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In the modeling, monitoring, and control of complex networks, a fundamental problem concerns the
comprehensive determination of the state of the system from limited measurements. Using power grids as
example networks, we show that this problem leads to a new type of percolation transition, here termed a
network observability transition, which we solve analytically for the configuration model. We also
demonstrate a dual role of the network’s community structure, which both facilitates optimal measure-
ment placement and renders the networks substantially more sensitive to ‘“‘observability attacks.” Aside
from their immediate implications for the development of smart grids, these results provide insights into
decentralized biological, social, and technological networks.
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Like other dynamical systems, a network is observable if
its state can be determined from the given set of measure-
ments, with observability depending on both the number
and the placement of the measurements [1]. This concept is
important for a range of questions, including the identifi-
cation of therapeutic interventions in intracellular net-
works, modeling and forecasting in social networks, web
crawling, monitoring and management of ecological net-
works, and control of power-grid networks [2]. Because
measurements are inherently limited by cost and physical
considerations, a question of interest concerns the identi-
fication of the optimal set of measurement points—e.g.,
sensors—with adequate redundancy that allow complete or
(prespecified) partial observability of the network.

In a power-grid network, the state of the system can be
defined as the (complex) voltage at all nodes. Such a state
can, in principle, be determined by phasor measurement
units (PMUs) [3], which are sensor devices that measure
the voltage and line currents at the corresponding node in
real time. Therefore, a PMU placed on a node makes both
the node and (given the relation between current and
voltage) all of its first neighbors observable—i.e., the states
of those nodes are completely determined. If any of the
neighboring nodes is a zero-injection node (i.e., without
consumption or generation of power), then a corresponding
second neighbor may also be observable, and so on [4]. In
either case, the problem of identifying the observable
nodes and the observability of the network itself is thus
reduced to a purely topological one.

The observability of power-grid networks is a timely and
broadly significant problem, which is also representative of
many others. Technologies that allow real-time wide-area
monitoring of the network are an integral part of the
next generation of power grids—the so-called smart grids
[5,6]—and PMUs are a central aspect of these technolo-
gies. It is believed, for example, that PMU information
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along with appropriate response could have prevented
major recent blackouts [7]. While the technology under-
lying PMUs is well established, the high cost of required
infrastructure, installation, and operation continues to limit
the number of such units that can be installed in a given
power grid. Accordingly, significant recent research has
been pursued in connection with PMU placement under
various constraints for incomplete, complete, and redun-
dant observability [3]. However, the fundamental question
of how the observability of the network relates to its
structure remains underexplored.

In this Letter, we show that the random placement of
PMUs leads to a new type of percolation transition [8]—a
network observability transition. This transition character-
izes the emergence of macroscopic observable islands as
the number of measurement nodes is increased. Using the
generating function formalism [9], we derive the exact
analytical solution describing the size of the network’s
largest observable component (LOC). We study its depen-
dence on the network structure to show, in particular, how
the transition threshold decreases as a function of both
average degree and degree variance. We then consider
the optimal placement of PMUs, a problem of practical
interest that has been hindered because no fast, determi-
nistic algorithms currently exist to address large networks.
Taking advantage of the community structure of real sys-
tems, we introduce a community-based approach in which
the network is judiciously partitioned into smaller, largely
independent components that can be solved exactly. Our
efficient approach allows us to address for the first time
very large networks, including the largest interconnection
of the North America power grid—a 56 892-node network.
We show, however, that community structure can also
make the network more sensitive to the deliberate disabling
of PMUs, in that a surprisingly small attack can separate
the system into very small observable islands. This adds a
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new dimension to existing research on the network
vulnerability of power-grid systems [10,11].

We first consider random PMU placement on networks
generated using the configuration model for a given degree
distribution P(k) [12]. All nodes in the network are
assumed to have a common probability ¢ of hosting a
PMU. The observable nodes are classified into directly
observable (hosting a PMU) and indirectly observable
(neighboring a node with a PMU) [13]. To determine the
LOC size as ¢ increases, we calculate the probability that a
randomly selected observable node i is not connected to
the LOC via a randomly selected edge e;;. This probability
is denoted u if node i is directly observable and s if neither
i nor j is directly observable. To proceed, we use the
generating function Gy(x) = ¥, P(k)x*, associated with
the degree distribution, and the generating function
Gi(x) = G{(x)/G}(1), which describes the probability g,
that, by following a randomly selected edge, one reaches a
node with € other edges (i.e., € excess edges) [14].

Self-consistent equations for the probabilities s and u can
be derived as follows. Starting with s, there are two inde-
pendent cases in which node i is not connected to the LOC
via arandomly selected edge e;; [Fig. 1(a)]. In the first case,
node j is not observable, which occurs with probability
G (1 — ¢). In the second case, node j is observable (i.e.,
n = 1 excess neighbors of j are directly observable) and
hence the probability that an excess neighbor of node j will
not be connected to the LOC is ¢ G, (u) if this neighbor is
directly observable and (1 — ¢)s if it is not [Fig. 1(a),
orange and green sub-boxes]. Accounting for all possible
degrees of node j and values of n, the latter case occurs
with probability 33, g¢ X\ ()[PG1)]'[(1 = ¢)s]".
Combining both cases, we obtain the final expression for s:

s=G(1 = ¢) +Gi[¥(s,u; ¢)] = Gi[(1 = $)s], (D)

where V(s, u; d) = ¢G,(u) + (1 — ¢p)s corresponds to
the probability that one indirectly observable node is not
connected to the LOC via a specific edge.

To derive a corresponding equation for u, we again split
the problem into two cases [Fig. 1(b)]. In the first case,

s, case 2

(a) s,casel (b) u, case 1

u, case 2

FIG. 1 (color). Diagram for the self-consistent equations of
(a) the probability s and (b) the probability u that an observable
node i (red circle) is not connected to the LOC through a specific
edge e¢;; (red line). The nodes are either not observable (open
circles) or observable (solid circles), where green rings mark
directly observable nodes.

node j is directly observable but not part of the LOC, which
occurs with probability ¢ G (u). In the second case, node j
is indirectly observable but not connected to the LOC via
any of its excess edges, and this occurs with probability
(1 — @)G[¥(s, u; ¢)]. Combining these two cases, we
arrive at the final expression for u:

u=¢G(u) + (1 — ¢)G,[¥(s, u; $)]. ()

Together, the self-consistent equations [(1) and (2)] pro-
vide all the information needed to determine s and u.

With u and s in hand, we now calculate the probability
that a randomly selected node i is part of the LOC. If this
node is directly observable, which occurs with probability
¢, this probability is Y5>, P(k)(1 — u*) = [1 — Go(u)].
This expression has the same form as for ordinary site
percolation [15], but here u is functionally different. On
the other hand, we also have to account for indirectly
observable nodes. If node i is not directly observable,
which occurs with probability 1 — ¢, this node is observ-
able only if m = 1 of its neighbors are directly observable.
Thus, the probability that node i is part of the LOC is
1 — G,(u)"s*™, where the term G,(u)" accounts for
the m directly observable neighbors and s~ accounts
for the k — m other neighbors of i. Considering all possible
degrees k of node i and all possible values of m,
the probability that this node is part of the LOC is
S PO (5" (1= ¢ [1= G, (u)"s¥ ], which
can be rewritten as 1 — Go[V(s, u; p)] — Go(1 — @) +
Go[(1 — ¢)s]. Combining the two cases, we obtain that
the normalized size of the LOC is

§=1-¢Gou) = (1 = PG V(s, u; $)]
+ Go(l = @) = Go[(1 = ¢)s]y. 3)

This result is in excellent agreement with numerical simu-
lations, as shown in Fig. 2(a) for configuration-model net-
works with the degree distributions from a selection of real
power grids.

In particular, for a given degree distribution, and hence
Gy and Gy, there is a threshold ¢, at which S becomes
nonzero. This percolation threshold is given by

(1-¢)Gi(1 - ¢)
Gl -1

[1-¢Gi(1) = (1 = )G (1)*]= 1,
4

which can be derived directly as the smallest ¢ at which
Egs. (1) and (2) hold for s and u smaller than 1. It follows
immediately from this expression that the threshold ¢ is
strictly positive unless G7(1) (and hence the second
moment of the degree distribution) diverges. In power
grids, however, the degree distribution is relatively homo-
geneous, meaning that an observability transition will
occur at a nonzero value of the threshold ¢, ; nevertheless,
¢, < 1 for the degree distributions we consider. This is
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FIG. 2 (color). Network observability transitions. (a) LOC size
as a function of ¢ in networks with the degree distributions of
the power grids of Germany (red), Europe (green), Spain (blue),
and Eastern North America (black) [11,21]. The continuous lines
correspond to our analytical predictions, and the symbols to an
average over ten 10%-node random networks for ten independent
random PMU placements each. The inset shows a magnification
around the transitions, with the predicted thresholds ¢, indicated
by arrows. (b) Dependence of ¢, on (k) and o for networks (in
the thermodynamic limit) with Gamma degree distributions,
where the curves indicate equispaced isolines of ¢. and the
symbols indicate the ((k), o) positions of the corresponding
networks in (a).

emphasized in the inset of Fig. 2(a), where the values of ¢,
predicted in Eq. (4) are indicated by the arrows.

The threshold ¢, depends dominantly on the average
degree (k) and the variance of the degree distribution o.
The transition occurs earlier in denser and more heteroge-
neous networks, as illustrated in Fig. 2(b). This diagram
provides a close approximation to the positions of the
transitions for the power grids shown in Fig. 2(a), even
though it was generated using Gamma degree distributions,
which deviate from the approximately exponential
distributions of the power-grid networks. This occurs
because, even though ¢, can in principle depend on higher
moments of the degree distribution through the term
G' (1 — ¢), this dependence is weak for systems with small
¢.. We can show that for any degree distribution ¢, is
upper bounded by a function ¢ of Gj(1) = U‘zz% that
approaches zero rapidly as G’ (1) increases and, for fixed
G/ (1), is lower bounded by a function ¢, of (k*)/(k) that
decreases as this ratio increases (see the Supplemental
Material [16]).

These results provide insights relevant for real systems,
but also point to other practical considerations concerning

the observability of (necessarily finite-size and structured)
real power-grid networks. For instance, what is the mini-
mum number (and corresponding optimal placement) of
PMUs needed for complete observability of an entire
network?

This optimization question can be formulated as a binary
integer programming problem [4], which is nevertheless
NP-complete and hence not solvable in large networks.
Metaheuristic optimization methods can be relatively effi-
cient [17], but the reliability of the solutions remains to be
demonstrated. Greedy algorithms [18], on the other hand,
are effective but provide only conservative estimates. A
common feature of these approaches is that they do not
take advantage of the internal organization of real power
grids. To proceed, we introduce an approach that is both
efficient and effective. Specifically, we use modularity
maximization [19] to split the network into communities,
so that the placement problem within each community can
be solved using binary integer programming. We solve the
placement problem within one community, then we update
the set of observable nodes on the whole network and move
to the neighboring community most connected with the
previously solved communities, and so on. This procedure
is repeated by starting from each of the communities; we
select the minimum-PMU solution, although for the sys-
tems considered here we verified that the community
sequence has very small impact on the number of PMUs
(e.g., relative standard deviation <2 X 1074 for the
Eastern North America power grid).

As shown in Table I, benchmarking of this approach
using small networks that can be solved exactly shows
that it offers very good approximations of the optimal
solutions. As a comparison, the application of the greedy
algorithm maximizing at each step the increase in the
fraction of observable nodes (FON) results in a solution
that requires 1000 additional PMUs in the Eastern North
America power grid. For both this system and the PJM
(Pennsylvania—New Jersey—Maryland) power grid, our
approach shows that the resulting minimum number of
PMUs for complete observability corresponds to approxi-
mately 30% of the nodes in the network (Table I), which is

TABLE I. Optimal PMU placement based on community split-
ting, where N is the number of nodes, (k) is the average degree,
Q is the modularity, N is the number of communities, Np is the
minimum number of PMUs estimated from the community
structure, N;pt is the exact minimum number (only computable
for the small IEEE test systems), and N3 is the greedy optimal
solution.

Powergrid N (k) Q N Np NP N§

IEEE118 118 316 072 8 32 32 36
IEEE300 300 273 0.83 14 89 87 96
PIM 14077 260 095 52 4246 4493
Eastern 56892 252 097 96 17216 18216
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comparable to previous estimates and exact calculations
on small networks available in the literature [20].

Interestingly, an abrupt (albeit smooth) transition of the
LOC size also occurs for real networks and even if we
limit the random PMU placement to the optimal set
(i.e., the solution set of the optimal placement problem),
as illustrated in Fig. 3(a) (continuous red line). The FON,
in contrast, grows approximately linearly as the fraction
of directly observed nodes increases from zero (dot-
dashed red line). However, we can cause both the LOC
size and the FON to grow sharply from the beginning by
changing the placement sequence [Fig. 3(a), green and
blue lines, respectively]. Using optimal PMU placement
on the 2010 Eastern North America power grid and data
on the planned upgrades of the network until 2020 [21],
we also demonstrate that both the LOC size and the FON
are rather robust against the evolution of the network
[Fig. 3(b)]. Even after nearly 10% of the nodes have
been removed, added, or rewired, neither the LOC size
nor the FON decreases (and they in fact increase) relative
to the number of nodes in the initial network. (See the
Supplemental Material [16] for an analogous conclusion
when considering the impact of random edge rewiring).
This suggests that an initially optimal (hence, minimally
redundant) placement of PMUs remains effective as the
network evolves.

However, this does not mean that the network is robust
against intentional ‘‘observability attacks,” which we
define as the deliberate disabling of PMUs (rather than of
power-grid nodes themselves). In fact, while the FON
remains large upon a sequential inactivation of PMUs
that maximizes reduction of the FON at each step, the
LOC size decreases rapidly [Fig. 3(c), blue lines].
Moreover, this decrease is significantly faster if we attack
the LOC by targeting intercommunity PMUs, effectively
breaking the LOC into observable islands defined by the
network community structure [Fig. 3(c), green lines].
Ironically, the same network property that facilitates
identification of optimal PMU placement—community

structure—makes the network vulnerable to observability
attacks.

We suggest that similar analysis can also be useful for
other networked systems, such as traffic monitoring in
diverse networks and network discovery. For example, in
content-based network crawling, the initial nodes in the
crawling problem play the role of directly observable
nodes, and the emergence of a LOC indicates that a frac-
tion of the nodes will be visited from multiple initial nodes.
These problems invoke the notion of depth-L observability,
in which the direct observation of a node can make all
neighbors within distance L indirectly observable. While
here we have focused on depth-1 observability, which is
the most relevant for power-grid networks, our analysis
can be extended to higher observability depths (see the
Supplemental Material [16] for a depth-2 example). These
concepts can also be extended to systems in which observ-
ability depends on additional network structural properties,
as in the case of metabolic networks (see the Supplemental
Material [16]). Therefore, like other percolation processes
studied previously [8,9,12] and recently [22-24] on net-
works, network observability transitions have implications
for a wide range of systems.

Network observability is challenging in part because
networks represent distributed dynamical systems, whose
states cannot be assessed from single measurement points.
However, randomness, long-range connections, and the
consequent small node-to-node distances common to
many real networks facilitate observability as they signifi-
cantly reduce the necessary number of directly observable
nodes. This underlies the finite but surprisingly small
threshold for the observability transitions identified here
even for fairly sparse and homogeneous networks. In in-
frastructure networks, wide-area observability and moni-
toring is necessary for modernization of the systems’
operation [20]. Yet, reliance on observability comes at
the risk of making the network vulnerable to a new form
of attack, in which the deliberate disabling of a relatively
small number of sensors may render the network
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FIG. 3 (color).

Observability on the largest available power grid (Eastern North America). (a) Complete and incomplete observ-

ability: LOC size and FON for random PMU placement (red), greedy LOC size optimization (green), and greedy FON optimization
(blue) on the optimal set. The corresponding curves for placement on the full network are shown in gray. (b) Network evolution: LOC
size and FON on the planned networks for the years 2015 and 2020 given the optimal PMU placement on the 2010 network (red). The
black lines represent the net increase in the number of nodes (AN) and the total number of nodes modified by node additions, node
removals, or edge rewires (AN7). To facilitate comparison, all curves are plotted relative to the initial number of nodes.
(c) Observability attack: LOC size and FON for both FON attack (blue) and LOC size attack (green), where the latter takes advantage
of the community structure of the network.
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unobservable, hence potentially nonoperational, even
when it is robust against conventional attacks [25].
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