10−5 to 6 × 10−4 and
Δt from 0.025 to 0.5) do not change our results. The
location time associated with an event i is defined as
ti ¼ ðtendi þ tiniiÞ=2. We have verified that the rate of
activity rðtÞ (number of events per minute) displays an
approximate power-law decay in the beginning of
the process followed by a nearly stationary behavior

[Fig. 1(d)]. In our analysis, we have dropped out the 5%
initial and final events in order to keep the activity rates
nearly stationary (see Fig. S1 in the Supplemental
Material [40]).
We start by evaluating the probability distribution for the

energies E. Figure 2(a) shows this distribution for one of
the samples, where it exhibits a remarkable power-law
behavior compatible with the Gutenberg-Richter law, that
is, PðEÞ ∼ 1=Eβ, over several decades. Figure 2(b) shows
the values of β estimated via the maximum likelihood
method for different low energy cutoffs E�. We note that β
is quite stable over E�. In order to assign a characteristic
exponent (β̄) to each sample, we have evaluated the average
of β over E�. The six samples yield values for β̄ in the range
[1.27–1.33], which are smaller than the β ≈ 1.67 observed
for earthquakes [24–27] and in the Baró et al. [20]
experiment (β ≈ 1.40).
Another important aspect of earthquakes is related to

the time intervals τ between events above a lower bound
energy Emin (also called recurrence or waiting times). Bak
et al. [28] have proposed that after accounting for the
spatial location of the events, the distributions of τ collapse
onto a single curve. Corral [29–31] has argued that the
occurrence of earthquakes differs from region to region and
has proposed an extension to the Bak et al. procedure by
including the local rates of seismic activities rxy in the
scaling operation. Thus, the distributions of τ become
self-similar; PðτÞ ¼ rxyfðrxyτÞ, where fðxÞ is a scaling
function. When rxy is time dependent, fðxÞ exhibits
different power-law regimes that are almost universal
across several different seismic regions, whereas for rxy
nearly stationary, fðxÞ is usually adjusted by a gamma
distribution fðxÞ ∝ xγ−1 expð−x=bÞ, where γ and b are
fitting parameters. In fact, as proposed by Saichev and
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FIG. 1 (color online). Schematic description of the experiment.
Panels (a) and (b) show pictures of a sample (sample no. 2)
immediately before and at the end of the acoustic emissions (see
Ref. [39] for a video of this process and a selection of large
events). In (b), we note several fissures caused by the cracking
process. Panel (c) shows the normalized sound amplitudes AðtÞ
recorded during this process. Panel (d) shows that the rate of
activity rðtÞ (number of events per minute) displays an initial
power-law decay [rðtÞ ∼ t−0.6�0.1, for t < 1 min] followed by a
nearly stationary behavior with average hri ¼ 100� 5 (see also
Fig. S1 [40]).
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FIG. 2 (color online). The Gutenberg-Richter law. Panel
(a) shows the probability distribution of the energies E
using data from one experiment (sample no. 2). The dashed
line represents a power-law decay where PðEÞ ∼ 1=Eβ̄ with
β̄ ¼ 1.30. Panel (b) shows the values of the power-law exponents
β obtained via the maximum likelihood method as a function of a
lower energy cutoff E�, that is, considering only events with
E > E�. The error bars are 95% bootstrap confidence intervals.
The value of β̄ is the weighted average of β over E�, where the
weights are chosen to be inversely proportional to the lengths of
the confidence intervals. The results for other samples are very
similar (see Figs. S2 and S3 [40]).
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Sornette [32], this behavior is an emergent property of
aftershock superposition that holds in real seismicity under
certain conditions [33]. Figure 3(a) shows the distributions
of τ obtained from one of the samples and considering
several values of Emin, where it is clear that PðτÞ depends
on Emin. Figure 3(b) shows the same distributions (for
all samples) rescaled by the mean rates of activity hri. We
observe a good collapse of the distributions and that the
gamma distribution is a reasonable fit to the average
behavior with γ¼0.69�0.08 and b¼1.50�0.12. These
values are very close to those reported for earthquakes
(γ ¼ 0.67� 0.05 and b ¼ 1.58� 0.15 [30]) and small
mine-induced seismicity (γ ¼ 0.74� 0.02 and b ¼ 1.35�
0.06 [22])—see also Refs. [7,10–12].
We now focus on quantifying Omori’s law in our data.

Omori’s law [34–36] establishes that the number of after-
shocks per unit of time, RaðtmsÞ, decays as a power-law
function of the elapsed time since the mainshock, tms,
that is, RaðtmsÞ ∼ 1=tpms. The value of p for earthquakes
differs from one catalog to another (probably due to
different tectonic conditions), usually lying in the range
[0.9–1.5] [34]; its value also depends on the magnitude of
the mainshock [36]. In fracture experiments, Hirata [3]
showed (for basalt) that the value of p decreases during
the fracturing process and Baró et al. [20] reported a
quite stable Omori decay (about six decades) with
p ¼ 0.75� 0.10. In our case, we define the mainshock
events as those with energy Ems in the range ½10j–10jþ1�
(with j ¼ −4;−3;…; 2) and a sequence of aftershocks is
the events following the mainshock until another main-
shock event is found. We calculate the aftershock rates
RaðtmsÞ as a function of the elapsed time since the
mainshock, tms, averaging over all events in the same
energy window. Figure 4(a) shows RaðtmsÞ for all energy

ranges and samples that we analyzed. Our results show
that the Omori decay (of about two decades) with p ¼
0.87� 0.01 only holds for short times (tms ≲ 0.1 min),
from which a stationary behavior is observed for RaðtmsÞ.
This stationary behavior indicates that late aftershocks
occur randomly in time, such as in stochastic processes
with no memory. Very similar results are obtained for the
foreshock rates [Fig. 4(b)].
The productivity law states that the number of after-

shocks NaðEmsÞ triggered by a mainshock of energy Ems is
related to Ems via NaðEmsÞ ∼ Eα

ms, with α ≈ 0.8 for earth-
quakes [37]. In order to quantify this law in our experiment,
we count the number of aftershocks NaðEmsÞ that a
mainshock of energy Ems triggers. Figure 5(a) shows
NaðEmsÞ versus Ems for all aftershock sequences (defined
as in the Omori analysis) in log-log scale, where (despite
the scatter) a significant dependence is observed (Pearson
correlation of ≈0.7). This figure also shows the window
average of these data, from which the average relationship
betweenNaðEmsÞ and Ems becomes clear: for Ems < 10, we
have NaðEmsÞ∼Eα

ms, with α¼0.28�0.01, whereas for
Ems>10, we find another power law with α¼0.81�0.06.
Thus, the first power-law exponent is similar to that reported
by Baró et al. [20] (α ≈ 0.33), while it is smaller than the
ones reported for earthquakes (α ∈ ½0.7–0.9� [37]) and also
for creep in ice single crystals (α ≈ 0.6 [6]). On the other
hand, the second power-law exponent is analogous
to earthquakes, but it should be considered much more
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FIG. 3 (color online). Self-similarity of the recurrence times
and the universal scaling law. Panel (a) shows the probability
distributions of recurrence times τ with E > Emin using data from
one experiment (sample no. 1). Each curve is associated with a
value of Emin, as indicated by the color code. Panel (b) shows the
distributions rescaled by the mean rates of activity hri (gray lines)
using data from all experiments (samples no. 1–6). The black
circles are the window average over all distributions and the
error bars are 95% bootstrap confidence intervals. The solid red
line is the gamma distribution adjusted to the average distribution
via the ordinary least squares method (the parameters are shown
in the plot). Similar results are observed for each sample (see
Figs. S4 and S5 [40]).
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FIG. 4 (color online). Omori’s law for aftershocks and fore-
shocks. Panel (a) shows the number of aftershocks per unit of
time [aftershock rates RaðtmsÞ as function of the time to the
mainshock, tms] employing data from all experiments (samples
no. 1–6). Panel (b) shows the analogue plot for the foreshocks
[foreshock rates RfðtmsÞ versus the time before the mainshock,
tms]. The mainshocks have been defined as events with energy in
the range ½10j–10jþ1�, with j ¼ −4;−3;…; 3. Each gray curve is
an Omori plot for one of the samples with the mainshocks in one
of the energy ranges. Figures S6 and S7 [40] show the results for
each sample, identifying the energy range of the mainshocks. In
both plots, the circles (red for aftershocks and blue for fore-
shocks) are the window average over all curves and the error bars
are 95% bootstrap confidence intervals. We observe power-law
decays (of about two decades) for RaðtmsÞ and RfðtmsÞ for
tms < 0.1 min followed by a plateaulike behavior. The black lines
are power-law functions Rfa;fgðtmsÞ ∼ t−pms , adjusted to the aver-
age behaviors for tms < 0.1 min via the ordinary least squares
method. The power-law exponents p are shown in the plots.
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carefully because it only accounts for about 3% of the data
in a region where the relationship NaðEmsÞ versus Ems
displays a large scatter.
Still on the aftershock sequences, we address Båth’s law

[38], which states that the relative difference in energy
magnitude (that is, logE) between the mainshock and its
largest aftershock is (on average) close to 1.2, regardless of
the mainshock magnitude. To do so, we calculate the
relative difference in energy magnitude between a main-
shock and its largest aftershock (ΔM ¼ logEms − logEla,
where Ela is the energy of the largest aftershock) as a
function of the mainshock energy Ems. Figure 5(b) shows
the average (over all samples) of this relative magnitude
hΔMi as a function of Ems. We note that hΔMi is
systematically smaller than 1.2 for small values of
Ems; however, ΔM approaches a constant plateau (for
Ems ∼ 10−1) as the mainshock energy Ems increases.
This plateau is statistically indistinguishable from Båth’s
law predictions. To our knowledge, this is the first time that
this law has been studied for acoustic emissions experi-
ments. The epidemic type aftershock sequence model
presents a similar behavior for hΔMi [38] and only for
Ems ∼ 104 (0.8 < β < 1.0 in the model) does hΔMi ≈ 1.2.
Empirical observations of Båth’s law for earthquakes
usually report large fluctuations for ΔM estimated from
individual aftershock sequences [41]. Furthermore, aver-
aged values of ΔM also show deviations of the Båth
predictions for Ems ≲ 104 [42], which are associated with

lower magnitude cutoffs in earthquake catalogs—a situa-
tion that cannot be ruled out in our experiment.
We have thus presented an extensive characterization of

the acoustic emissions of charcoal samples dampened with
ethanol, aiming to establish a parallel between seismic
laws and a fracture experiment where the loading (caused
by the absorption and evaporation of ethanol) is internal,
transient, and irregular. We have found that the most
fundamental seismic laws are, in general, valid in our
experiments. However, some discrepancies with the case of
earthquakes and fracture experiments under constant and
external loading were also observed, nominally, a smaller
Gutenberg-Richter exponent, a stationary behavior in the
aftershock and foreshock rates for long times, and a double
power-law relationship in the productivity law. We believe
that the main cause of these discrepancies is the different
loading conditions in our experiment. The internal stresses
are irregularly distributed across the samples and may
create several cracking sites acting approximately inde-
pendently. This possibility partially explains the observed
discrepancies: simultaneous events yield large values of
energy, which contribute to a longer tail in the energy
distribution and to a small power-law exponent; cracking
sites operating independently also corroborate with the
aleatory behavior observed over long times in the after-
shock or foreshock rates. The Omori decay is also shorter
for large values of the mainshock energies (Fig. S6 [40]).
Finally, the crossover behavior observed for large values of
mainshock energies in the productivity law can result from
a superposition of mainshock events. Another possibility is
that the hydrated ethanol may promote environmentally
assisted crack growth (stress corrosion) that also leads to
acoustic emissions. We find it very hard to directly verify
these possibilities; however, stress corrosion usually hap-
pens at longer time scales (compared with our experiment),
and would produce a small contribution to the acoustic
events. We further believe that the simplicity of our
experiment may trigger direct investigations related to
previous discussions as well as a study of different solvents,
sample sizes, and charcoal materials.
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