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Detecting the solution space of vertex cover by mutual determinations and backbones
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To solve the combinatorial optimization problems, especially the minimal Vertex-cover problem with high
efficiency, is a significant task in theoretical computer science and many other subjects. Aiming at detecting
the solution space of Vertex-cover, a new structure named mutual-determination is defined and discovered for
Vertex-cover on general graphs, which results in the emergence of strong correlations among the unfrozen
nodes. Based on the backbones and mutual-determinations with node ranks by leaf removal, we propose a
Mutual-determination and Backbone Evolution Algorithm to achieve the reduced solution graph, which provides a
graphical expression of the solution space of Vertex-cover. By this algorithm, the whole solution space and detailed
structures such as backbones can be obtained strictly when there is no leaf-removal core on the given graph.
Compared with the current algorithms, the Mutual-determination and Backbone Evolution Algorithm performs
as well as the replica symmetry one in a certain interval but has a small gap higher than the replica symmetric
breaking one and has a relatively small error for the exact results. The algorithm with the mutual-determination
provides a new viewpoint to solve Vertex-cover and understand the organizations of the solution spaces, and the
reduced solution graph gives an alternative way to catch detailed information of the ground/steady states.
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I. INTRODUCTION

The minimal vertex-cover problem (Vertex-cover) belongs
to one of Karp’s 21 NP-complete problems [1] and the six basic
NP-complete problems [2,3], and is considered as one of the
classical problems in theoretical computer science. The aim
of this problem is to mark a minimum subset of vertices such
that there are at least one vertex of each edge in the subset.
There are a large number of applications of this problem in
the related real networks, such as immunization strategies in
networks [4] and monitoring of internet traffic [5].

There is a threshold behavior of the minimum vertex-
cover problem on the Erdös-Rényi random graph [6], which
reveals that the typical running time of solving algorithms for
Vertex-cover changes from polynomial to exponential when
the order parameter becomes larger than the Euler number
e [7,8]. This phase transition phenomenon is considered to
have an intrinsic correspondence with the clustering structure
of solution space, which has already been observed in statisti-
cal physics when studying spin glasses [9,10]. Although most
statistical physicists believe that the clustering structure leads
to the failure of replica symmetry, details of the relationship
between searching solutions and the structure are not well
established, and how the clustering structure looks is far from
being clear for most models [11–13]. From an algorithmic
point of view, the solutions’ structure makes a great effect
on the algorithm to find the solutions, which sets barriers
to local searching algorithms and makes the computation
expensive [14,15]. So the features of solutions’ structure
are explored by different approaches. Till now, some typical
structures such as clustering, backbone, backdoor [16], and
frustration [17] have been widely investigated to understand
the structure of solutions more clearly. In particular, Zhou
[17,18] has proposed the long-range frustration structure,
and Krzakala [19] has provided a formal definition as long-
range correlation. The long-range correlation and backbone
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structures are treated as the origin of the replica symmetric
breaking and the high computational complexity. And, based
on the analysis of these typical characteristics of the solution
space, many efficient searching algorithms are proposed to
solve NP-complete problems, such as Belief Propagation and
Survey Propagation [20–22].

In this paper, a mutual-determination structure is proposed
by statistical mechanic approach to investigate the solution
space of the minimum vertex-cover problem. This structure
reflects the feature of the Hamming distance [23,24] among
solutions and describes how tight the correlations among
unfrozen variables are. By this structure, we can detect
the equivalent variables in the solution space [25], i.e.,
the variables which must take the same or the opposite
Boolean values. Furthermore, based on the existence of the
mutual-determination in the solution space of Vertex-cover,
the node ranks of a given graph by the leaf-removal process
are provided to describe the influence orders of leaves
in different levels. Taking advantage of the leaf-removal
ranks and the relationship of mutual-determination with the
backbone and unfrozen variables, we can have a much clearer
understanding of the evolution of the states in the solution
space when a new node is added, and a reduced solution
graph is defined to exactly express the structural information
of the solution (sub-)space. Finally, an algorithm named the
Mutual-determination and Backbone Evolution Algorithm is
proposed by the evolution of the mutual-determinations and
backbones on the reduced solution graph, and some analysis
and numerical experiments are given to verify its efficiency
and adaptability. This algorithm is complete to find the whole
solution space of Vertex-cover when there is no leaf-removal
core on the graph, otherwise an approximated one with a small
error to the exact results.

II. DEFINITION OF MUTUAL-DETERMINATION

A vertex cover on an undirected graph G(N,M) with N

nodes and M edges is a subset S = {i1,i2, . . . ,im} of its nodes
such that every edge has at least one endpoint in S. The
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minimum vertex-cover problem is an optimization problem
to find the minimum size of a vertex cover on a given graph.
Mapped to a spin-glass model, the energy function of the
minimum vertex-cover problem can be written as

E[{σi}] = −
N∑

i=1

σi +
∑

(i,j )∈E(G)

(1 + σi)(1 + σj ), (1)

where E(G) denotes the edge set and (i,j )s are edges in it,
and spin/variable σi = −1 if node i ∈ S (covered) and σi =
1 otherwise. Then, different energy levels are produced by
different assignments or configurations in the terminology of
spin-glass theory. The assignments with the lowest energy are
named solutions/ground states, and the set of all these solutions
achieving the lowest energy (minimum vertex cover) is named
the solution space S.

Backbones [16] and long-range correlations [17,19] are
both the typical structures of solution space of combinatorial
optimization problems, which have been well studied in
algorithmic and statistical analysis. In the solution space S,
spin σi is frozen or called a backbone if it takes the same value
in all solutions; otherwise it is unfrozen. For an unfrozen spin
σi , if its taking some value will influence an infinite number of
other spins [assumed O(N ) with the total number of N spins],
its assignment can lead to long-range correlations on distant
nodes [18,19]. Recent research suggests that the complicated
organizations of the solutions of combinatorial optimization
problems, e.g., backbones and long-range correlations, would
be the kernel reason for the algorithmic hardness to find a
solution for large-scale combinatorial optimization problems
with massive constraints and variables [26]. To study the
solution space S of Vertex-cover, we classify the variables
as unfrozen, positively frozen (frozen to +1), and negatively
frozen (frozen to −1) variables.

As a generalization of the backbone and long-range
correlation, a new structure named mutual-determination is
proposed to achieve a better understanding of the solution
space, which can be viewed as an interactive relation of
unfrozen variables in the solution space. If two unfrozen
variables form a mutual-determination, the fixation of the
assignment of any one will result in the fixation of the other in
the solution space. Indeed, it is a special relation implied by
the constraints that two unfrozen variables can be mutually
determined by each other, i.e., if two unfrozen variables
σi,σj form a mutual-determination, then σi + σj = 0, and
these mutual-determination relations can exist only among the
connected nodes on the graph for Vertex-cover, which will be
indicated in the following sections. When two unfrozen nodes
which are connected by a link form a mutual-determination
for Vertex-cover, it means that if one of them is covered, the
other should be uncovered, and there is one and only one that
should be covered for this pair of nodes.

For the well-known Survey Propagation algorithm [21], it
takes advantage of the idea of the backbone and long-range
correlation to gradually eliminate variables and constraints
of the original problem in size, and achieves excellent per-
formance for solving 3-SAT, Vertex-cover, etc. For the special
formulation of mutual-determination structure in Vertex-cover
and that the variables in mutual-determination relations are
equivalent variables, we can use variable substitution to

decrease the number of variables in the original problem
to obtain new algorithmic strategies and have an overall
observation of the solution (sub-)spaces. In the following
sections, we will use the backbones and mutual-determinations
to analyze the solution space of Vertex-cover.

III. REDUCED SOLUTION GRAPH OF VERTEX-COVER

To study the solution space of Vertex-cover, the leaf removal
[29] should be mentioned as inspiration. Given a graph G, a
leaf is a couple of nodes {v,w} in which the first one has
degree 1 and the second one is the only neighbor of it. Here,
node v is a pendant point in the graph, node w acts as a petiole,
and for the same petiole there may be more than one pendant
points connecting it. To define the leaf removal, if the nodes
pair {v,w} is a leaf in graph G, remove the two nodes with the
edges touching them. It is very interesting that the leaf removal
process can destroy all the leaves in graph G and can produce
new leaves for the rest of the graph. In Fig. 1 a leaf removal
process for a simple graph is shown.

By this leaf removal process, we can find that there
exist some graphs which have no leaf-removal core until
the termination of this process, which means that each node
belongs to a leaf at a certain stage of the iterated leaf-removal
process for the graphs. For the Vertex-cover of these graphs,
to obtain the minimum vertex cover for the graph, there is one
and only one node that should be covered for each leaf. By
the results in Ref. [29], a trivial minimum vertex cover can be
obtained by making all the petioles covered with all the pendant
points uncovered in different levels of leaves, e.g., making the
nodes {c,e,g} or {c,e,f } covered and the rest uncovered leads
to minimum vertex covers in Fig. 1. Here, we will take use of
this trivial solution to construct a relationship between/among
nodes in a leaf.

In Fig. 1 the first subgraph (1) is the original graph. For the
first leaf {a,b,c} in this graph which lies in the red rectangle of
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FIG. 1. (Color online) The subgraph (1) is the original graph and
the subgraph (1′) reflects the leaf removal process. For the original
graph (1), nodes {a,b,c} form a multiple leaf with the common petiole
c, and the corresponding edges are marked by black dashed lines;
after removing this leaf, a new leaf with nodes {d,e} appears, and the
corresponding edges are marked by red dashed lines; when leaf {d,e}
is removed, the last new leaf {f,g} is produced, and the corresponding
edge is marked by a green dashed line. The subgraphs (2–4) reveal the
relationship of nodes in the leaves of a graph at different leaf-removal
stages. There are three such leaves in the graph, which are marked
by the red rectangles in subgraph (2–4), and the relations among the
nodes are revealed by the underlying constraints in the leaves for
Vertex-cover.

016112-2



DETECTING THE SOLUTION SPACE OF VERTEX COVER . . . PHYSICAL REVIEW E 86, 016112 (2012)

subgraph (2), there are two pendant points with one petiole, and
to ensure the minimum coverage of the subgraph of {a,b,c},
the only way is to cover the petiole node c and make the two
pendant points {a,b} uncovered. In this case, the node c acts
as a negatively frozen node (backbone), which is marked by a
solid black circle, the nodes a,b act as positively frozen nodes,
which are marked by solid red circles, and the edges connecting
them are marked by dashed ones. For the second leaf {d,e} in
the red rectangle of subgraph (3), there is only one pendant
point d and one petiole e, and to ensure the minimum coverage
of the subgraph of {a,b,c,d,e}, covering any node of {d,e} with
the other one uncovered will make an optimization solution. In
this case, the assignments of σd,σe must be opposite, and they
are mutually determined in the solution space of Vertex-cover,
which is denoted by a double edge and two nodes with different
colors. For the third leaf {g,f } which is similar as the leaf
{d,e}, their relation is also mutually determined. However,
the relation of {g,f } has influence on the leaf {d,e}, which
makes the states of nodes {d,e} changed to be backbones, and
the detailed techniques for this case will be discussed in the
following sections.

Based on the analysis inspired by the example in Fig. 1
and the backbone and mutual-determination structures, we can
construct an expression of the solution space of Vertex-cover
which is named the reduced solution graph R(G) to reveal the
underlying structures by modifying the formations of graph
G. To achieve the reduced solution graph, what we should
do is to identify the backbones and mutual-determinations by
different marks and retain all the unfrozen nodes with edges
among them on a given graph G. To show different minimum
vertex covers of a given graph G by its reduced solution graph
R(G), the positive/negative backbones on it are marked by
solid red/black circles, and double edges connecting unfilled
hollow nodes suggest that the relations between the nodes are
mutual-determinations; the edges connecting the backbones
will be changed to dashed ones, and any mutual-determination
connects two unfrozen nodes with different colors (blue or
green), which cannot take the same value simultaneously;
the edges connecting two unfrozen nodes except mutual-
determinations are retained unchangeably. By the leaf-removal
process and the strong correlation among/between nodes
in the leaves, the mutual-determination can only be in the
pendant point and its petiole for each leaf. When there is no
leaf-removal core for the given graph, each node belongs to
a leaf at a certain stage of the iterated leaf-removal process,
and the role of each node can only be backbone or belong
to some mutual-determination. Then, it can be obtained that
the reduced solution graph can express the solution space
of Vertex-cover strictly, and whether this expression is also
effective for general graphs with leaf-removal cores and how
to obtain the reduced solution graph of Vertex-cover will be
discussed in the following.

In order to have a convenient analysis of the reduced solu-
tion graph, the leaf-removal [29] sequence is very important.
Here, we take advantage of the sequence of the leaf removal
to define the rank of nodes:

Step 1: All the pendant points in the graph are assigned to
sequence order/rank 1, and their neighbors (the petioles) have
rank 2.

Step 2: Remove the leaves with edges connecting them
from the graph. After the first-level leaf removal, all the new
produced pendant points are assigned to rank 3, and their
corresponding petioles have rank 4.

Step 3: Repeat the steps 1–2 and assign increasing ranks
until there are no new leaves produced. If there is still a leaf-
removal core after the above two repeated steps, assign the
nodes in the core with ranks according to their already ranked
neighbors by a gradual increase.

IV. ANALYSIS OF MUTUAL-DETERMINATION IN THE
SOLUTION SPACE OF VERTEX-COVER

In this section, we are concerned with achieving the
reduced solution graph R(G) by determining the states of the
nodes one by one following the leaf-removal sequence/ranks.
This process is fulfilled by a method similar to the cavity
method, and for each node its state is determined by the local
environment of itself. Assuming that we have already obtained
the reduced solution graph R(G) and considering a new node
i connected to a graph G with k edges, the newly produced
graph is denoted by G′, then what we aim for is to determine the
state of node i in G′ and obtain R(G′). For the neighborhood
of node i, there are three kinds of neighbors: positively frozen
ones, negatively frozen ones, and unfrozen ones in R(G).

A. Local evolution of mutual-determinations and backbones

In this subsection, we consider different local environments
of a new node i, and investigate the state determination and
evolution of it with associated nodes. Taking advantage of the
analysis in Ref. [18], we first study the following four cases:

Case A: Only one of its neighbors is positively frozen in G;
some other neighbors are unfrozen nodes which can take spin
value −1 simultaneously.

In case A, energy increase is unavoidable when node i

is added. When σi takes value −1 (covered), its neighbors
of nodes are free to take their spin values in the original
G, and new covers of the new graph G′ come out with the
lowest energy; when σi takes value 1, the positively frozen
neighbor should be changed to an unfrozen node taking −1
now, e.g., adding the node e to the subgraph of {a,b,c,d}
leads to a mutual-determination of {d,e} in Fig. 1, and the
above subgraph in Fig. 3 also shows this process. Then,
mutual-determination of the new added node i with the original
positively frozen node j is formed.

Case B: There are two or more neighbors which are
positively frozen.

In case B, energy increase is unavoidable when node i is
added. To obtain a coverage of the new graph G′ from the
original one G, the new added node i must be covered without
another choice. Then, node i is negatively frozen. (There will
be a supplementary and additional adjustment for this case
in the following case E when the positively frozen neighbors
have some common properties.)

Case C: There is no neighbor which is positively frozen,
but all the unfrozen neighbors can take spin value −1
simultaneously.

In case C, energy increase is avoidable when node i is
added, and the new added node i should be uncovered. When
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σi takes value +1, all the unfrozen neighbors should take
−1 simultaneously. Then, by the mutual-determinations and
coverage of each edge in the reduced solution graph R(G),
that these unfrozen neighbors change to be negatively frozen
will lead a number of associated unfrozen nodes to be frozen.

Case D: There is at least one pair of unfrozen neighbors
that cannot take spin value −1 simultaneously.

In case D, as the two neighbors can not take −1 simulta-
neously, energy increase is inevitable. Then, the new added
variable i should take −1 to ensure the coverage. On the
reduced solution graph R(G′), this incompatibility will lead to
incompatible cycles (like that in the bottom subgraph of Fig. 3)
and make great trouble for the exactness of the local evolution.
However, for the incompatible cycles, making any other node
except i frozen to −1 and the rest unfrozen nodes connected
by alternatively existing double edges will also have the same
effect and ensure the coverage. Thus, in case D freezing
the new added node i to −1 will reduce the whole solution
space to a partial solution subspace, and even make further
incorrectness in adding the sequential nodes. Nevertheless, as
takeing any one to be frozen on the incompatible cycle leads to
a solution subspace with the same size, we have the convenient
way to make i a negative backbone.

By the above analysis, the incompatible cycle in the reduced
solution graph makes a possible inaccurate choice of the
negatively frozen backbone. Thus, the hardness of solving
Vertex-cover mainly stems from the incompatible cycles.
Therefore, the operation in case D may not only reduce the
solution space, but also lead to nonoptimal vertex covers at
later stages.

There exists an interesting entanglement between case A
and case C. In case C, some added node i1 has a positively
frozen state, and its unfrozen neighbors are forced to be frozen
with some associated nodes. In case A, if some new added
node i2 is connected to i1 and forms mutual-determination
with i1 by the rule of case A, the nodes that have been frozen
by i1 should be released to their original unfrozen states. To
fulfill this releasing steps, an additional mark should be sticken
to the node number, e.g., a node (4,7) means that node 4 is
influenced to be frozen by the operation of adding node 7.
Indeed, this freezing influence happens only in case C with

node 7 positively frozen. Then, if the state of node 7 is changed
to be unfrozen by adding a new node in case A, we can release
all the nodes with marks (∗,7) and change the corresponding
numbers to (∗,0), in which 0 means the current state of the node
is unfrozen. This operation is named releasing operation.

For the releasing operation, there is a special case which
should be considered for adding a new node i:

Case E: There are more than two neighbors which are
positively frozen and have the same additional mark, and the
unfrozen neighbors can take spin value −1 simultaneously.
This case is a supplementary and additional adjustment of
case B.

In this case, the current node should form mutual-
determinations with the positively frozen nodes whose ad-
ditional marks are the same, and the releasing operation
is operated for these positively frozen neighbors (a simple
example can be seen in the bottom subgraph of Fig. 7).

B. Some supplementing techniques for the states evolution

In the above cases A–E, there is an important condition
which should be determined frequently, that is, whether the
unfrozen neighbors can take spin value −1 simultaneously
or not. To determine this condition, what we should do is to
consider the freezing influence by fixing all these unfrozen
neighbors to be covered simultaneously, and this operation
may lead to the freezing of a large number of associated
unfrozen nodes. If there is contradiction in this process
(some node k is required to be negatively frozen by the
freezing influence of some unfrozen neighbor i taking −1,
but node k is also required to be positively frozen by another
unfrozen neighbor j taking −1), these unfrozen neighbors
cannot take −1 simultaneously; otherwise they can take −1
simultaneously.

First, a depth-first directed algorithm is used to fix the
unfrozen neighbors and return the contradiction that one node
is required to be different value by two neighbors. In this
process, the state[i] denotes the status of node i and R(G) the
recent reduced solution graph. Furthermore, the state[i] =
−1,0 and 1 denote the node i is covered, undetermined, and
uncovered. The algorithm of depth-first directed is shown as
follows:

algorithm depth-first directed(i,R(G))
begin

if(state[i] = 1)
begin

for(all the unfrozen neighbors j of i in R(G)) do
if(state[j] = 0)

state[j] = −1;
depth-first directed(j,R(G));

else if(state[j] = 1)
return(false);

else
continue;

end
if(state[i] = −1)
begin
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for(all the unfrozen neighbors j of i with Eij = 2 in R(G)) do
if(state[j] = 0)

state[j] = 1;
depth-first directed(j,R(G));

else if(state[j] = −1)
return(false);

else
continue;

end
return(true);

end

With the algorithm above, we can determine whether the unfrozen neighbors of node i can take spin value −1 simultaneously
or not. Now taking i into the R(G), we obtain the algorithm determine(i,R(G)) as follows:

algorithm determine(i,R(G))
begin

initialize b=true and state[i] = 0 for all nodes in R(G);
for(all the unfrozen neighbors j of i in R(G)) do
begin

state[j]=-1;
b=depth-first directed(j,R(G));

end
end

It is easy to see that only all b = true, the unfrozen neighbors
of node i can take spin value −1 simultaneously, otherwise,
there must be contradiction, which makes some b = f alse.

In the releasing operation for case A, to avoid some possible
mistakes, a checking technique should be considered. When
releasing the negatively frozen backbones in the releasing
operations for case A, its local environment should be
considered, and if there are positively frozen neighbors for
the current negatively frozen backbone whose additional mark
is not the same as itself, the releasing process should be stopped
[e.g., the node b in the process of subgraphs (3–4) in Fig. 2].

Be specific to this checking item, after the operations of
case A–D, a rechecking technique should be added: when the
freezing influence and releasing operations of adding a new
node have been done, we should check any of the negatively
frozen backbone whose additional mark is not 0, and if there
is only one positively frozen neighbor for itself, release the
negatively frozen backbone with the only positively frozen
neighbor and the nodes which have the same additional mark
with it [e.g., the node b in the process of subgraphs (4–5) in
Fig. 2].

At last, by the process of above analysis, a complicated
structure-odd cycles on the reduced solution graph could come
into view, which makes conflicts for the relations among the
unfrozen nodes. For the example in Fig. 2, the subgraphs
(1–7) provide the process from the original graph to the
reduced solution graph by adding the nodes one by one using
our techniques above, but unfortunately the unfrozen nodes
b,c,d,e,f,g,h in subgraph (7) form an odd cycle. In the odd
cycle, we find that any node except b taking any value will
force node b to be negatively frozen, and it is an incompatible
cycle. To break this disharmony, the only way is to change the
state of b to be a negative backbone and make corresponding

changes for its neighbors with lower ranks [e.g., the process
from subgraph (7) to (8) in Fig. 2]. This technique is named
odd cycles breaking.

C. Global characteristics of mutual-determinations

In the following, we will have an explicit discussion of
the mutual-determinations and unfrozen nodes structure of
Vertex-cover. As mentioned above, if some node i forms
mutual-determination with a node j , i.e., σi = −1 forces σj

to take +1, correspondingly by the Vertex-cover, we have that
σi = +1 requires σj = −1 to satisfy the coverage. If a node
j forms a mutual-determination chain with some other nodes
j0,j1, . . . ,jk , a possible way is that the edges (j,j0),(j1,j2), . . .
on the reduced solution graph are all double edges, i.e., all these
pairs of nodes form mutual-determinations, which is shown
in the Cycle 2-Compatible Cycle in Fig. 3. When the node
j takes value −1 (covered), the nodes j0,j2, . . . ,j2l , . . . must
take +1 by the mutual-determination relations and coverage of
the edges connecting them, and the nodes j1,j3, . . . ,j2l+1, . . .

must take −1. Therefore, the alternatively existing double
edges on the reduced solution graph lead to the emergence
of the strong correlation for nodes of long distance.

Without confusion, we neglect the backbones in the reduced
solution graph but keep the unfrozen nodes. As we know, there
are almost no local cycles on random graphs and the cycle sizes
on random graphs are of O(log N ). By this characteristic of
random graph, the emergence of the Cycle 2-Compatible Cycle
in Fig. 3 leads to the long-range correlation structure, and
indeed the alternating mutual-determination chain is the only
way to produce the long-range correlation in Vertex-cover.

When the unfrozen neighbors of the new added node i only
have influence range over tree structures, which means that the
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FIG. 2. (Color online) An example for the emergence of odd cycles of unfrozen nodes and the way to break this conflicted cycle. Subgraph
(1) provides the original graph for Vertex-cover; subgraph (2) describes the process of adding the nodes {a,b}, which consists of a procedure of
case A to produce a mutual-determination; subgraph (3) describes the process of adding the nodes {c,d}, which consists of a procedure of case
C to produce positively frozen backbones; subgraphs (4–5) are for adding nodes e and f separately, which consists of the procedure of case A
again, and the checking technique works when adding e and the rechecking technique works when adding f ; subgraphs (6–7) correspond to
the process of adding nodes g,h, which can be followed by case A and C, and the freezing influence works when adding g, and the releasing
operation works when adding h; subgraph (8) is obtained by breaking the odd cycle to obtain the real reduced solution graph, which changes
the node b with lowest rank on the cycle to be negatively frozen.

double edges belonging to different unfrozen neighbors are
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FIG. 3. (Color online) The top subgraph provides the process
of case A to produce the mutual-determination structure, and the
bottom subgraph reveals the formation of the incompatible cycle and
the compatible cycle by mutual-determinations.

cannot propagate their influence to each other, and they can
take −1 simultaneously. Similar to that in a random graph,
as the increasing of the number of nodes and edges by the
strategies of case A–E, the unfrozen nodes with double edges
in the reduced solution graph may connect together and form
cycles and even a giant connected component. Especially, for
random graphs, the cycles connected by unfrozen nodes in
the reduced solution graph must be with size of O(log N ).
Therefore, if the unfrozen nodes connect together to form a
giant connected component [28], some of them taking value
−1 will cause a percolation phenomenon [27] that many
other nodes (O(N )) in this giant connected component will
be forced to be frozen. As a result, the long-range correlation
phenomenon emerges. In the work of Zhou [18], the long-range
correlation of Vertex-cover for random graph appears at c = e.
Indeed, by the literature of statistical mechanics, the existence
of long-range correlation has close connection with the replica
symmetric breaking of the solution space. As the correlation is
formed by mutual-determinations, the long-range correlation
can also provide an explicit explanation of the clustering
phenomenon of solution space.

By the emergency of the long-range correlation nodes, the
local environment of a new added node i becomes much more
complicated. As unfrozen neighbors of the new added node i

can be connected together by other unfrozen nodes, their values
can not be assigned arbitrarily. In Fig. 3 a schematic view of
the compatible and incompatible cycles of unfrozen nodes is
shown. In Cycle 1, the unfrozen nodes k1,k2 are connected by
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unfrozen nodes with alternatively existing double edges, and
it is easy to find that the nodes k1,k2 form a strong correlation
relation and cannot take spin value −1 simultaneously. To
the contrary, in the compatible Cycle 2, though the relation
between j,jm−1 is also strong correlation, they can take spin
value −1 simultaneously by the mutual-determination chain
in Cycle 2.

V. MUTUAL-DETERMINATION AND BACKBONE
EVOLUTION ALGORITHM FOR VERTEX-COVER

In this section, we will introduce an algorithm for solving
Vertex-cover based on cases A–E and the node ranks. By the
analysis in cases A–E, we consider to update the states of the

original graph G(N − 1) after adding a new node i. As the node
states are classified by mutual-determinations and backbones,
we can get an algorithm to find the reduced solution graph
R(G) of Vertex-cover, this algorithm is named the Mutual-
determination and Backbone Evolution Algorithm, shown as
follows:

Let us take G[v] as an induced subgraph of original graph
G by adding node v and Eij = 1/0 represents nodes i and j are
connected/unconnected. Especially, when nodes i and j form
the mutual-determination, we take Eij = 2. backbone[i] =
−1,0 or 1 means the node i is negatively frozen, unfrozen, or
positively frozen node, respectively; root[i] is the additional
mark of node i.

The algorithm of Releasing Operation is shown as follows:

algorithm Releasing(i,G,ROOT )
begin

backbone[i] = 0;
root[i] = 0;
for all neighbor j of i in G with root[j] = ROOT do
begin

if(backbone[j] = −1 and j has at least one positively frozen
neighbor k with root[k] = ROOT ) then

continue;
else do

Releasing(j,G,ROOT );
end

end

The algorithm of Freezing Influence is shown as follows:

algorithm Freezing(i,G)
begin

if(backbone[i] = 1) do
for all unfrozen neighbor j of i in G do

root[j] = root[i];
backbone[j] = −1;
Freezing(j,G);

if(backbone[i] = −1) do
for all unfrozen neighbor j of i in G with Eij = 2 do

root[j] = root[i];
backbone[j] = 1;
Freezing(j,G);

end

Now, we have the algorithm of Mutual-determination and Backbone Evolution Algorithm:

begin
calculate the leaf-removal sequence layer[i] of G;
vertex set v = ∅;
initialize backbone[i] = 0 and root[i] = 0 for all i in G;
for l = 1 to Max(layer[i],1 ≤ i ≤ N) do
begin

for all vertex i with layer[i] = l do
begin

v = v ∪ i;
G = G[v];
calculate num is the number of positively frozen neighbors of i in G
if(num = 1) do
begin

Pos is the positively frozen neighbor of i;
determine(i,R(G ));
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if(all the b in determine algorithm is true) then
Ei,Pos = 2;
Releasing(Pos,G ,root[Pos]);
Rechecking technique and Odd cycles breaking; *Case A*

else do
backbone[i] = −1;
root[i] = i; *Case D*

end
if(num ≥ 2) do
begin

if(all frozen neighbors of i in G have same additional mark) then
determine(i,R(G ));
if(all the b in determine algorithm is true) then
Pos is one of neighbors of i randomly;
Ei,Pos = 2;
for all the neighbors j of i in G do

Releasing(j,G ,root[j]);
Rechecking technique and Odd cycles breaking; *Case E*

else do
backbone[i] = −1;
root[i] = i; *Case B*

end
if(num = 0) do
begin

determine(i,R(G ));
if(all the b in determine algorithm is true) then

backbone[i] = 1;
root[i] = i;
Freezing(i,G ); *Case C*

else do
backbone[i] = −1;
root[i] = i; *Case D*

end
end

end
end

A. Some numerical results of the Mutual-Determination and
Backbone Evolution Algorithm

In this section, some numerical experiments will be
performed to verify the efficiency and performance of the
Mutual-determination and Backbone Evolution Algorithm on
random graphs.

To reflect the solution space structures of Vertex-cover,
the ratios of negatively frozen backbones and positively
frozen backbones are detected by the algorithm, in which
one is monotonely increasing and the other is monotonely
decreasing. In Fig. 4 the ratios of the backbones are shown
by the solid triangles, and the unfrozen nodes have its ratio
with the residual part of 1. Our results on the frozen nodes in
one macroscopic state are higher than that in Ref. [17] mainly
by the freezing influence and case D. Besides, in Fig. 5 the
coverage of the Vertex-cover which is the size of the minimal
vertex-cover is approximated by our algorithm, which is shown
by the blue cycles with error bars and compared with the results
of replica symmetry, replica symmetric breaking theory, and
Survey Propagation. The results on coverage of our algorithm
perform as well as that of replica symmetry when the average

degree c is not very large (at least when c <∼ 6), but still have
a small gap with the results of replica symmetric breaking
theory and Survey Propagation. By the proof of the strictness
of Mutual-determination and Backbone Evolution Algorithm
when c < e in the next section, our numerical results should
be exact ones for the corresponding interval on random
graphs.

As a comparison to the complete algorithm and the exact
coverage, some experiments are made to verify the perfor-
mance of the Mutual-determination and Backbone Evolution
Algorithm which is an incomplete algorithm. In Fig. 6, average
errors of minimal vertex cover between experimental and
exact results are plotted to provide the difference between
the exact results and our results on the coverage, and it is
evident to see that these differences are not very big and have
their scales no more than 0.04 for c = 2,4,6 with increasing
sizes. As numerical experiments by complete algorithms for
Vertex-cover can only be for instances with not very large
scale, our experiments are realized only for N < 160 in Fig. 6.
For finite N there is a small but still nonzero probability that
a graph with a core appears also at c = 2. In that case, the
algorithm would report an error with respect to the exact
algorithm.
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FIG. 4. (Color online) Numerical results by our algorithm of
fraction of positively frozen (red solid cycle) and negatively frozen
(black solid rectangle) nodes with different mean degrees, which are
obtained by 1000 random instances with N = 5000 nodes; fraction
of frozen nodes in one macroscopic state (yellow solid triangle) and
its comparison with results of Ref. [17] (blue line for the fraction in
all macroscopic states and blue dashed line for the fraction in one
macroscopic state).

B. Mutual-Determination and Backbone Evolution Algorithm
with some examples

To detect the reduced solution graph and provide a primary
analysis of efficiency of our algorithm on the leaf-removal
core, we will discuss the Vertex-cover on the complete graphs
and cycles with even number of nodes for inspiration.

For the complete graphs, the process of our algorithm to
obtain the reduced solution graph is rather simple: when the
second node is added with an edge [subgraph (1) in Fig. 7],
the mutual-determination emerges; for the following added
nodes, their local environment satisfies the case D, and they
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FIG. 5. (Color online) Numerical results for Vertex-cover by our
algorithm. The blue cycles with error bar denote the minimal coverage
ratios by our algorithm with N = 5000 and 1000 random instances;
the yellow dashed line and green triangles denote the results of replica
symmetric breaking theory and survey propagation, respectively; the
red line denotes the results by replica symmetry theory; the vertical
dashed line represents mean degree c = e.
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FIG. 6. (Color online) Average error of minimal vertex cover
between experimental and exact results. All results are obtained by
1000 random instances with c = 2, c = 4, and c = 6 with different
sizes N = 20,30, . . . ,150.

can only be negative backbones. This process is shown in
Fig. 7 by a typical graph K5. It is easy to know that for the
complete graph KN there must be N − 1 nodes covered, and
our results of reduced solution graph correspond to a solution
subspace of the Vertex-cover of KN . The whole solution
space possesses N solutions, and by our algorithm we can
obtain two solutions. Therefore, the mutual-determination and
Backbone Evolution Algorithm is an incomplete algorithm
for the solution space, but it may be efficient for finding one
solution of Vertex-cover. Certainly, as analyzed in the above
section, the incompatible cycles of the unfrozen nodes will
bring the intrinsic difficulty for solving and our algorithm
can only obtain some approximated solutions for the original
problem.

Then, the cycles C2N with even number of nodes are
considered. The process of our algorithm to obtain its reduced
solution graph is a regular process: When an odd number of
nodes are added, there are no unfrozen nodes in the reduced
solution graph; when an even number of nodes are added,
the releasing operations should be considered and all the
nodes are unfrozen with double edges/mutual-determinations
alternatively connected together; for the last node, it connects
with two positively frozen nodes which have the same
additional mark 2N − 1, and by the case E the last node
forms mutual-determination with node 2N − 1 and the rest
are released. The whole process is schematically shown in the
lower subgraphs (a − d) in Fig. 7 by a typical graph C4. Thus,
the solution space of C2N can be obtained, and it is easy to
verify that the result is strict by our algorithm.

VI. ANALYSIS OF MUTUAL-DETERMINATION AND
BACKBONE EVOLUTION ALGORITHM FOR

VERTEX-COVER

The Mutual-determination and Backbone Evolution Algo-
rithm aims to obtain the whole solution space, and it is easy
to find that it is an algorithm of polynomial time. As the
Vertex-cover problem is a typical NP-complete problem, this
algorithm cannot be a complete one and will lose its efficiency

016112-9



WEI WEI, RENQUAN ZHANG, BINGHUI GUO, AND ZHIMING ZHENG PHYSICAL REVIEW E 86, 016112 (2012)

FIG. 7. (Color online) The top subgraphs provide the process of obtaining the reduced solution graph of complete graphs, which is shown
by the complete graph with five nodes in this figure. The bottom subgraphs provide the process of obtaining the reduced solution graph of even
cycles.

in some case. In this section, some detailed analysis on the
algorithm will be provided.

A. The time complexity of Mutual-Determination and
Backbone Evolution Algorithm

By the algorithm in the above section, the process of
determining the ranks of the nodes in the graph is intrinsically
a leaf removal process, and it will cost at most O(N ) steps to
obtain the whole ranks of all the nodes.

By considering the nodes sequentially according to their
ranks, when adding a new node to the original graph, first we
should consider its local environment, which will cost at most
constant C steps for random graph. Then, in different cases
A–E, there may be additional time cost. In case B and D, the
current state of the new added node is only determined by
its neighbors and it causes no influence to others; In case C,
the freezing of the current node will cause an influence to the
unfrozen neighbors and those related to them, and thus the
influence propagation will cost at most O(N ) steps. In case D,
the releasing operation with the checking technique will cost
at most O(N ) steps. At last, the rechecking technique and odd
cycle breaking will cost at most O(N ) steps for changing the
states of some nodes. In sum, when a new node is added to the
graph, there are at most C + O(N ) + O(N ) = O(N ) steps to
obtain the new reduced solution graph.

Besides, by the node ranks, there are N nodes to be
added in total. Therefore, the total time cost for the Mutual-
determination and Backbone Evolution Algorithm is at most
O(N ) + N ∗ O(N ) = O(N2) steps for random graphs.

B. The strictness of Mutual-Determination and Backbone
Evolution Algorithm

In this subsection, we will discuss the strictness of the
Mutual-determination and Backbone Evolution Algorithm. By
the analysis in the above sections, Vertex-cover can be solved
in polynomial time by assigning the pendants +1 and their

petioles −1 for all leaves at different leaf-removal stages when
there is no leaf removal core. Indeed, if all the nodes can be
assigned ranks by the leaf-removal, i.e., the leaf-removal core
is null, the reduced solution graph can reveal the whole solution
space of Vertex-cover strictly, and our algorithm is a complete
one to obtain the whole solution space in this case. The proof
is given in the following.

Proof: For each pair of leaf, they form mutual-
determination or both are backbones with one positive and
the other negative. Our algorithm is intrinsically an evolution
process for the two kinds of states of leaves.

When the reduced solution graph is with unfrozen-node
structures of trees or forests for each step of the algorithm, this
evolution guarantees that each step of adding a leaf will obtain
the whole solution space of the enlarged graph. The strictness
of operation in case B is trivial. Mainly by the case A and C, the
releasing operation and freezing influence alternatively change
the states on the trees or forests and have no cross-influence
among different branches, which leads to the strictness of our
algorithm.

When the reduced solution graph is with unfrozen-node
structures of odd cycles of alternatively connected mutual-
determinations in some steps, the odd cycles breaking tech-
nique ensures the correctness of the algorithm and the resulted
reduced solution graph can be reduced to the case of unfrozen-
node structures of trees or forests above.

The reduced solution graph can never have even cycles with
alternative existing mutual-determinations when there is no
leaf-removal core. In the right subgraph of Fig. 8, a schematic
view for the leaf removal is provided. All the nodes in the
red circles will be removed in pairs by leaf-removal process,
and all nodes {a,b,c,d,e,f,g,h} can have only their own leaf
partners on their own cycle, which means that there are no
new leaves after the nodes in the red circles are removed and
the even cycle formed by {a,b,c,d,e,f,g,h} survives at last.
Evidently, these even cycles will be in the leaf-removal core.

Cycles of unfrozen nodes without alternative existing
mutual-determinations can survive on the reduced solution
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FIG. 8. (Color online) Then existence of cycles with nonalterna-
tively mutual-determinations and the nonexistence of the even cycles
with alternatively mutual-determinations when leaves are removed.

graph. In the left above and below subgraphs of Fig. 8, two
simple examples are given to reveal the existence of ordinary
cycles of unfrozen nodes on the reduced solution graph. By
simple logic, we can find that each node on the graphs can
have both covered and uncovered states. In this situation, the
strictness of our algorithm is guaranteed by the checking and
rechecking techniques and the case E, which ensure that the
influence of the freezing operation and releasing operation can
be controlled in a correct way.

At last, considering case D, when the leaf-removal core is
null, this case can be reduced to that of odd cycles breaking,
and it will bring the kernel difficulty when the leaf-removal
core exists.

Therefore, the reduced solution graph obtained by our
algorithm can reveals the exact solution space when there is
no leaf-removal core. �

By the above analysis, we have shown that the Mutual-
determination and Backbone Evolution Algorithm is strict
when there is no leaf-removal core in the graph. By the results
in Ref. [29], there is no leaf-removal core in the random graph
with high probability when the average degree c is less than e.
Then, our algorithm is strict with high probability when c < e.

C. Cycles in the reduced solution graph

The even and odd cycles of unfrozen nodes will be
analyzed in this subsection. In the right subgraph of Fig. 8,
the nodes {a,b,c,d,e,f,g,h} with four mutual-determination
(a,b),(c,e),(d,f ),(g,h) construct an even cycle of unfrozen
nodes. Indeed on this cycle all the nodes have a mutual-
determination relation, that is to say, that any node is covered
or uncovered will lead to the fixation of all the other
seven nodes. Then, the double edges can also be drawn on
(a,c),(b,d),(f,h),(e,g) or all the edges, all these expressions
on the reduced solution graph correspond to the same solution
space, and there are only two solutions on the even cycles of
alternative mutual-determinations.

For the odd cycles of alternative mutual-determinations,
e.g., subgraph (7) of Fig. 2, what we can do is to perform

the odd cycles breaking, which keeps the strictness of our
algorithm. Unfortunately, there is the other way to produce
an odd cycle of alternative mutual-determinations, just like
the Incompatible Cycle in the below subgraph of Fig. 3. This
kind of odd cycle structure emerges when the leaf-removal
core exists and is hard to be broken for the lowest energy
configuration of Vertex-cover. As the incompatible cycle
brings obstacle for obtaining the real reduced solution graph,
changing any unfrozen node on it to be negatively frozen
is a possible choice for the reduced solution graph. In our
algorithm, we can choose only one way to proceed, which
makes the solution space collapse to a subspace. Many steps
of the collapsing may lead to unnecessary energy increase and
superfluous cover of the graph.

In fact, we can keep all the incompatible cycles of
alternative mutual-determinations without breaking choices
for each step in the leaf-removal core and deal with them
for the final reduced solution graph. All the backbones
have no influence on the solution space, but breaking the
incompatible cycles of alternative mutual-determinations on
the reduced solution graph is an urgent task for achieving the
proper solution subspaces. Many these incompatible cycles are
coupled together and should be broken by making some nodes
on them negatively frozen. The fewer the number of negatively
frozen nodes are chosen, the better covers we can obtain.
Therefore, this problem can be reduced to the MAX-CUT [30]
problem for the unfrozen nodes of the reduced solution graph.
By the results of MAX-CUT, breaking the edges of unfrozen
nodes which do not belong to the max-cut will lead to totaly
compatible cycles. However, the MAX-CUT problem is also
a NP-complete problem which is hard to solve.

VII. CONCLUSION AND DISCUSSION

A new solution space structure, mutual-determination be-
tween unfrozen nodes, is defined and discovered in the detailed
case of the Vertex-cover. Based on the mutual-determinations
and backbones, we construct the reduced solution graph to
reveal the solution space of Vertex-cover. And, inspired by the
leaf-removal process and introducing node ranks, a dynamical
process for the evolution of the node states is studied to
achieve the current states of nodes in the reduced solution
graph. Combing the mutual-determinations, backbones, and
the node ranks, an algorithm named the Mutual-determination
and Backbone Evolution Algorithm is proposed to obtained the
accurate reduced solution graph. To ensure the accuracy of the
algorithm, the releasing operations, checking and rechecking
techniques, and odd cycles breaking operation are defined by
considering the influence propagation. Then, the numerical
results and some examples are given to verify the validity of
the algorithm. Besides, we have proved that this algorithm
is an O(N2) algorithm and performs strict when there is no
leaf-removal core for the graph. The influence of incompatible
cycles of unfrozen nodes to the algorithm is given, which can
be reduced to the MAX-CUT problem.

The Mutual-determination and Backbone Evolution Al-
gorithm can be applied to a wide range of graphs. Though
the difficulties are brought to by the incompatible cycles
in case D on the reduced solution graph, choosing proper
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strategies to break the cycles will be helpful to obtain a solution
subspace, which will be beneficial to solve the Vertex-cover
problem in different topologies. Besides, in order to break the
incompatible cycles of unfrozen nodes in case D on the reduced
solution graph, we should design better heuristic strategies to
check the key unfrozen nodes on it, such as taking advantage of
the centrality or clustering coefficient [33,34]. However, as the
intrinsic character of Vertex-cover is NP-complete, the Mutual-
determination and Backbone Evolution Algorithm will still be
an approximated one, and what we aim at is to improve the
accuracy of solving different graphs of Vertex-cover.

The reduced solution graph of Mutual-determination and
Backbone Evolution Algorithm can correspond to the whole
solution space of Vertex-cover in some cases, which is a great
help to count the number of solutions. Similar to #CSP [31,32],
#Vertex-cover can be analyzed based on the reduced solution
graph. However, calculating the exact entropy of the solution
space needs a much detailed analysis of the constructions of the
reduced solution graph, and there should be many techniques to
be introduce on counting the solutions on the reduced solution
graph. Besides, the reduced solution graph can help explicitly
determine the role of every node and calculate the partition
functions and marginal probabilities of the nodes/variables.
Some of the related results will proceed in our future
work.

The principle of our algorithm is related to the replica
symmetry theory but not restricted to it. Most recent algo-
rithms solving combinatorial optimization problems always
concentrate on finding one solution, such as the searching
algorithms and some heuristic algorithms, which assign values
to the nodes/variables according to some strategies and do
backtracking to reach the optimal solution. The Belief/Survey
Propagation algorithms [15,21] provide marginal distributions
and via additional heuristic procedures (decimation, reinforce-
ment) to construct a single solution, but we can hardly have
a visible and global understanding on the detailed underlying
structures of the solution space. The Mutual-determination and
Backbone Evolution Algorithm collects as more solutions as
possible for the initial subgraphs, and aims to find solutions
by contracting the solution space. At least, algorithms of
detecting the solution space provide a strategy of reducing the
complexity of finding solutions, and combing our algorithm
with other searching and heuristic algorithm may be an
interesting research direction for accelerating the solving
process.
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