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We consider the observability model in networks with arbitrary topologies. We introduce a system of coupled
nonlinear equations, valid under the locally treelike ansatz, to describe the size of the largest observable cluster as
a function of the fraction of directly observable nodes present in the network. We perform a systematic analysis
on 95 real-world graphs and compare our theoretical predictions with numerical simulations of the observability
model. Our method provides almost perfect predictions in the majority of the cases, even for networks with very
large values of the clustering coefficient. Potential applications of our theory include the development of efficient
and scalable algorithms for real-time surveillance of social networks, and monitoring of technological networks.
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The state of an entire networked dynamical system can be
determined by monitoring or dominating the states of a limited
number of nodes in the network [1]. A power-grid network
can be observed in real time by placing phasor measurement
units to a selection of nodes in the network [2]. Routing
tables in mobile ad hoc networks rely on gateway nodes
to form connected dominating sets used as backbones for
communication [3]. Disease outbreaks in urban environments
can be efficiently detected by placing sensors on specific
locations visited by potentially infected individuals [4].

Whereas all these examples markedly differ in their
underlying dynamics, from the structural point of view,
they can all be framed in terms of the so-called network
observability model [2]. In this model, placing an observer on
one node can make the node itself and all its nearest neighbors
observable. Nodes in the network can therefore assume three
different states: (i) directly observable, if hosting an observer;
(ii) indirectly observable, if being the first neighbor of an
observer; or (iii) not observable, otherwise. Observable, either
directly or indirectly, nearest-neighbor nodes form clusters of
connected observable nodes. Thus, structurally speaking, the
network observability model can be thought as an extension
of the more traditional, and much more studied, percolation
model [2,5]. As in percolation, the question of interest in
network observability is how to determine the macroscopic
formation of observable clusters in the network on the
basis of microscopic changes in the state of its individual
nodes.

The observability model has been recently studied in
its simplest formulation where directly observed nodes are
randomly selected [2]. The model has been solved for both
uncorrelated and correlated random network models in the
limit of infinite size [2,6]. As real networks are not mere
realizations of random network models, and their size is clearly
not infinite, the methods deployed in Refs. [2,6] are not directly
applicable to real-world networks. The present Rapid Com-
munication introduces a theoretical approach able to describe
the observability model in real graphs. We introduce a set of
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heuristic equations that takes as input the adjacency matrix
of a network to draw its entire observability phase diagram.
The mathematical framework consists in the formulation of
a belief-propagation or message-passing algorithm [7] in a
similar spirit as recent theoretical methods based on message-
passing algorithms have been used to describe ordinary
percolation transitions in real isolated and/or interdependent
networks [8–12]. We show, through a systematic analysis
of nearly 100 real networks, that the method is able to
reproduce true phase diagrams with extraordinary accuracy,
proving therefore its applicability to a wide range of real
systems.

Here we consider an arbitrary network composed of N

nodes and E edges. Without loss of generality, we assume that
the network has one single connected component. Suppose
that each node has a probability φ to host an observer,
i.e., to be directly observable. Nodes that are connected to
directly observable nodes are, in turn, indirectly observable.
Observable nearest-neighbor nodes form clusters. For φ = 0,
no nodes are observable, hence there are no clusters. For φ = 1,
all nodes are directly observable, and thus they form a single
cluster. At intermediate values of φ, the network can be found
in two different phases: (i) the regime of nonobservability,
where all clusters have microscopic size; and (ii) the phase of
observability, where a single macroscopic cluster, comparable
in size with the entire network, is present. To monitor the
transition between these two phases, one usually relies on
the order parameter P∞, corresponding to the relative size of
the largest observable cluster (LOC). In the limit of infinitely
large networks, P∞ = 0 for φ � φc, and P∞ > 0 for φ > φc,
with φc critical value of the probability φ. In the following,
we describe a mathematical framework, deployed under the
locally treelike approximation, to estimate the relative size of
the LOC as a function of φ.

To proceed, we consider the probability that moving along
the edge i → j , we arrive to the LOC, irrespective of whether
node i is in the LOC or not.1 In particular, we consider
three conditional versions of this probability. We denote them

1Please note that the network is undirected, but, in our mathematical
framework, every edge (i,j ) is considered twice, as i → j and j → i.
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FIG. 1. Schematic illustration of the derivation of the system of
Eqs. (1) [panel (a)], (2) [panel (b)], and (3) [panel (c)]. The different
variables used in the equations are defined depending on the state of
the nodes, here denoted by different shapes and colors (green circle
= directly observable, red diamond = not directly observable, and
gray square = arbitrary).

as ui→j if j is directly observable, as vi→j if j is not
directly observable, and as zi→j if neither i nor j are directly
observable. Working under the locally treelike ansatz, we can
write the following system of coupled equations (Fig. 1):

ui→j = 1 −
∏

q∈Nj \{i}
[1 − φuj→q − (1 − φ)vj→q], (1)

vi→j = 1 −
∏

q∈Nj \{i}
[1 − φuj→q − (1 − φ)zj→q], (2)

and

zi→j = vi→j − (1 − φ)kj −1

⎡
⎣1 −

∏
q∈Nj \{i}

(1 − zj→q)

⎤
⎦. (3)

In the above equations,Nj is the set of all neighbors of node
j , and kj is the degree of node j . We note that kj = |Nj |,
where |X | indicates the size (i.e., number of elements) of
the set X . Equation (1) is derived as follows. If node j is
directly observable, then node j is part of the LOC if at least
one of its neighbors q �= i is part of the largest cluster. This
fact can happen in two ways: (i) with probability φ uj→q ,
if node q is directly observable; and (ii) with probability
(1 − φ) vj→q , if node q is not directly observable. Thus, the
probability that the connection j → q brings to the LOC is
φ uj→q + (1 − φ) vj→q . The right-hand side (rhs) of Eq. (1)
quantifies the probability that at least one of the connections
j → q leads to the LOC, where the treelike ansatz allows us
to consider probabilities associated with the individual edges
as independent variables, hence their product appearing on the
rhs of Eq. (1).

The derivation of Eq. (2) is similar to the one just described
for Eq. (1). We note that we can write

vi→j = 1 −
∑

{sr },r∈Nj \{i}

∏
q∈Nj \{i}

× [φ(1 − uj→q)]sq [(1 − φ)(1 − zj→q)]1−sq . (4)

For a proof of the equivalence between Eqs. (2) and (4), see
Appendix A. The sum on the rhs of Eq. (4) runs over all 2kj −1

possible configurations {sr} for the state (that is directly or not
directly observable) of the neighbors of node j , excluding node
i. For every given configuration, the product appearing inside
the sum is the probability that such a configuration appears,
multiplied by the conditional probability that node j is not
attached to the LOC in this configuration. To be more specific,
the binary variable sq = 1, if node q is directly observable, and
sq = 0, otherwise. The quantity [φ(1 − uj→q)]sq [(1 − φ)(1 −
zj→q)]1−sq is the probability that the connection j → q does
not bring node j to the LOC. Depending on whether node q

is directly observable or not, this probability is either φ(1 −
uj→q) or (1 − φ)(1 − zj→q), respectively.

The expression of zi→j in Eq. (3) can be quantified in
almost the same way as vi→j . We still need to consider the
probabilities that the connection i → j does not bring node i

to LOC, for all possible configurations of neighbors of node
j . The probability associated with each configuration is the
same as that appearing in Eq. (4). The only exception is
the configuration sq = 0, ∀q ∈ Nj \ {i}, which happens with
probability (1 − φ)kj −1, where all neighbors of node j are
not directly observable (thanks to the underlying assumption
that node i is not directly observable when we consider the
conditional probability zi→j ), hence node j is surely not
observable and cannot be part of the LOC. Accounting for
this exception, and using the equivalence between Eqs. (2)
and (4), we finally derive Eq. (3).

We can now rely on Eqs. (1), (2), and (3) to compute
the probability pi that node i is part of the LOC. We start
from the simpler case when node i is directly observable,
which happens with probability φ. We consider the probability
that the connection i → j brings node i to the LOC. This
probability is ui→j , if node j is directly observable, and is
vi→j , if node j is not directly observable. Combining the
contributions from all neighbors of node i, and using again the
locally treelike ansatz, the probability ri that node i is directly
observable, but not part of the LOC is

ri = φ
∏
j∈Ni

[1 − φui→j − (1 − φ)vi→j ]. (5)

If node i is not directly observable, which happens with
probability 1 − φ, it is better to recast the approach used
to compute Eq. (3). We need to consider all possible 2ki

configurations for the neighbors of node i. Again, we have to
account for the special configuration sj = 0, ∀j ∈ Ni , when
node i is surely not observable. The probability ti that node i is
not directly observable, and none of its neighbors is attached
to the LOC is given by

ti = (1 − φ)

⎧⎨
⎩

∑
{sr },r∈Ni

∏
j∈Ni

[φ(1 − ui→j )]sj

× [(1 − φ)(1 − zi→j )]1−sj

+(1 − φ)ki − (1 − φ)ki

∏
j∈Ni

(1 − zi→j )

⎫⎬
⎭.
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FIG. 2. Observability transition in real networks. We compare
results from numerical simulations (gray lines) with the solution of
our theoretical equations (red lines). (a) Analysis of the Internet at
the autonomous system level, as of July 22, 2006 [9]. (b) Analysis of
the scientific collaboration network derived from preprints posted in
the section cond-mat of the arXiv between years 1993 and 2005 [14].

Using the same trick as the one considered to pass from Eq. (4)
to Eq. (2), we rewrite ti as

ti = (1 − φ)

⎧⎨
⎩

∏
j∈Ni

[1 − φui→j − (1 − φ)zi→j ]

+(1 − φ)ki [1 −
∏
j∈Ni

(1 − zi→j )]

⎫⎬
⎭. (6)

Combining the two cases, we derive the probability pi that
node i is part of the LOC as

pi = 1 − φ
∏
j∈Ni

[1 − φui→j − (1 − φ)vi→j ]

−(1 − φ)

⎧⎨
⎩

∏
j∈Ni

[1 − φui→j − (1 − φ)zi→j ]

+(1 − φ)ki [1 −
∏
j∈Ni

(1 − zi→j )]

⎫⎬
⎭. (7)

The relative size of the LOC, predicted in the locally treelike
ansatz, can be finally calculated as

P (th)
∞ = 1

N

N∑
i=1

pi. (8)

For every value of φ, P
(th)
∞ can be numerically estimated by

first solving by iteration the system of Eqs. (1), (2), and (3)
for every directed edge i → j . We can then plug the solution
in the system of Eqs. (7), and estimate every pi . These values
can be finally inserted into Eq. (8) to compute P

(th)
∞ .

In Fig. 2, we present results from the analysis of two
real-world networks. The plots show a comparison of the
observability phase diagram obtained from the solution of our
framework, and the one computed from numerical simulations
of the model. Simulations are performed using a modified
version of the Newman-Ziff algorithm, originally introduced to
simulate ordinary percolation processes in arbitrary topologies
[13]. For every value of φ, we estimate the order parameter
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FIG. 3. Analysis of real networks. We consider 95 real-world
graphs [15,16]. For every network, we compute the discrepancy ε

between the theoretical and numerical estimates of the relative size
of the LOC [Eq. (9)]. (a) For every network, we plot ε as a function
of the average clustering coefficient C. To construct the lines, we
consider seven equally spaced bins for the range of C values. For all
networks falling in a given bin, we compute the median value of ε

(full line), and the lower and upper ends of 90% confidence intervals
(dashed lines). (b) Scatter plot of ε versus the network size N . Lines
are constructed in a similar way as those appearing in panel (a). The
only difference is that we divide the range of N values into six equally
spaced bins on the logarithmic scale.

P
(num)
∞ as the average value over 10 000 independent realiza-

tions of the algorithm. The analysis of Fig. 2 reveals an almost
perfect match between theoretical predictions and results of
numerical simulations.

To test how good our theoretical predictions are, we per-
form a systematic comparison between theory and numerical
simulations on 95 real-world graphs [15]. For a list of all
networks analyzed see [16]. We consider networks of very
different nature (e.g., technological, social, biological), and
heterogeneous in terms of their topological properties (e.g.,
clustering coefficient, size, degree distribution). To quantify
the discrepancy between theoretical predictions and the ground
truth offered by numerical simulations, we use the following
expression [17]:

ε =
∫ 1

0
|P (th)

∞ (φ) − P (num)
∞ (φ)|dφ. (9)

As the results of our analysis reveal, the discrepancy be-
tween theory and numerical simulations is generally very small
(Fig. 3). Besides, we observe only a very weak dependence
of ε on the average clustering coefficient of the network C

[Fig. 3(a)]. Because the theoretical framework is deployed
under the locally treelike ansatz, and C can be interpreted as a
good proxy for the degree of violation of this approximation,
a positive correlation between C and ε is expected. However,
the error committed by our framework to estimate the true
observability diagram is very small even for networks with
extremely large values of the clustering coefficient. This result
is in stark contrast with what was found for the ordinary
site percolation model, where high clustering implies large
differences between ground truth and approaches based on
the locally treelike approximation [11]. We further note that
even for extremely small networks composed of tens of
nodes, theoretical predictions are very accurate. Moreover, the
discrepancy between theory and simulations tends to decrease
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as the size of the network increases [Fig. 3(b)]. This is also
not a surprising result, given that our theoretical framework
is expected to become exact in the limit of (locally treelike)
infinite networks.

Given the continuous nature of the observability phase
transition, in the vicinity of the critical point φc, we can take
a linear approximation of the system of Eqs. (1), (2), and
(3), and rewrite them in matricial form as �u = M[φ�u + (1 −
φ)�v], �v = M[φ�u + (1 − φ)�z], and �z = �v − R(φ)�z. In the above
expressions, �u, �v, and �z are column vectors composed of 2E

components, each corresponding to a directed edge of the
graph. Matrix M is the 2E × 2E nonbacktracking matrix of
the graph, whose generic element is defined as Mi→j,�→r =
δj,�(1 − δi,r ), with δ Kronecker symbol [18,19]. The generic
element of the matrix R(φ) is defined as R

(φ)
i→j,�→r = (1 −

φ)kj −1 Mi→j,�→r . Solving the previous system of linear equa-
tions (see Appendix B), we arrive at the eigenvalue/eigenvector
equation

�z = {[1 − Mφ(1 − φ)(1 − φM)−1M]−1

× (1 − φ)M − R(φ)}�z. (10)

Equation (10) serves to study the linear stability of the trivial
solution �zT = (0, . . . ,0). The critical value φc of the transition
equals the value of φ for which the trivial solution becomes
unstable, and corresponds to the φ value for which the operator
appearing on the rhs of Eq. (10) has a principal eigenvalue
equal to 1. Equation (10) is useful only in a limited number
of cases, as, for example, regular graphs (see Appendix B).
For general networks instead, solving Eq. (10) is not computa-
tionally efficient. This operation requires one to determine the
inverse of several matrices. From a numerical point of view,
it is thus better to rely on a binary search combined with the
numerical solution of the system of nonlinear Eqs. (1), (2),
and (3). We further stress that the determination of the critical
point in the observability transition is not as meaningful as in
the case of percolation. The critical point φc is in fact very
close to zero for almost all networks. Thus, the emergence of
the LOC happens as soon as a very small number of observers
are randomly placed in the system.

Our method to estimate observability phase diagrams is
the first theoretical framework that can be applied to arbitrary
network topologies. Although the method is exact only for
locally treelike infinite networks, its performances are almost
perfect regardless of the size and/or the average clustering
coefficient of the network. In this Rapid Communication, we
considered and solved the ordinary version of the observability
model, where observers are randomly placed on nodes of
the network. We believe, however, that the framework has
the potential to be generalized to arbitrary strategies for
the placement of observers. In this sense, a very important
extension of our formalism could be to study optimal ob-
servability, on the same footing as recent work on optimal
percolation [20–22]. Considering that the optimal solution of
the observability model is formally equivalent to the minimum
(partial) dominating set of a graph [23], such an extension
could represent a very important contribution for research in
several domains, including, among others, biology [24,25] and
social sciences [26,27].
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comments on the early stages of this research. F.R. acknowl-
edges support from the National Science Foundation (CMMI-
1552487) and the U.S. Army Research Office (W911NF-16-1-
0104). Y.Y. was supported by the National Science Foundation
(DMS-1057128).

APPENDIX A: PROOF BY INDUCTION OF EQUATION (4)

In the main text, we used the fact that∏
q∈Q

[1 − φaq − (1 − φ)bq]

=
∑

{sr },r∈Q

∏
q∈Q

[φ(1 − aq)]sq [(1 − φ)(1 − bq)]1−sq . (A1)

Note that Eq. (A1) is a more general version of Eq. (4). We
recall that the sum on the rhs runs over all 2|Q| configurations,
with |Q| number of elements in Q, where the element q in the
set Q can be in an active state, i.e., sq = 1, or in an inactive
state, i.e., sq = 0. These events happen with probability φ and
1 − φ, respectively, providing the proper way to weight the
probability of appearance of every configuration. We provide
here a proof by induction of Eq. (A1). To this end, we first note
that if Q = ∅, then Eq. (A1) is automatically satisfied, being
both sides equal to 1. If |Q| > 0, we hypothesize that

∏
q∈Q\{p}

[1 − φaq − (1 − φ)bq]

=
∑

{sr },r∈Q\{p}

∏
q∈Q\{p}

[φ(1 − aq)]sq [(1 − φ)(1 − bq)]1−sq .

(A2)

The latter equation is the analog of Eq. (A1) for the setQ \ {p}.
We are thus supposing that the equation is valid not for the
entire set Q, but the set minus one its elements. If we factorize
out the contribution of the element p in Eq. (A1), we have

[1 − φap − (1 − φ)bp]
∏

q∈Q\{p}
[1 − φaq − (1 − φ)bq]

= [φ(1 − ap) + (1 − φ)(1 − bp)]
∑

{sr },r∈Q\{p}

×
∏

q∈Q\{p}
[φ(1 − aq)]sq [(1 − φ)(1 − bq)]1−sq .

By virtue of the hypothesis of Eq. (A2), the validity of Eq. (A1)
is obtained by proving that the two extra factors due to the
element p that appear on both sides of the previous equation
are equal. This fact can be trivially shown by rewriting

φ(1 − ap) + (1 − φ)(1 − bp) = 1 − φap − (1 − φ)bp.

APPENDIX B: LINEAR APPROXIMATION

Using the linear approximation
∏
q

(1 − xq) 	 1 −
∑

q

xq,

we can rewrite Eqs. (1), (2), and (3) of the main text,

030301-4



RAPID COMMUNICATIONS

OBSERVABILITY TRANSITION IN REAL NETWORKS PHYSICAL REVIEW E 94, 030301(R) (2016)

respectively, as

�u = M[φ�u + (1 − φ)�v], (B1)

�v = M[φ�u + (1 − φ)�z], (B2)

and

�z = �v − R(φ)�z, (B3)

where R
(φ)
i→j,�→r = (1 − φ)kj −1Mi→j,�→r , and M is the non-

backtracking matrix of the graph.

From Eq. (B1), we obtain

�u = (1 − φ)(1 − φM)−1M �v.

Inserting this expression into Eq. (B2), we have

�v = [1 − Mφ(1 − φ)(1 − φM)−1M]−1(1 − φ)M�z.
Finally, using this expression in Eq. (B3), we obtain Eq. (10).

A special case where Eq. (10) can be simplified is for
regular graphs with valency k, so that M and R(φ) have the
same eigenvectors. We can write the condition for the critical
probability φc as

[1 − φc(1 − φc)(1 − φcμ)−1μ2]−1(1 − φc)μ − (1 − φc)k−1μ = 1,

with μ = k − 1.
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