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SUMMARY

Metabolic conditions affect the developmental
tempo of animals. Developmental gene regulatory
networks (GRNs) must therefore synchronize their
dynamics with a variable timescale. We find that
layered repression of genes couples GRN output
with variable metabolism. When repressors of tran-
scription ormRNA and protein stability are lost, fewer
errors in Drosophila development occur when meta-
bolism is lowered. We demonstrate the universality
of this phenomenon by eliminating the entire micro-
RNA family of repressors and find that development
to maturity can be largely rescued when metabolism
is reduced. Using a mathematical model that repli-
cates GRN dynamics, we find that lowering meta-
bolism suppresses the emergence of developmental
errors by curtailing the influence of auxiliary repres-
sors on GRN output. We experimentally show that
gene expression dynamics are less affected by loss
of repressors when metabolism is reduced. Thus,
layered repression provides robustness through er-
ror suppression and may provide an evolutionary
route to a shorter reproductive cycle.

INTRODUCTION

Animal development occurs over a defined timescale, which is

an intrinsic feature of a species and not necessarily determined

by external clocks (Ebisuya and Briscoe, 2018). Development

occurs via a stereotypic sequence of events involving cell divi-

sion, growth, movement, apoptosis, polarization, and differenti-

ation. Correct assembly of functional structures depends on

synchronization of cell division and differentiation events (Foe,

1989; Sulston et al., 1983). Small variation in timing produces

variation in structure that is observed between individuals (Fran-
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cesconi and Lehner, 2014; Poullet et al., 2016). Abnormal timing

can result in structural defects that lead to compromised survival

(Moss, 2007). Thus, the rates of various developmental pro-

cesses must be controlled and coordinated.

Although developmental tempo is a fundamental property of a

species, it can vary under different conditions. For example, tem-

perature affects the pace of development in many ectotherms,

such as arthropods, nematodes, fish, and reptiles (Atlas, 1935;

Davidson, 1944; Kuntz and Eisen, 2014; Zuo et al., 2012). Diet

and food intake also affect organismal growth rate and the

pace of development for many species, including humans

(Arendt, 1997; Brown et al., 2004; Metcalfe and Monaghan,

2001; Pontzer et al., 2016). The interactions between food intake

and development are complex and involve hormonal signaling

(Bergland et al., 2008; Tang et al., 2011). Finally, cellular meta-

bolism can alter the pace of development. For example, the

evolutionarily conserved clk1 gene encodes a mitochondrial

enzyme necessary for normal cellular respiration (Felkai et al.,

1999), and loss of the clk1 gene in nematodes and mice results

in developmental delays (Levavasseur et al., 2001; Nakai et al.,

2001; Wong et al., 1995). In Drosophila, restricting glucose

consumption by cells slows development (Brogiolo et al.,

2001; Layalle et al., 2008; Rulifson et al., 2002; Shingleton

et al., 2005). Gillooly et al. (2002) formulated a general quantita-

tive model that relates developmental tempo to organismal

mass, cellular metabolic rate, and temperature. Strikingly, the

model fits meta-data spanning the major animal phyla, suggest-

ing a universal relationship between metabolism and develop-

mental tempo.

Many developmental processes involve specification of

different cell types in a stereotyped sequence. All of these differ-

entiated cell types originate from progenitor cells. The sequence

of cell differentiation is driven by changes in the gene expression

program within progenitors. Gene regulators, typically transcrip-

tion factors, are sequentially activated and repressed, resulting

in transient periods of increased activity. During these periods,

they change gene expression in the progenitors. This coincides

with and causes a temporal series of cell fate decisions. Because
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these regulators frequently interact with one another, the entire

cascade constitutes a gene regulatory network (GRN). Such

GRNs have been characterized for embryogenesis (Cusanovich

et al., 2018; Davidson and Erwin, 2006; Lawrence, 1992), devel-

opment of the central nervous system (CNS) (Kohwi and Doe,

2013), and development of the sensory nervous system (Cepko,

2014). Because the tempo of development can vary, GRN dy-

namics must be able to reliably adjust to a variable timing mech-

anism. Therefore, understanding how these GRNs adapt to a

variable timescale is crucial for understanding the mechanisms

of animal development.

Phenomenological observations suggest that there are limits

to the timescales to which development may adapt. Although

broiler chickens have been successfully bred for rapid growth,

frequent abnormalities in musculoskeletal development are

evident in such breeds (Julian, 2005; Whitehead et al., 2003). An-

imals (and humans) experience hyper-normal growth rates when

they initially experience delayed growth (Arendt, 1997). Such

compensatory growth is linked to a variety of developmental

and physiological defects (Metcalfe and Monaghan, 2001).

Conversely, slowing growth can alleviate defects caused by mu-

tations that impair development. As first noted by Morgan (1915,

1929), morphological phenotypes can be suppressed by limiting

the nutrition of mutant animals (Child, 1939; Sang and Burnet,

1963). Likewise, raising animals under lowered temperatures

can sometimes suppress the phenotypes of mutations that are

not classical temperature sensitive (ts) alleles (Child, 1935;

Krafka, 1920; Lewis et al., 1980; Villee, 1943). Collectively, these

observations suggest that an unknownmechanism ensures suc-

cessful developmental outcomes amidst variability in develop-

mental tempo.

Here, we explored this mechanism. We find that impairing

gene repression in GRNs only causes developmental errors

when cell metabolism and growth rate are normal. When either

energy metabolism or protein synthesis rate is reduced, devel-

opmental errors are reduced or even suppressed. We find that

this relationship between metabolism and repression is so prev-

alent that the entire microRNA family becomes less essential for

development whenmetabolism is slowed. Using a general math-

ematical modeling framework, we show that multiple layers of

weak repression render gene expression dynamics independent

of variable biochemical rates. When rates are modestly reduced,

fewer repressors are needed to ensure normal expression dy-

namics. We experimentally validate this model prediction by

following GRN dynamics in Drosophila. Our findings support a

new mechanism whereby layers of gene repression allow devel-

opment to proceed faster when metabolic conditions allow it.

The need for flexible and robust developmental outcomes could

provide an evolutionary impetus for the high prevalence of ge-

netic redundancy.

RESULTS

Developmental patterns arise from directed dynamics of cell-cell

signaling and gene regulation. The sensory organs of Drosophila

are a classic system with which to study these phenomena

(Quan and Hassan, 2005). A broad collection of gene mutations

has specific effects on the formation of various sensory organs.
The affected genes encode transcription factors, microRNAs,

signaling factors, and other gene regulators. We used such mu-

tations to readdress the relationship between reduced meta-

bolism and phenotype suppression that was first observed

by Morgan (1915, 1929). We did so by scoring Drosophila sen-

sory mutant phenotypes under conditions of reduced energy

metabolism.

To reducemetabolism, we generated animals that had genetic

ablation of their insulin-producing cells (IPCs) in the brain

(Figure 1A). IPC ablation limits synthesis and release of insulin-

like peptides (ILPs) and reduces the amount of glucose cells

consume (Broughton et al., 2005; Rulifson et al., 2002). It also

reduces the abundance of the mitochondrial ATP synthase

enzyme complex in cells (Figure S1). Moreover, inhibition of

ILP production reduces the whole-body metabolic rate of

Drosophila, as measured by calorimetry (Zhang et al., 2009).

IPC ablation results in 70% slower development (Figure 1B)

and small but normally proportioned adults (Figure 1C) (Ikeya

et al., 2002; Rulifson et al., 2002). Therefore, reduced ILP pro-

duction by IPC ablation broadly decreases cellular energy meta-

bolism and slows development.

Mutation of Repressors Has Less Effect When
Metabolism Is Reduced
Yan is a transcription factor thatmaintains cells of the developing

compound eye in a progenitor-like state (Graham et al., 2010).

The protein is transiently expressed in cells (Peláez et al., 2015)

and is cleared fromdifferentiating photoreceptor (R) cells bymul-

tiple repressors acting on its transcription, mRNA stability, and

protein stability (Figure S2A). The microRNA miR-7 represses

post-transcriptional expression of Yan in the developing eye (Li

and Carthew, 2005). When themir-7 gene was specifically abla-

ted in the compound eye of an otherwise wild-type animal, it re-

sulted in small malformed adult eyes caused by errors in R cell

differentiation (Figure 1D). This phenotype was highly penetrant

in genetically mosaic animals (Figure 1E). However, when energy

metabolism was slowed by IPC ablation, loss ofmir-7was much

less important for the formation of correctly patterned eyes (Fig-

ure 1E). We also examinedmutations affecting post-translational

modification of Yan. The epidermal growth factor (EGF) and Sev-

enless (Sev) receptor tyrosine kinases activateMAP kinase in the

progenitors of R7 photoreceptors (Figure S2A). MAP kinase

phosphorylates Yan protein, leading to its ubiquitin-mediated

degradation (Rebay and Rubin, 1995). This clearance of Yan pro-

tein enables differentiation of R7 cells (Voas and Rebay, 2004),

and when sev is mutated, cells completely fail to differentiate

as R7 photoreceptors (Figure 1F). However, slowing metabolism

allowed a small but significant number of sev mutant cells to

become R7 photoreceptors (Figure 1G). Importantly, because

the sev mutant makes no protein products (Banerjee et al.,

1987), rescue of the mutant phenotype was not simply due to

more functional Sev protein molecules being present in slowly

metabolizing cells.

We also examined mutations that affect formation of sensory

bristles for evidence of metabolic interactions. The transcription

factors Achaete, Scute, and Senseless (Sens) transiently appear

in a cluster of proneural cells before they are upregulated in one

cell, which differentiates into a sensory bristle (Jafar-Nejad et al.,
Cell 178, 980–992, August 8, 2019 981
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Figure 1. Eye Developmental Defects Are Rescued by Slower Energy Metabolism

(A) Strategy to ablate IPCs (red) in the young fly brain. Gal4 expressed under control of the promoter for the Insulin-Like Peptide 2 (ILP2) gene drives production of

the pro-apoptotic protein Reaper (Rpr) specifically in IPCs of the brain.

(B) Number of days after egg laying (AEL) when the first individual in either wild-type or ILP2 > Rpr populations eclosed (hatched from pupa into adult) and the time

when the last individual in each population eclosed.

(C) The left adult female had its IPCs intact, whereas the right female had its IPCs ablated.

(D) Genetically mosaic individuals with a mir-7+ body and amir-7 mutant eye. The left individual with the mispatterned eye has its IPCs intact, whereas the right

individual with a normally patterned eye has had its IPCs ablated.

(E) Eye patterning is more normal when mosaic individuals metabolize slowly because of IPC ablation. The p values are from chi-square tests with Yates’

correction.

(F) Eye cells stained for markers so that R7 cells (white) can be distinguished from other R cells (purple) and bristle cells (green). Each ring of R cells is an

ommatidium. Null mutation of sev results in no R7 cells (right).

(G) IPC ablation increases the percentage of ommatidia that contain an R7 cell in sevmutants. Each data point represents one eye sample where between 481 and

837 ommatidia were scored. The p value is from a one-way ANOVA with Bonferroni correction.

****p < 0.0001; n.s., p > 0.05. See also Figures S1 and S2.
2003). They are downregulated in other cells within a proneural

cluster, ensuring that just one bristle develops from each cluster

(Figure S2B). microRNA miR-9a represses Sens protein expres-

sion, and mir-9a mutants frequently develop ectopic sensory

bristles because this repression is missing (Figures 2A and 2B)

(Cassidy et al., 2013; Li et al., 2006). However, whenmir-9a mu-
982 Cell 178, 980–992, August 8, 2019
tants had their IPCs ablated, errors in bristle number were greatly

reduced (Figure 2C).

The transcription factor Hairy directly represses transcription

of the achaete and scute genes during selection of cells for

bristle fates (Figure S2B) (Van Doren et al., 1994). Mutation of

hairy causes some individuals to develop ectopic large bristles.
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Figure 2. Sensory Bristle Developmental De-

fects Are Rescued by Slower Energy Meta-

bolism

(A) There are frequently more than four scutellar

bristles in a mir-9a mutant.

(B) Distribution of scutellar bristle numbers in wild-

type and mir-9a mutant populations. The distribu-

tion between wild-type and mutant is significantly

different (p < 0.0001, Kolmogorov-Smirnov test).

(C) IPC ablation increases the proportion of mir-9a

and hairymutants that have the wild-type number of

scutellar bristles. ****p < 0.0001; n.s., p > 0.05.

(D) Under normal conditions, wgSp-1 flies have more

than the wild-type three sternopleural bristles. IPC

ablation causes most wgSp-1 individuals to have

three bristles. Shown is the number of individuals

scored with the phenotype versus the total number

of scored individuals. IPC ablation suppresses the

ectopic bristle phenotype (p < 0.0001, Fisher’s

exact test).

See also Figure S2.
However, this effect of hairy mutation was strongly suppressed

when energy metabolism was slowed (Figure 2C). We saw a

similar effect on a cis-regulatory module (CRM) that represses

transcription of the wingless (wg) gene (Figure S2B). The Sterno-

pleural (Sp-1) mutation is present in a CRM located on the 30

flank ofwg (Neumann and Cohen, 1996), causingwgmisexpres-

sion and development of ectopic bristles (Figure 2D). However,

the ectopic bristle phenotype of the wgSp-1 mutant was almost

totally reversed under conditions of slowed energy metabolism

(Figure 2D).

In conclusion, IPC ablation suppressed developmental pheno-

types caused by mutations in genes that repress other genes at

the transcriptional, post-transcriptional, and post-translational

levels.

MicroRNAs Are Dispensable When Metabolism Is
Reduced
Themutations examined so far affect diverse types of regulators,

including microRNAs, transcription factors, and signaling mole-

cules. However, all of the mutations have something in common:
they affect repressive interactions be-

tween genes. To survey the depth of

this relationship between gene repression

and metabolism, we eliminated an entire

family of regulatory repressors that

control all stages of Drosophila develop-

ment. The microRNA family is composed

of 466 distinct microRNAs in Drosophila

melanogaster (Kozomara and Griffiths-

Jones, 2014). Virtually all microRNAs

require Dicer-1 (Dcr-1) protein for their

proper biosynthesis and Ago1 protein as

a partner to repress target gene expres-

sion (Carthew and Sontheimer, 2009).

Protein-null mutations in either the dcr-1

or ago1 gene are organismal lethal and

abolish microRNA-mediated gene repres-
sion (Pressman et al., 2012). We raised different null dcr-1 mu-

tants under conditions of slower energy metabolism and found

that many more animals survived development (Figure 3A).

Ago1-null mutants are 100% embryonic lethal, but mutant

lethality was suppressed when animals metabolize slowly

because of IPC ablation (Figure 3B). The mutants survived to

adulthood, and most survivors had normal eye and bristle pat-

terns as well as other body structures, indicating rescue of a

massive array of developmental defects (Figure 3C). Rescue

could also be seen when Ago1 was specifically ablated in cells

of the compound eye; eye development was strongly rescued

by slower energy metabolism (Figure 3D). Therefore, a major

class of regulatory repressors is rendered less essential for

development when energy metabolism is slowed.

A Dynamical Model Describes the Relationship between
Metabolism and Developmental Error Frequency after
Repressor Loss
We turned to computational modeling to elucidate the mecha-

nism linking gene repression, developmental phenotypes, and
Cell 178, 980–992, August 8, 2019 983
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Figure 3. The MicroRNA Family Is Less

Essential When Energy Metabolism Is

Slowed

(A) Pupal viability of various dcr-1 nonsensemutants

is fully rescued when IPCs are ablated.

(B) Adult viability of various ago1 missense and

nonsense mutants is rescued when IPCs are

ablated.

(C) Representative ago1 adults with normal or

slowed metabolism.

(D) Genetically mosaic individuals with ago1+

bodies and ago1W894X mutant eyes. Left, a repre-

sentative individual with normal metabolism has

almost no eye tissue (24 of 24 animals). Right, a

representative individual with slowed metabolism

has rescued eye tissue. Of 70 such animals, 46 had

this phenotype, 20 had normal eyes, and 4 had eyes

that resembled the left animal. This is a significant

difference; p < 0.0001, chi-square test with Yates’

correction.

Error bars, SD. ****p < 0.0001; **p < 0.01; *p < 0.05;

n.s., p > 0.05.
metabolism. Because this relationship affects many GRNs dur-

ing many stages of development, we sought to directly model

the emergent dynamics of these systems rather than the specific

regulatory interactions behind them.

Our modeling framework is premised on the progressive re-

striction of cell fate potential as development proceeds. Cell

fate transitions are coordinated by the sequential activities of

one or more genes whose products are synthesized, act, and

are then eliminated until they are needed later in other cells.

Viewed collectively, the resultant dynamics resemble a cascade

of transient pulses of protein expression (Figure 4A). When

expression of a gene is induced by a stimulus (the input), its

timely attenuation ensures that protein expression remains tran-

sient (Figure 4B). GRNs often have multiple layers of repressive

feedback to attenuate expression of these genes. To model
984 Cell 178, 980–992, August 8, 2019
these dynamical features of develop-

mental gene expression, we chose a sub-

field of mathematics known as control

theory because it is a general theory

describing feedback systems.

In our control theory model, a transient

stimulus activates expression of a regula-

tory gene, whose protein is the output (Fig-

ures 4C and S3A). Acting in parallel, one or

more feedback control elements detect

the increase in protein level and act to

downregulate it at the level of gene tran-

scription, mRNA stability, or protein stabil-

ity. These control elements can be thought

of as independent repressors working in

parallel to bring the protein level back to

a basal steady state (Figure 4D). Because

gene expression is noisy (Arias and Hay-

ward, 2006), we also incorporated intrinsic

noise into the model. When we ran model

simulations, protein expression followed
a biphasic trajectory in each simulation (Figure 4E, dotted line).

However, each simulation gave a slightly different trajectory

because of expression noise; therefore, we performed thou-

sands of simulations to capture the distribution of trajectories

(Figure 4E).

Because each pulse must keep pace with parallel steps in the

program, successful development is contingent upon timely

attenuation of the output. We defined a lower threshold that

the output level must cross before a subsequent fate change is

triggered (Figure 4E). Simulated trajectories that fail to reach

the threshold in time constitute errors (Figure 4F). Notably,

errors becomemore frequent when one repressor is lost (Figures

4E–4G). This property is observed over a broad range of

model parameter values, regardless of the value at which the

threshold is defined and regardless of whether repressors act



G

F

A Input
A B C D

Output

Protein
level

Time

B

Input
Output

mRNA

Protein
Gene

post-translational
control

post-
transcriptional

controltranscriptional
control

Regulatory
Network

C

D

+
+

+

Input Output
Gene expression

Repressor 1
–

Repressor 2
+

+
Repressor N

...

25

50

0

Partia
l re

pression

Full re
pression

 E
rr

or
 fr

eq
ue

nc
y 

(%
)

E

H

ProteinmRNAGene

Normal conditions

Repressor 1 Repressor 1 Repressor 1

ProteinmRNAGene

Reduced energy metabolism

Repressor 1 Repressor 1 Repressor 1

Gene

Gene

mRNA

mRNA

Protein

Protein

Repressor 2

Repressor 2

Repressor 2p

Repressor 2

Repressor 2p

Repressor 2

Error frequency
100%0%

Amplitude

Duration

Full repression
Partial repression

Commitment
time

30% of peak

Time

N = 5000

FrequencyO
ut

pu
t L

ev
el

 a
t C

om
m

itm
en

t t
im

e

Errors

Threshold
(99th percentile)

Time

+
–

+
–

+
–

Input Output
Activation Transcription Translation

Gene expression

Post-transcriptional
regulation

Post-translational
regulation 

Transcriptional 
regulation

Controller Sensor
Repressor

Possible targets
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(A) A program of gene expression occurs as a cell passes through a series of developmental states. The model focuses on transient expression of a single gene

within the cascade.

(B) Gene expression in response to a transient input stimulus. Protein output is subject to layers of repression acting at the gene, transcript, and protein levels.

(C) Control representation of a single feedback loop as depicted in (B). Arrows represent biochemical information transfer, and boxes represent the processes

that relate these signals. Open circles indicate logical summation points, and closed circles indicate exclusive switches.

(D) Gene expression may be regulated by multiple repressors acting in parallel.

(E) Model simulations showing protein output over time. Input is shown at top. Shown below are 98% of the 5,000 simulated output trajectories, which merge

together into a band of trajectories. Grey and purple denote simulations with one and two post-translational repressors, respectively. The dotted line indicates the

mean trajectory with full repression. Commitment time is defined as the time needed for the dotted line to reach 30% of its peak value. The threshold is set at the

upper boundary of the full repression confidence band at the commitment time.

(F) With partial repression, fewer simulations cross the threshold within the commitment time. Each failure to cross the threshold in time is an error.

(G) Error frequency is greater with partial post-translational repression.

(H) Errors become more frequent with partial repression (left) regardless of how repressors act on gene expression. However, partial repression imparts very few

errors when ATP-dependent parameter values are reduced by 50% (right).

See also Figures S3 and S4.
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(A and B) Simulated protein output under the control

of an auxiliary post-transcriptional repressor (green)

and when the repressor is removed (orange). All

simulations (green and orange) are also under control

of a constitutive repressor. Shown are ten randomly

chosen samples from a total population of 5,000

trajectories for each condition.

(A) Simulations performed with normal ATP-depen-

dent reaction rates.

(B) Simulations performed following a 50% reduction

in the rate of ATP-dependent reactions.

(C and D) Yan-YFP protein dynamics in eye disc

progenitor cells. Time 0 marks the time when Yan-

YFP induction occurs. Solid lines represent moving

averages. Shaded regions denote 95% confidence

intervals. Each line average is calculated from a

composite of measurements of between 4,379 and

6,716 cells.

(C) Yan-YFP dynamics for wild-type Yan-YFP and mutant YanDmiR-7-YFP genes under normal metabolic conditions.

(D) Yan-YFP dynamics for wild-type and mutant genes when the IPCs have been ablated.

See also Figure S5.
transcriptionally, post-transcriptionally, or post-translationally

(Figures S3B and 3C).

The modeling framework allowed us to ask whether multiple

layers of repression are less important for developmental

outcome when energy metabolism is reduced. To answer this

question, we halved the rate parameters of each ATP-utilizing re-

action to reflect conditions of reduced energy metabolism.

Although ATP content remains fairly constant in cells facing

limited respiration, the flux of ATP synthesis and turnover is

affected, manifesting as altered ratios of ATP to ADP and free

phosphate (Brown, 1992). Anabolic processes are highly depen-

dent on the ATP:ADP ratio (Atkinson, 1977). When we halved

ATP-dependent rate parameters, we observed that error fre-

quency in developmental outcome did not increase when a

repressor was lost (Figure 4H). This insensitivity to repressor

loss persistedwhether repression was transcriptional, post-tran-

scriptional, or post-translational. The effect was observed

across a wide range of parameter values (Figures S4A and

S4B), irrespective of where the threshold was set (Figure S4C)

and regardless of whether a basal stimulus was present (Fig-

ure S4D). In many cases, the effect remained modestly apparent

when the stimulus duration was extended to maintain compara-

ble protein levels under conditions of reduced energy meta-

bolism (Figure S4E). Thus, themodel indicates that the frequency

of developmental errors is generally less sensitive to changes in

repression when energy metabolism is reduced.

Our modeling framework promotes simplicity at the expense

of two notable limitations. First, gene expression models

frequently utilize cooperative kinetics to reproduce the nonline-

arities and thresholds encountered in transcriptional regulation.

Second, the number of transcriptionally active sites within a

cell is limited by gene copy number. We modified the framework

to implement each of these complexities and found that error fre-

quencies remained broadly suppressed when ATP-dependent

rate parameters were reduced (Figures S4F and S4G). We also

considered whether reduced glucose consumption by cells
986 Cell 178, 980–992, August 8, 2019
might hinder the synthesis of nucleotide and amino acid precur-

sors required for RNA and protein synthesis. Constraining these

synthesis rates also suppressed the rise in error frequency when

a repressor was lost (Figure S4H).

Combined, all of these simulations suggest that phenotype

suppression may arise from the differential effects of repressor

loss on gene expression dynamics.

Experimental Validation of the Dynamic Model
Our simulations make a general prediction as to how protein

expression dynamics change when a repressor is lost; pulse

amplitude and duration both increase, yielding elevated protein

levels across the time course (Figure 4E). We quantified the

change in expression dynamics by constructing a confidence

band around the set of trajectories simulated with full repression

(Figure S5A). We then evaluated the fraction of trajectories simu-

lated with partial repression that exceed the confidence band

(Figure S5B) and confirmed that protein levels generally increase

when a repressor is removed. This effect is highly robust to

parameter variation for all types of repressors (Figure S5C). For

example, when a post-transcriptional repressor akin to a micro-

RNA is removed, 78% of simulation trajectories are elevated

across the time course (Figure 5A).

We then halved the model’s ATP-dependent parameters, ran

simulations, and compared trajectories with full or partial repres-

sion. Strikingly, there was little difference between the trajec-

tories with full repression versus loss of a post-transcriptional

repressor (Figure 5B). Only 16% of trajectories exceeded the

confidence band, and this was robust to extensive parameter

variation (Figure S5D). These results led us to predict that

expression dynamics will be much less sensitive to loss

of a post-transcriptional repressor when we reduce energy

metabolism.

We experimentally tested this key prediction by measuring the

expression dynamics of the regulatory protein Yan. Yan exhibits

pulsatile dynamics in the larval eye, where its expression is
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induced by a morphogenetic furrow that traverses the eye disc.

Eye cells located in the morphogenetic furrow rapidly upregulate

Yan protein abundance, as quantified by a YFP-tagged version

(Peláez et al., 2015). Yan levels then gradually decay back to

initial conditions in these cells.We compared Yan-YFP dynamics

in eye disc cells from normal metabolizing larvae and larvae with

ablated IPCs (Figures 5C and 5D). The same pulsatile dynamics

were observed in both, but the amplitude of the pulse was

slightly reduced and the duration was extended when meta-

bolism was slower.

Yan expression is repressed by themicroRNAmiR-7 in the eye

disc (Li and Carthew, 2005). There are four binding sites for

miR-7 in the 30 UTR of yan mRNA, and their mutation causes

de-repression of Yan output. We eliminated miR-7 repression

of Yan-YFP by mutating the four binding sites in the 30 UTR of

Yan-YFP mRNA to make YanDmiR-7-YFP. In normal metabo-

lizing eye cells, Yan-YFP protein made from the mutated gene

pulsed with greater amplitude and showed impaired decay

compared with Yan-YFP made from the wild-type gene (Fig-

ure 5C). These dynamics validate the first prediction made by

our model (Figure 5A).

However, whenmetabolismwas slowed, loss of miR-7 regula-

tion had little to no effect on Yan expression. In animals with IPC

ablation, Yan-YFP made from the mutated gene showed similar

dynamics as Yan-YFPmade from thewild-type gene (Figure 5D).

This behavior clearly resembled the simulated dynamics under

conditions of reduced energy metabolism (Figure 5B), validating

the model’s second prediction.

Loss of Full Repression and No Suppression of the
Mutant Phenotype
Our modeling framework explains why mutant phenotypes are

suppressed when metabolic conditions are reduced, prompting

us to ask whether repression is needed at all under such condi-

tions. We studied a model with a full complement of repressors

and compared the results with a scenario in which all repressors

were removed (Figure 6A). Error frequencies approached 100%
under normal metabolic conditions. Although expression dy-

namics were visibly less affected by repressor loss when ATP-

dependent parameters were reduced, the error frequency

remained very high (Figure 6B). Thus, the model predicts that

there are limits to the severity of perturbations for which reduc-

tions in energy metabolism can compensate, and reducing en-

ergymetabolism does not eliminate the need for gene repression

altogether.

To test this prediction, we expressed, in the eye, a Yanmutant

transgene that is insensitive to all known repression of yan

transcription, mRNA stability, and protein stability (Rebay and

Rubin, 1995). The YanAct mutant adults had severely disrupted

compound eye patterning (Figure 6C). This mutant eye pheno-

type was not suppressed by IPC ablation. Wild-type Yan trans-

genic adults with normal eye patterning were also unaffected

(Figure 6D).

Limiting Protein Synthesis Reduces the Need for
Repressors
Other aspects of metabolism can be used to explore coupling of

developmental dynamics to time. In particular, protein synthesis

is an important determinant of rates of growth and development

(Lempiäinen and Shore, 2009).We used ourmodeling framework

to investigate the effect of a 2-fold reduction in overall protein

synthesis rate on the loss of a repressor. Our simulations gener-

ally predicted that gene expression dynamics would be less

affected and that fewer developmental errors would occur (Fig-

ure 7A; Figures S6A–S6G).

We tested these predictions by using loss-of-function muta-

tions in genes encoding various ribosomal proteins (RPs). These

mutations cause the ‘‘Minute’’ syndrome of dominant, haploin-

sufficient phenotypes, including slower growth and development

(Marygold et al., 2007; Saebøe-Larssen et al., 1998). A total of

64 RP genes exhibit a Minute syndrome when mutated. As

might be expected, a RP heterozygous mutant reduces the

translational output of cells (Boring et al., 1989). RP mutants

do so by signaling through the Xrp1 transcription factor to
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globally downregulate the protein synthesis rate (Lee et al.,

2018a). We combined a subset of heterozygous RP mutants

with the repressor mutations we had studied previously. As pre-

dicted, the RP mutants suppressed the developmental pheno-

types of mutations in wg, mir-7, sev, hairy, and mir-9a (Figures

7B–7E).

We also tested the prediction that expression dynamics would

be less affected by repressor loss when protein synthesis was

reduced. The Sens protein is transiently expressed in proneural

cells during selection of sensory bristle fates in the imaginal

wing disc (Nolo et al., 2000). Bordering the presumptive wing

margin, stripes of proneural cells express Sens protein over a

spectrum of levels, reflecting heterogeneity in Wg and Notch

regulation of its expression (Jafar-Nejad et al., 2006; Quan and

Hassan, 2005). miR-9a weakly represses sens expression in

these cells (Li et al., 2006). We recombineered a 19-kb sens

transgene, tagged N-terminally with superfold GFP (sfGFP),

that functionally replaced the endogenous sens gene (Cassidy

et al., 2013; Venken et al., 2006). Quantitative measurement of

sfGFP fluorescence in individual proneural cells yielded the ex-

pected distribution of sens expression (Figure 7F). We compared

this distribution with one derived from individuals expressing a

mutated sfGFP-sens transgene in which its miR-9a binding sites

had been mutated (Cassidy et al., 2013). Mutation of the miR-9a

binding sites in sfGFP-sens shifted the fluorescence distribution

(Figure 7F) and resulted in an average 1.4-fold increase in sfGFP-

Sens levels (Figure 7G). We then tested the effects of miR-9a on

sfGFP-sens expression when an RP gene was heterozygous

mutant. As predicted (Figure S6B), loss of miR-9a regulation

had less effect on sfGFP-Sens protein levels in the RP mutant

(Figures 7G and 7H).

DISCUSSION

Growth and development are fueled by metabolism. This means

that the tempo of development depends onmetabolic rate. Thus,

the dynamics of developmental gene expression must faithfully

adjust to a variable timescale. We have shown that multi-layered

weak repression within GRNs plays an unexpected function in

synchronizing gene expression dynamics with the variable

pace of the developmental program. Multiple repressors are

required for accelerated development when metabolism is

high, and they become functionally redundant when metabolism

is low. Multiple repressors therefore allow reliable development

across a broader range of metabolic conditions than tolerated

otherwise.

Our model explains long-standing observations linking

nutrient limitation to suppression of mutant phenotypes (Mor-

gan, 1915, 1929). Presumably, suchmutations cripple regulatory
(F) Frequency distribution of the sfGFP-Sens protein level in cells bordering the

expressing either wild-type sfGFP-sens or sfGFP-sens in whichmiR-9a binding sit

line is calculated from a composite of measurements of more than 18,000 cells.

(G) The fold change inmedian sfGFP-sens expression caused bymiR-9a binding s

mutant backgrounds. Shown are 99% confidence intervals for the estimated fold

(H) The shift in the fluorescence distribution of sfGFP-Sens-positive cells caused

test. The upward shift is smaller in an RpS13 heterozygous mutant background.

(B–E) Error bars, SD. ****p < 0.0001; ***p < 0.001; n.s., p > 0.05. See also Figure
genes acting on developmental GRNs. Our model might also

offer an explanation for why animals that undergo above-normal

growth exhibit compromised development (Arendt, 1997; Met-

calfe and Monaghan, 2001). Wild-type GRNs might function

across a limited range of metabolism, with functionality breaking

down when metabolism exceeds that range.

Another mechanism to explain phenotype suppression relies

on a steady-state and not dynamic perspective of gene expres-

sion. Genome-wide gene expression patterns could conceivably

change with organismal growth rate. This is the case for chemo-

stat-grown yeast cells, where the expression of 27% of all genes

correlateswithgrowth rate (Brauer et al., 2008).Most genesasso-

ciated with stress response are overexpressed when cells grow

at a slow rate (Brauer et al., 2008; Lu et al., 2009). Such stress-

responsive expression could modulate global processes such

as protein folding and turnover, among others, and attenuate

phenotypes when metabolism is slowed (Webb and Brunet,

2014). Indeed, molecular chaperones have been found to affect

the penetrance of diverse gene mutations in C. elegans and

Drosophila (Casanueva et al., 2012; Rutherford and Lindquist,

1998). However, this steady-state model does not explain why

gene expression dynamics are conditionally dependent on the

availability of repressors. We found that repression of Yan and

Sens expression by microRNAs becomes more redundant

when metabolic rates are slowed. Nevertheless, phenotype sup-

pressionmightbedue toacombinationofmechanisms, including

steady-state stress response and gene expression dynamics.

Our varied analyses suggest that the relationship between

metabolism and gene expression dynamics is widespread. We

found that the entire family of 466 microRNAs in Drosophila mel-

anogaster become much less essential for development when

energy metabolism is slowed. The extensive literature on micro-

RNA function in Drosophila implicates them in practically all fac-

ets of the fruit fly’s life (Bushati and Cohen, 2007; Carthew et al.,

2017). Various explanations have been provided for why this

family of weak repressors has flourished in the animal kingdom,

chief among them the idea that they act as buffers for gene

expression (Ebert and Sharp, 2012). We now posit that micro-

RNAs also provide a robust means for developmental processes

to accommodate fluctuations in metabolism.

Raisinganimals at lower temperaturescansuppress thepheno-

types of mutations that are not classical ts alleles (Child, 1935;

Krafka, 1920; Lewis et al., 1980; Villee, 1943). Indeed, loss

of sens repression by miR-9a has less impact on bristle develop-

mentwhen temperature is lowered (Cassidy et al., 2013).Because

metabolic rate varies with temperature (Zuo et al., 2012),

it ispossible that temperature-dependent phenotypesuppression

may also be attributed to a relaxed requirement for coupling gene

expression dynamics to a metabolism-dependent timescale. We
wing margin of white prepupal wing discs. Shown are distributions of cells

es have beenmutated. Shaded regions denote 95%confidence intervals. Each

itemutations. Measurements were taken inRpS13wild-type and heterozygous

change.

by miR-9a binding site mutations, as determined by a Mann-Whitney-Wilcoxon

Shown are 95% confidence intervals for the shift.

S6.
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explored this notion using our modeling framework, and the re-

sults are inconclusive (S.M.B., N.B., and L.A.N.A., unpublished

data). We anticipate that error suppression will be weak when

temperature-modulated expression dynamics are the sole cause.

This is because temperature should affect the rates of both

anabolic and catabolic processes involved in gene expression.

In contrast, limiting ATP availability or protein translation reduces

the rates of anabolic reactions but not all catabolic reactions.

This asymmetric effect on different steps in gene expression is a

major reason why gene repression becomes less important

when ATP availability or protein translation is limited.

Metabolic conditions drive variation of the intrinsic develop-

mental tempo of each species. We have shown that layered

weak repression within GRNs enables these fluctuations to

occur without causing developmental errors. Metabolic condi-

tions change in both space and time. Perhaps the selective

advantage of a reliable developmental outcome amidst variable

environmental conditions is a driving force in the evolution of

gene regulatory networks.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-Prospero Developmental Studies Hybridoma Bank MR1A mAb; RRID: AB_528440

Rat monoclonal anti-Elav Developmental Studies Hybridoma Bank 7E8A10 mAb; RRID: AB_528218

Goat anti-mouse Alexa488 Invitrogen A-11001; RRID: AB_2534069

Goat anti-rat Alexa546 Invitrogen A-11081; RRID: AB_2534125

Goat anti-mouse Alexa546 Invitrogen A-11030; RRID: AB_2534089

Goat anti-rat Alexa633 Invitrogen A-21094; RRID: AB_2535749

Mouse monoclonal anti-ATP5A (MAb15H4C4) Abcam ab14748; RRID: AB_301447

Chemicals, Peptides, and Recombinant Proteins

Paraformaldehyde (powder) Polysciences 00380-1

Triton X-100 Sigma Aldrich T9284-500ML

VectaShield Vector Labs H-1000

40,6-diamidino-2-phenylindole (DAPI) Life Technologies D1306

Deposited Data

Data of all model simulations This paper https://arch.library.northwestern.edu/

concern/generic_works/n296wz31t

Fluorescence data for Yan-YFP and His2Av-

mRFP in eye cells

This paper https://arch.library.northwestern.edu/

concern/generic_works/n296wz31t

Fluorescence data for sfGFP-Sens in wing cells This paper https://www.dropbox.com/

sh/1m9silkrs76rvpr/

AADunGcGUylP2rQ9WRo5bXVha?dl=0

Experimental Models: Organisms/Strains

D. melanogaster: mir-9aE39 Swap of the

pre-miRNA sequence with white+. RNA null.

Li et al., 2006 N/A

D. melanogaster: mir-9aJ22 Swap of the

pre-miRNA sequence with white+. RNA null.

Li et al., 2006 N/A

D. melanogaster: mir-7D1

Deletion of pre-miRNA sequence. RNA null.

Li and Carthew, 2005 N/A

D. melanogaster: Df(2R)exu1 cn[1] bw[1] Deletion

of pre-miR-7 sequence. RNA null

Bloomington Drosophila Stock Center BDSC: 1510

Flybase: FBab0002178

D. melanogaster: dcr-1K43X Nonsense mutation

at residue 43. Amorph.

Pressman et al., 2012 N/A

D. melanogaster: dcr-1W94X Nonsense mutation

at residue 94. Amorph.

Pressman et al., 2012 N/A

D. melanogaster: dcr-1Q396X Nonsense mutation

at residue 396. Amorph.

Pressman et al., 2012 N/A

D. melanogaster: dcr-1Q1147X Nonsense mutation

at residue 1147. Amorph.

Pressman et al., 2012 N/A

D. melanogaster: ago1Q127X Nonsense mutation

at residue 127. Protein null.

Pressman et al., 2012 N/A

D. melanogaster: ago1W894X Nonsense mutation

at residue 894. Protein null.

Pressman et al., 2012 N/A

D. melanogaster: ago1T908M Missense T-to-M

mutation at residue 908.

Pressman et al., 2012 N/A

D. melanogaster: ago1E808K Missense E-to-K

mutation at residue 808.

Pressman et al., 2012 N/A

D. melanogaster: ago1R937C Missense R-to-C

mutation at residue 937.

Pressman et al., 2012 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

D. melanogaster: w1118 Bloomington Drosophila Stock Center BDSC: 3605

Flybase: FBst0003605

D. melanogaster: hairy1 Insertion of gypsy TE

in the hairy promoter. Hypomorph.

Bloomington Drosophila Stock Center BDSC: 513

Flybase: FBst0000513

D. melanogaster: hairy41 Nonsense mutation

at residue 114. Protein null.

Bloomington Drosophila Stock Center BDSC: 5337

Flybase: FBst0005337

D. melanogaster: sev14 also called sevd2 EMS

induced. Protein null.

Bloomington Drosophila Stock Center BDSC: 10546

Flybase: FBal0015458

D. melanogaster: wgSp-1 Mutation in the

30 regulatory CRM of wg. Gain of function

(Neumann and Cohen, 1996)

Bloomington Drosophila Stock Center BDSC: 8379

Flybase: FBst0008379

D. melanogaster: RpS3Plac92

P element insertion mutant

Bloomington Drosophila Stock Center BDSC: 5627

Flybase: FBst0005627

D. melanogaster: RpS32 Bloomington Drosophila Stock Center BDSC: 1696

Flybase: FBst0001696

D. melanogaster: RpS131

P element insertion mutant

Bloomington Drosophila Stock Center BDSC: 2246

Flybase: FBst0002246

D. melanogaster: RpS15M(2)53

Synonym M(2)53[1]

Bloomington Drosophila Stock Center BDSC: 346

Flybase: FBst0000346

D. melanogaster: yanACT Transgenic P element:

Yan (Aop) CDS with all MAPK phosphorylation

sites mutated; with 30UTR lacking miR-7

binding sites, transcription under heterologous

GMR promoter control.

Rebay and Rubin, 1995 N/A

D. melanogaster: yanWT Transgenic P element:

Yan (Aop) CDS with with 30UTR lacking miR-7

binding sites, transcription under heterologous

GMR promoter control.

Rebay and Rubin, 1995 N/A

D. melanogaster: Yan-YFP [attP2] Pacman

construct containing yan (aop) locus with

C-terminal YFP fusion.

Webber et al., 2013 N/A

D. melanogaster: YanDmiR-7-YFP [attP2]

Pacman construct containing yan (aop) locus

with C-terminal YFP fusion and 4 miR-7

binding sites mutated.

This paper N/A

D. melanogaster: sfGFP-sens [VK37] Pacman

construct containing sens locus with

N-terminal sfGFP fusion.

Venken et al., 2006 N/A

D. melanogaster: sfGFP-sensm1m2 [VK37]

Pacman construct containing sens locus

with N-terminal sfGFP fusion and 2 miR-9a

binding sites mutated.

Giri et al., 2019 N/A

D. melanogaster: w ey-FLP; FRT42D

mir-7D1 / FRT42D GMR-Hid cl.

Li and Carthew, 2005 N/A

D. melanogaster: w ey-FLP; FRT42D

ago1W894 / FRT42D GMR-Hid cl

Pressman et al., 2012 N/A

D. melanogaster: w ey-FLP; FRT42D w+ Bloomington Drosophila Stock Center BDSC: 1928

Flybase: FBst0001928

D. melanogaster: w ey-FLP; FRT42D

GMR-Hid cl

Bloomington Drosophila Stock Center BDSC: 5251

Flybase: FBst0005251

D. melanogaster: w P{ey-FLP.N} ; ; ry Bloomington Drosophila Stock Center BDSC: 5576

Flybase: FBst0005576

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

D. melanogaster: w; P{His2Av-mRFP1}

Fusion of His2Av histone and RFP driven

by the His2Av promoter.

Bloomington Drosophila Stock Center BDSC: 23650

Flybase: FBst0023650

D. melanogaster: w; P{ILP2-GAL4} Bloomington Drosophila Stock Center BDSC: 37516

Flybase: FBst0037516

D. melanogaster: w; P{UAS-Rpr.C} Bloomington Drosophila Stock Center BDSC: 5824

Flybase: FBst0005824

D. melanogaster: w P{UAS-Rpr.C} Bloomington Drosophila Stock Center BDSC: 5823

Flybase: FBst0005823

Recombinant DNA

P[acman] YanDmiR-7-YFP This paper N/A

P[acman] Yan-YFP Webber et al., 2013 N/A

P[acman] sfGFP-sens Venken et al., 2006 N/A

P[acman] sfGFP-sensm1m2 Giri et al., 2019 N/A

Software and Algorithms

Code for the control theory modeling

and analysis@

This paper https://github.com/sebastianbernasek/

GRaM

Older pipeline for segmentation and

analysis of nuclear fluorescence in

imaginal discs

Peláez et al., 2015 https://www.dropbox.com/s/

62i91i17c9ja1c5/Pipeline_eye_eLife.

zip?dl=0

FlyEye Silhouette Suite: Newest software

for segmentation and analysis of nuclear

fluorescence in imaginal discs

This paper https://www.silhouette.amaral.

northwestern.edu/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Richard

Carthew (r-carthew@northwestern.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila Growth and Genetics
For all experiments, Drosophila melanogaster was raised using standard lab conditions and food. All experiments used female an-

imals unless stated otherwise. Stocks were either obtained from the Bloomington Stock Center, from listed labs, or were derived in

our laboratory (RWC). A list of all mutants and transgenics used in this study is in the Key Resources Table.

Experiments were performed using either homozygous mutant animals or trans-heterozygous mutants. Trans-heterozygous allele

combinations used were:

mir-9aE39/mir-9aJ22

hairy1/hairy41

wgSp-1/wg+

mir-7D1/Df(2R)exu1

dcr-1+/dcr-1Q1147X

dcr-1K43X/dcr-1Q1147X

dcr-1W94X/dcr-1Q1147X

dcr-1Q396X/dcr-1Q1147X

ago1+/ago1Q127X

ago1W894X/ago1Q127X

ago1T908M/ago1Q127X

ago1E808K/ago1Q127X

ago1R937C/ago1Q127X
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To genetically ablate the insulin producing cells (IPCs) of the brain, yw animals were constructed bearing an ILP2-GAL4 gene on

chromosome III and aUAS-Reaper (Rpr) gene on chromosome I or II.Rpr is a pro-apoptotic gene that is sufficient to kill cells in which

it is expressed (Lohmann et al., 2002). ILP2-GAL4 fuses the insulin-like peptide 2 gene promoter to GAL4, and specifically drives its

expression in brain IPCs (Rulifson et al., 2002). Examination of ILP2-GAL4 UAS-Rpr larval brains showed that they almost completely

lacked IPCs (data not shown). Previous studies found that IPC-deficient adults are normally proportioned but of smaller size (Rulifson

et al., 2002). It takes almost twice the length of time to complete juvenile development, and juveniles have a 40% elevation in blood

glucose, consistent with insulin-like peptides (ILPs) being essential regulators of glucose metabolism in Drosophila (Broughton et al.,

2005; Ikeya et al., 2002; Rulifson et al., 2002).We confirmed that thismethod of IPC ablation results in small but normally proportioned

adults, and it takes almost twice the normal time to develop into adults (Figures 1B and 1C). We also examined whether IPC ablation

reduced mitochondrial respiration. We did this by immunostaining larval wing imaginal disc peripodial cells for the alpha subunit of

mitochondrial ATP synthase. The alpha subunit is a core of the ATP synthase complex that resides in the inner membrane and

protrudes into the matrix. Wild-type peripodial cell mitochondria appear highly reticulated, whereas mitochondria from IPC-ablated

tissue appear fragmented (Figure S1). Moreover, ATP synthase abundance is reduced in cells from IPC-ablated larvae. These obser-

vations are consistent with the effects of caloric restriction onmitochondria; themitochondriamembrane potential is reduced (López-

Lluch et al., 2006), and abundance of proteins involved in oxidative phosphorylation, including Complex V subunits are reduced

(Lanza et al., 2012). For all wild-type controls, we tested animals bearing either the ILP2-GAL4 or UAS-Rpr gene in their genomes.

The IPCs synthesize and release three ILPs to regulate glucose metabolism (Brogiolo et al., 2001; Broughton et al., 2005; Ikeya

et al., 2002). To rule out the possibility that other hormones in IPCs are responsible for themetabolic, growth and developmental phe-

notypes of IPC-ablated animals, a number of labs performed complementary experiments. Rulifson et al. (2002) showed that growth

rate, developmental rate, and final body size of IPC-ablated animals were highly similar to animals that had amutation in the gene that

encodes the Insulin Receptor. Moreover, they ablated the IPCs and then ectopically expressed ILP2 in other cells. This rescued the

growth rate, developmental rate, and final size of animals. Zhang et al. simultaneously mutated five of the ILP genes (Zhang et al.,

2009). This mutant had a reduced growth rate and final body size that was highly similar to animals that had their IPCs ablated. More-

over, mutant animals generated 30% less heat output as measured by whole-body calorimetry (Zhang et al., 2009). Thus, genetic

manipulation of ILP genes phenocopies and rescues IPC ablation, arguing that loss of ILP expression is the reason why IPC ablation

has effects on growth, metabolism and size.

To reduce the rate of general protein synthesis in cells, we made use of loss-of-function mutations in genes encoding various ri-

bosomal proteins (RPs), which cause the ‘‘Minute’’ syndrome of dominant, haploinsufficient phenotypes, including prolonged devel-

opment (Saebøe-Larssen et al., 1998). A total of 64 RP genes exhibit a Minute syndrome when mutated (Marygold et al., 2007). We

selected a subset of these genes to reduce protein synthesis rate. Since one of these, RpS3, encodes an RP that also functions in

DNA repair (Graifer et al., 2014), we tested it along with other RP genes in certain genetic experiments. The mutations used were:

RpS3Plac92 (Saebøe-Larssen et al., 1998), RpS32 (Ferrus, 1975), RpS131 (Saebøe-Larssen et al., 1998), and RpS15M(2)53 (Golic

and Golic, 1996). For wild-type controls, animals were w1118.

To test for suppression of microRNA phenotypes by RP mutation we attempted to combine six RP mutants with ago1 and dcr-1

alleles. However, all were unilaterally lethal or sterile during the construction phase of the process, andwewere unsuccessful.Minute

mutants are dominant and sick, so this outcome was not surprising; indeed, difficulties were also encountered in constructing RP

mutants with the individual repressor gene mutants.

Transgenesis
The recombineered Yan-YFP BAC transgene was previously described (Webber et al., 2013). We modified the gene by site-directed

recombineering to mutate the four identified miR-7 binding sites within the yan (aop) gene (Li and Carthew, 2005). The binding sites

and the mutations are listed below. The seed sequence is highlighted in bold. The sequence of the mutations, which are localized to

the seeds, are shown in bold below each binding site sequence.

Site 1 chr2L: 2,158,120 - 2,158,124

50-TCACCGCACTACATCCATCTTCCA-30

ATAGGAAA

Site 2 chr2L: 2,157,048 - 2,157,052

50-ATAGAAAAACATTGGCTTCCA-30

GGAGGAAA

Site 3 chr2L: 2,156,854 - 2,156,858

50-ACGATCTTACCACCACACTTCCA-30

CAAGGAAA

Site 4 chr2L: 2,156,564 - 2,156,568

50-TCGCCACAATACCTGTTCTTCCA-30

TTAGGAAA
e4 Cell 178, 980–992.e1–e11, August 8, 2019



The mutated transgene (YanDmiR-7-YFP) was shuttled into the P[acman] vector (Venken et al., 2006), and inserted into the

same genomic landing site on chromosome 3 (attP2) as Yan-YFP. One copy of the His2Av-mRFP transgene was recombined with

the YanDmiR-7-YFP or Yan-YFP transgene in order to normalize YFP expression to a housekeeping protein, in this case histone

H2A (Peláez et al., 2015). The His2Av-mRFP Yan-YFP (YanDmiR-7-YFP) chromosome was homozygosed, and placed in a yanER443 /

yanE884 mutant background so that the endogenous yan gene did not make any protein.

The recombineered sfGFP-sens BAC transgene was generated as described (Cassidy et al., 2013), and the transgene was landed

in the genome at VK37 (22A3). The transgene was mutated by site-directed recombineering as described (Cassidy et al., 2013) to

delete the two miR-9a binding sites within the sens gene (sfGFP-sensm1m2). This transgene was also landed at VK37. The sfGFP-

sens (sfGFP-sensm1m2) chromosome was homozygosed, and placed in a sensE1 mutant background to ensure that endogenous

sens made almost no protein.

METHOD DETAILS

R7 Cell Analysis in the Eye
Individuals were synchronized at the larval-pupal transition, and incubated for a further 48 hours at 23�C. Eyes were dissected from

pupae in ice-cold Phosphate Buffered Saline (PBS), and were fixed for 40 min in 4% paraformaldehyde/PBS. They were permeabi-

lized by incubation in PBS + 0.1% Triton X-100 (PBST) and co-incubated with mouse anti-Prospero (1:10 in PBST, MR1A mAb,

Developmental Studies Hybridoma Bank) to stain R7 and bristle cells plus rat anti-Elav (1:10 in PBST, 7E8A10 mAb, Developmental

Studies Hybridoma Bank) to stain all R cells. After 60 min, eyes were washed 3 times in PBST and incubated for 60 min in goat anti-

mouse Alexa546 and goat anti-rat Alexa633 (1:100 in PBST, Invitrogen). Eyes were washed 3 times in PBST, cleared in Vectashield

(Vector Labs), and mounted for microscopy. Samples were scanned and imaged in a Leica SP5 confocal microscopy system.

Drosophila compound eyes have approximately 800 ommatidia. We scored all ommatidia for each imaged eye sample. The number

of scored ommatidia per sample ranged between 481 and 837 (with a median of 594). Fewer than 800 ommatidia were scored per

sample because in most cases, some eye tissue was lost during dissection and handling.

Relative Viability
Females bearing either a dcr-1Q1147X or ago1Q127Xmutant chromosome over a balancer chromosomewere crossed tomales bearing

mutant dcr-1 or ago1 chromosomes over a balancer chromosome. F1 progeny were raised and the numbers of animals that reached

either pupal or adult stage were tallied. If the non-balancer chromosome is 100% viable when homozygous, then 33.33% of the F1

progeny would not carry a balancer chromosome. We calculated viability in this manner, relative to balancer viability. Replicate

crosses were performed and analyzed. Between 457 and 776 F1 animals (median = 647) were counted in the replicate ago1 crosses.

Between 234 and 380 F1 animals (median = 285) were counted in the replicate dcr-1 crosses.

Eye Mispatterning
Genetic mosaic animals bearing mir-7D1 homozygous mutant eyes were generated using the FLP-FRT system. The animals’

genotype was: w ey-FLP; FRT42D mir-7D1 / FRT42D GMR-Hid cl. Matching wild-type control animals’ genotype was: w ey-FLP;

FRT42D P[w+] / FRT42D GMR-Hid cl. Individuals also contained either ILP2-GAL4 alone (control) or ILP2-GAL4 UAS-Rpr (IPC

ablated) transgenes. All individuals were raised at 29�C. Eye roughening was scored as previously described (Li et al., 2009). Sample

population sizes were between 264 and 467 individuals. For RpS3 interactions with mir-7, trans-heterozygous mir-7 mutants and

matched wild-type controls (Df(2R)exu1/+) were raised at 29�C to adulthood. The RpS32 allele was combined with mir-7 alleles.

Eye roughening was scored as previously described (Li et al., 2009). Genetic mosaic animals bearing ago1W894 homozygous mutant

eyes were generated using the FLP-FRT system. The animals’ genotype was: w ey-FLP; FRT42D ago1W894 / FRT42D GMR-Hid cl.

Matching wild-type control animals’ genotype was:w ey-FLP; FRT42D P[w+] / FRT42DGMR-Hid cl. Individuals also contained either

ILP2-GAL4 alone (control) or ILP2-GAL4 UAS-Rpr (IPC ablated) transgenes. For experiments with Yan transgenics, animals bearing

one copy of either the YanACT or YanWT (Rebay and Rubin, 1995) transgene also contained either ILP2-GAL4 alone (control) or ILP2-

GAL4 UAS-Rpr (IPC ablated) transgenes.

Bristle Scoring
Animals of the correct genotype were allowed to age for 3 days after eclosion. The number of scutellar bristles was counted for each

individual. Since these large bristles are positioned with high regularity and number on the scutellum, there was no ambiguity in

counting the scutellar bristle number. For wg experiments, the number of sternopleural bristles was counted for each individual.

Again, the position and number of these bristles is highly regular.

Quantification of sfGFP-Sens Expression in the Wing Disc
Wing discs from white-prepupal females were dissected out in ice-cold PBS. Discs were fixed in 4% paraformaldehyde in PBS for

20 minutes at 25�C and washed with PBS containing 0.3% Tween-20. Then they were stained with 0.5 mg/ml 40,6-diamidino-2-

phenylindole (DAPI) andmounted in Vectashield (Vector Labs). Discs weremounted apical side up and imagedwith identical settings
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using a Leica TCS SP5 confocal microscope. All images were acquired at 100x magnification at 20483 2048 resolution with a 75 nm

x-y pixel size and 0.42 mmz separation. Scans were collected bidirectionally at 400MHz and 6x line averaged. Wing discs of different

genotypes were mounted on the same microscope slide and imaged in the same session for consistency in data quality.

For each wing disc, five optical slices containing Sens-positive cells along the anterior wing margin were chosen for imaging and

analysis. See Data S1 for examples of typical image data. A previously documented custom MATLAB script was used to segment

nuclei in each slice of the DAPI channel (Peláez et al., 2015). High intensity nucleolar spots were smoothed out to merge with the

nuclear area to prevent spurious segmentation. Next, cell nuclei were identified by thresholding based on DAPI channel intensity.

Segmentation parameters were optimized to obtain nuclei with at least 100 pixels and no more than 4000 pixels.

The majority of imaged cells did not reside within the proneural region, and therefore they displayed background levels of fluores-

cence scattered around some mean level. We calculated the ‘‘mean background’’ in the green channel of each disc individually. We

did this by fitting a Gaussian distribution to the population and finding the mean of that fit. In order to separate sfGFP-Sens-positive

cells, we chose a cut-off percentile based on the normal distribution, below which cells were deemed sfGFP-Sens-negative. We set

this cut-off at the 84th percentile for all analysis since empirically it provided the most accurate identification of proneural cells (Giri

et al., 2019). To normalize measurements across tissues and experiments, this value was subtracted from the total measured fluo-

rescence for all cells in that disc. Only cells with values above the threshold for sfGFP fluorescence were assumed Sens positive (usu-

ally 30% of total cells) and carried forward for further analysis.

We analyzed > 10 replicate wing discs for each treatment. In total, we measured wild-type sfGFP-Sens expression in 50,788 cells

from wild-type RpS13 discs and 18,945 cells from discs heterozygous mutant for RpS131. We measured mutant sfGFP-Sensm1m2

expression in 79,835 cells from wild-type RpS13 discs and 12,954 cells from discs heterozygous mutant for RpS131. The probability

density plots were bootstrapped 1000 times by sampling with replacement, and the 95% CI was calculated by computing the

2.5/97.5th percentile y-value of probability density for each x-value.

Quantification of Yan-YFP Expression Dynamics in the Eye
White-prepupal eye discs were dissected, fixed, and imaged by confocal microscopy for YFP and RFP fluorescence, as previously

described (Peláez et al., 2015). Briefly, samples fixed in 4% paraformaldehyde/PBS were kept in the dark at �20�C and imaged no

later than 18-24 hr after fixation. In all cases, 1024 3 1024 16-bit images were captured using a Leica SP5 confocal microscope

equipped with 40X oil objective. During imaging, discs were oriented with the equator parallel to the x axis of the image. Optical slices

were set at 0.8mm slices (45-60 optical slices) with an additional digital zoom of 1.2-1.4 to completely image eye discs from basal to

apical surfaces. Images recorded a region of at least 6 rows of ommatidia on each side or the dorsal-ventral eye disc equator. All

discs for a given condition were fixed, mounted, and imaged in parallel to reduce measurement error. Sample preparation, imaging,

and analysis were not performed under blind conditions. See Data S1 for examples of typical image data.

Image data was processed for automatic segmentation and quantitation of RFP and YFP nuclear fluorescence as described

(Peláez et al., 2015). Briefly, cell segmentation was performed using a H2Av-mRFP marker as a reference channel for identification

of cell nuclei boundaries. Each layer of the reference channel was segmented independently. A single contour containing each unique

cell was manually selected and assigned a cell type using a custom graphic user interface. For each annotated cell contour, expres-

sion measurements were obtained by normalizing the mean pixel fluorescence of the YFP channel by the mean fluorescence of the

His-RFP channel. This normalization serves to mitigate variability due to potentially uneven sample illumination, segment area, and

differences in protein expression capacity between cells. We assigned cell-type identities to segmented nuclei by using nuclear po-

sition and morphology, two key features that enable one to unambiguously identify eye cell types without the need for cell-specific

markers (Wolff and Ready, 1993). This task was accomplished using FlyEye Silhouette; an open-source package for macOS that in-

tegrates our image segmentation algorithm with a GUI for cell type annotation. Subsequent analysis and visualization procedures

were implemented in Python.

Cell positions along the anterior-posterior axis were mapped to developmental time as described previously (Peláez et al., 2015).

This depends on two assumptions that have been extensively validated in the literature. One, the furrow proceeds at a constant

velocity of one column of R8 neurons per two hours, and two, minimal cell migration occurs. For each disc, Delaunay triangulations

were used to estimate the median distance between adjacent columns of R8 neurons. Dividing the furrow velocity by the median

distance yields a single conversion factor from position along the anterior-posterior axis to developmental time. This factor was

applied to all cell measurements within the corresponding disc. This method does not measure single cell dynamics, but rather

aggregate dynamics across the developmental time course of cells in the eye.

Moving averages were computed by evaluating the median value among a collection of point estimates for the mean generated

within a sliding time window. Each point estimate was generated via a hierarchical bootstrapping technique in which we resampled

the set of eye discs, then resampled the aggregate pool of cell measurements between them. This novel method enhances our ex-

isting approach (Peláez et al., 2015) by capturing variation due to the discretized nature of eye disc sample collection. A window size

of 500 sequential progenitor cells was used in all cases, but our conclusions are not sensitive to our choice of window size. Yan level

measurements were pooled acrossmultiple replicate eye discs. An automated approachwas used to align these replicate samples in

time. First, a disc was randomly chosen to serve as the reference population for the alignment of all subsequent replicates. Cells
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from each replicate disc were then aligned with the reference population by shifting them in time. The magnitude of this shift was

determined by maximizing the cross-correlation of moving-average Yan-YFP expression Y(t) with the corresponding reference

time series X(t). Rather than raw measurements, moving averages within a window of ten cells were used to improve robustness

against noise. This operation amounts to:

argmax
dt

E

�ðYðt +dtÞ � mY ÞðXðt +dtÞ � mXÞ
sYsX

�

where, m and s are the mean and standard deviation of each tim
e series, and dt is the magnitude of the time shift.

Different experimental treatments (e.g., wild-type andmiR-7 null) were aligned by first aligning the discswithin each treatment, then

aggregating all cells within each treatment and repeating the procedure with the first treatment serving as the reference.We analyzed

four to seven replicate eye discs for each treatment in two separate experiments. In total, we measured wild-type Yan-YFP levels in

4,518 cells in normally metabolizing samples and 4,379 cells in slowly metabolizing samples. We measured mutant YanDmiR-7-YFP

levels in 5,382 cells in normally metabolizing samples and 6,716 cells in slowly metabolizing samples.

ATP Synthase Immunofluorescence
Wandering third instar larvae were dissected and wing discs were fixed in 4% paraformaldehyde/PBS. Wing discs were permeabi-

lized by incubation in PBST and co-incubated with 1:500 mouse anti-ATP5A (Abcam) to stain the alpha subunit of Complex V. The

antibody has been demonstrated to react withDrosophila ATP synthase (Lee et al., 2018b). After 60min, eyes were washed 3 times in

PBST and incubated for 60min in goat anti-mouse Alexa546 (1:100 in PBST, Invitrogen). Eyeswerewashed 3 times in PBST, counter-

stainedwith DAPI to visualize nuclei, and cleared in Vectashield (Vector Labs). The peripodial membrane of disc samples was imaged

with a Leica SP5 confocal microscopy system.

Mathematical Modeling
Our modeling framework directly describes the emergent expression dynamics of a single gene within a cascade of developmental

gene expression. It leverages two key concepts from control theory. The first is the notion of Lyapunov stability; that is, systems tend

to remain near stable equilibria. The second is the Hartman-Grobman theorem, which posits that systems deviate approximately lin-

early about these fixed points (Arrowsmith and Place, 1992). We therefore developed a model that describes the time evolution of

linear deviations about the basal protein level that exists before gene expression is induced and after it subsides.

Specifically, a linear time invariant system describes the time evolution of deviations (D) in activated DNA (DD), mRNA (DR), and

protein (DP) state variables in response to a change in stimulus (DI) that induces gene activation. These discrete state variables depict

the extent to which gene expression has deviated from its basal level at any point in time. Transitions between each of the variables’

states are governed by the stochastic processes listed below.
Reaction State Transition Propensity Parameter Value [min-1]

gene activation DD / DD + 1 k1 DI 1

transcription DR / DR + 1 k2 DD 1

translation DP / DP + 1 k3 DR 1

gene deactivation DD / DD – 1 g1 DD 1

transcript decay DR / DR – 1 g2 DR 1 3 10�2

protein decay DP / DP – 1 g3 DP 1 3 10�3
Borrowing a third concept from control theory, we assume all repressors exert proportional control on protein levels. In other

words, we abstract all regulatory processes using linear feedback terms:
Reaction State Transition Propensity Parameter Value [min-1]

transcriptional feedback DD / DD – 1 h1 DP 5.0 3 10�4

post-transcriptional feedback DR / DR – 1 h2 DP 1.0 3 10�4

post-translational feedback DP / DP – 1 h3 DP 5.0 3 10�4
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In the continuum limit, this model yields a deterministic system of differential equations:

dDD

dt
= k1DI� g1DD� S

N

h1DP

dDR

dt
= k2DD� g2DR� S

N

h2DP

dDP

dt
= k3DR� g3DP� S

N

h3DP
Where ki are activation, transcription, or translation rate constants
, gi are degradation constants, hi are feedback strengths, and each

species may be subject to N independent repressors. In control parlance, three sequential first-order transfer functions with inter-

spersed feedback relate input disturbances to deviations in output protein level (Figure S3A).

We contend that the Hartman-Grobman theorem holds for the processes under study, but we also recognize that transcriptional

and regulatory kinetics are often described using nonlinear kinetics. Therefore, we also considered two nonlinear modeling frame-

works, both of which recapitulated the same results (Figures S4F, S4G, S6F, and S6G).

Dependence of Model Parameters on Metabolic Conditions
IPC ablation reduces cellular glucose consumption. Presumably this would affect either the production and consumption of ATP, or

the production and consumption of substrates for RNA and protein synthesis (or both). The precise effects are unknown, so we inde-

pendently modeled each scenario. Since ATP concentration remains fairly constant when respiration is limited (Brown, 1992), ATP

flux (and ATP synthesis) is assumed to decrease. Because transcription, translation, and protein degradation all require ATP turnover,

we halved their rate parameters under conditions of reduced glucose consumption. Under conditions of reduced substrate availabil-

ity for RNA/protein synthesis, we assumed that only transcription and translation rates are affected by limiting fluxes of nucleotides

and amino acids. We assumed only the translation rate is affected under conditions of reduced RP gene expression. These assump-

tions are incorporated as changes to the model’s rate parameters as listed below.
Parameter Normal Metabolism Reduced ATP

Consumption

Reduced RNA/Protein

Substrates

Reduced Protein

Synthesis Rate

transcription rate constant k2
1
2 k2

1
2 k2 k2

translation rate constant k3
1
2 k3

1
2 k3

1
2 k3

protein decay rate constant g3
1
2 g3 g3 g3
In all cases, feedback strengths were reduced in order to account for the intermediate processes abstracted by each feedback

element. Feedback strength parameters (hi) were reduced four-fold under conditions of reduced energy metabolism and reduced

RNA/protein substrate availability. This scaling assumes that both transcription and translation occur within the arbitrarily complex

regulatory motifs represented by each repressor. This is a reasonable assumption for repressor proteins such as transcription factors

and kinases. For RNA repressors such as microRNAs, feedback strength parameters could instead be reduced only two-fold to ac-

count for their reduced transcription rates. However, microRNAs must be transcribed, processed, and act with effector proteins in

order to repress their targets. From a control perspective, these reductions in feedback strength correspond to fourfold reduction of

the transcriptional feedback gain (KC1) and twofold reduction in the post-transcriptional and post-translational feedback gains (KC2

and KC3). Feedback strength parameters (hi) were only reduced two-fold under reduced protein synthesis conditions. This implies

that the transcriptional and post-transcriptional feedback gains (KC1 andKC2) decrease twofold while the post-translational feedback

gain (KC3) remains constant. Each of these dependencies are summarized below.
Parameter Normal Metabolism Reduced ATP

Consumption

Reduced RNA/Protein

Substrates

Reduced Protein

Synthesis Rate

transcriptional feedback strength h1
1
4h1

1
4h1

1
2h1

post-transcriptional feedback strength h2
1
4h2

1
4h2

1
2h2

post-translational feedback strength h3
1
4h3

1
4h3

1
2h3
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Model Simulations
Default parameter values were based on approximate transcript and protein synthesis and turnover rates for animal cells reported in

the literature (Milo and Phillips, 2016), while gene activation and decay rates were arbitrarily set to a significantly faster timescale.

Default feedback strengths for repressors acting at the gene, transcript, or protein levels were chosen such that�25%–50% of sim-

ulations failed to reach the threshold under normal conditions when one of two identical repressors was lost. Population-wide expres-

sion dynamics were estimated by simulating 5000 output trajectories in response to a three-hour transient step input to the gene

activation rate. Simulations were performed using a custom implementation of the stochastic simulation algorithm (Gillespie,

1977). The algorithm constrains solutions to the set of discrete positive values, consistent with linearization about a basal level of

zero gene activity. This simplifying assumption is based on the near-zero basal activities expected in the experimental systems,

but is not required to support the conclusions of the model (Figures S4D and S6D).

Evaluation of Error Frequencies and Changes in Expression Dynamics
Gene expression trajectories were simulated both with (full repression) and without (partial repression) a second repressor. The time

point at which the full-repression simulationsmean level reached 30%of itsmaximum value was taken to be the commitment time. At

this time, a threshold for developmental success was set at the 99th percentile of protein levels subject to full-repression. Error fre-

quencies were obtained by evaluating the fraction of simulated protein levels that exceeded this threshold. Per this definition, the

minimum possible error frequency is one percent. For simplicity we subtracted this percentage point from all reported error

frequencies.

Protein expression dynamics were compared by evaluating the fraction of partially-repressed simulation trajectories in excess of

the 99th percentile of fully-repressed trajectories at each point in time t. We refer to this overexpression value as E(t). These values

were then averaged across the time course, beginning with the reception of the input signal and ending at the previously defined

commitment time, t.

Percent overexpressionh
100

t

Z t

0

EðtÞdt
Percent overexpression reflects the extent to which the expressi
on dynamics differ between the two sets of simulated trajectories

(Figures S5A–S5C).

Parameter Variation and Sensitivity to Model Assumptions
We conducted parameter sweeps to confirm the robustness of each computational result. In each sweep, all model parameters were

varied across a ten-fold range (±�three-fold). We quasi-randomly generated 2500 such parameter sets, then independently ran six

sets of five thousand simulations for each: 1) full feedback with normal metabolism and translation, 2) partial feedback with normal

metabolism and translation, 3) full feedbackwith reduced energymetabolism, 4) partial feedbackwith reduced energymetabolism, 5)

full feedback with reduced protein synthesis, 6) partial feedback with reduced protein synthesis. Full-repression systems were as-

signed two copies of each feedback element present in the corresponding partial-repression system. Error frequencies were eval-

uated as described above.

Each sweep sampled a nine-dimensional space. Projecting the results of all simulations onto each of the 36 orthogonal 2-D planes

revealed that error frequency is greater than 1% for almost all combinations of parameter values (Figure S3B). While it helps illustrate

our parameter sweepmethodology, the 2-D visualization does not offer sufficient insight into the global trend to justify its complexity.

We instead opted for a condensed 1-D projection, which clearly indicates that partial loss of repression induces an increase in error

frequency across a broad parameter range (Figure S4A). We also varied the level of the success threshold, and confirmed that loss of

a repressor increases developmental error irrespective of where the success threshold is set (Figure S3C). Repressor loss also in-

creases protein levels throughout the time course for the vast majority of parameter sets (Figure S5C).

The difference in error frequency between simulations with normal metabolism and reduced metabolism are shown in Figures S4A

and S4B for all parameter sets, while the corresponding difference between simulations with normal protein synthesis and reduced

protein synthesis are shown in Figure S6A. There is a general trend of decreased error frequency with partial repression under

reduced energy metabolism and reduced protein synthesis conditions, irrespective of where the threshold is set (Figures S4C

and S6C). The difference in protein overexpression between simulations with normal versus reduced metabolism are shown for

all parameter sets in Figure S5D, while the corresponding difference between simulations with normal and reduced protein synthesis

are shown in Figure S6B. Most parameter sets show less overexpression with partial repression when either metabolism or protein

synthesis are reduced.

Our conclusion also persists when a nonzero basal stimulus is introduced. We conducted an additional parameter sweep in which

the stimulus consists of a transient step change between input values of DI = 0.1 and DI = 1.0. Simulations were carried out on

an absolute basis, and were allowed sufficient time to reach a non-zero steady state before and after the stimulus was applied.

The resultant protein level trajectories for each of the six sets of simulations were converted to deviation form by subtracting the
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respective population-wide mean final value. Error frequencies were then evaluated as previously described. Despite the inclusion of

a nonzero basal stimulus, error frequencies remained broadly suppressed under conditions of both reduced energy metabolism and

reduced protein synthesis (Figures S4D and S6D).

The preceding simulations assume the stimulus (input) is a unit step that persists for three hours regardless of metabolic condi-

tions. Alternatively, metabolic conditions might affect stimulus duration, particularly if the upstream processes responsible for the

input are also governed by metabolically delayed processes. We find that the general prediction made by our model – that reduced

energy metabolism and reduced protein synthesis limit sensitivity to loss of regulation – persists in roughly half of cases if we apply

four-fold and two-fold extensions of input duration under reduced energy metabolism and reduced protein synthesis conditions,

respectively (Figures S4E and S6E). Notably, in many cases scaling the input duration with metabolic condition yields the opposite

effect. However, these instances correspond to simulations in which the extended stimulus yields output protein levels greater than

those observed under normal metabolic conditions, suggesting that a four-fold increase in stimulus duration may be excessive.

Alternate Models
The number of active sites firing transcription within a cell is limited by gene copy number, but the activated-DNA state in our simple

linear model is unbounded. To test whether error frequency suppression persists when an upper bound on gene activity is intro-

duced, we considered a simple two-state transcription model whose deterministic representation is given by:

dGon

dt
= kGGoff I� gGGon �

XNg

hGGonP

dGoff

dt
= � dGon

dt

dR

dt
= kRGon � gRR�

XNr

hRP

dP

dt
= kPR� gPP�

XNp

hPP
where Gon and Goff are the on- and off- states of a gene; I, R and
 P are the input, transcript, and protein levels; ki, gi, and hi are the

synthesis, decay, and feedback rate constants for species i; and Ng, Nr, and Np are the number of transcriptional, post-transcrip-

tional, and post-translational repressors, respectively. Rate parameter dependencies upon metabolic and protein synthesis condi-

tions were analogous to those used in the linear model, and are tabulated below.
Parameter Normal Metabolism Reduced Metabolism Reduced Protein Synthesis

transcription rate constant kR
1
2 kR kR

translation rate constant kP
1
2 kP

1
2 kP

protein decay rate constant gP
1
2 gP gP

transcriptional feedback strength hG
1
4hG

1
2hG

post-transcriptional feedback strength hR
1
4hR

1
2hR

post-translational feedback strength hP
1
4hP

1
2hP
We performed a parameter sweep of this model in which all simulations were initialized as diploid (Goff = 2). Despite the limitation

placed on gene activity, error frequency remains elevated under normal growth conditions and broadly suppressedwhenmetabolism

or protein synthesis are reduced (Figures S4F and S6F).

Gene expression models also frequently utilize cooperative kinetics in order to capture the nonlinearities and thresholds encoun-

tered in transcriptional regulation. We reformulated our gene expression model in terms of Hill kinetics:

dR

dt
=

kR

1+

�
1

2I

�H
P
Ng

2
64 1

1+

�
P

Kr

�Hr

3
75� gRR�

XNr

hRP

dR

dt
= kPR� gPP�

XNp

hPP
where I,R, and P are the input, transcript, and protein level
s; ki, gi, and hi are the synthesis, decay, and linear feedback rate constants

for species i; Nr, and Np are the number of post-transcriptional, and post-translational linear repressors; H is a transcriptional Hill
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coefficient; and Kr and Hr are the half-maximal occupancy level and Hill coefficient of each of the Ng transcriptional repressors. The

stimulus level corresponding to half-maximal transcription rate was fixed at 0.5 because we only consider a binary input signal. Rate

parameters were again scaled with metabolic and protein synthesis conditions in a manner analogous to the linear model.
Parameter Normal Metabolism Reduced Metabolism Reduced Protein Synthesis

transcription rate constant kR
1
2 kR kR

translation rate constant kP
1
2 kP

1
2 kP

protein decay rate constant gP
1
2 gP gP

post-transcriptional feedback strength hR
1
4hR

1
2hR

post-translational feedback strength hP
1
4hP

1
2hP
The half-maximal occupancy level and Hill coefficients of transcriptional repressors were assumed to be independent of growth

rate. Another parameter sweep revealed that despite the incorporation of cooperative binding kinetics, error frequency remains

elevated under normal metabolic conditions and is broadly suppressed when metabolism or protein synthesis are reduced (Figures

S4G and S6G).

QUANTIFICATION AND STATISTICAL ANALYSIS

Population proportions were compared using a Chi-square test with Yates’ correction and a Fisher’s exact test. Both tests gave

similar results. All tests involving multiple experimental groups were Bonferroni corrected. Analysis of sev experiments scoring R7

cells applied a one-way ANOVA with Bonferroni correction. Relative viabilities were compared using a Mann-Whitney-Wilcoxon

test with Bonferroni correction. These tests were performed using Prism 7 (GraphPad) software. P values shown in figures are

presented from tests with the most conservative value shown if more than one test was performed on data. * p < 0.05; ** p <

0.01; *** p < 0.001; **** p < 0.0001

Confidence intervals for the moving average of Yan-YFP expression were inferred from the 2.5th and 97.5th percentile of 1000

point estimates of the mean within each moving-average window. Point estimates were generated by bootstrap resampling with

replacement of the expression levels within each window.

Analysis of sfGFP-Sens fluorescence was performed using two independent approaches. 1) For each genotype, 1000 point-esti-

mates were made of the median fluorescence level in cells. Point estimates were generated by bootstrap resampling with replace-

ment of the cell samples within each genotype. Point estimates from wild-type sfGFP-Sens were then randomly paired with point

estimates from miR-9a-resistant sfGFP-Sens to derive a set of 1000 point-estimates of the fold-change in median sfGFP-Sens

expression. Confidence intervals for the average fold-change in sfGFP-Sens expression were inferred from the 0.5th and 99.5th

percentile of these point estimates. 2) The distributions of fluorescence from wild-type sfGFP-sens and mutant sfGFP-sensm1m2

cell populations were compared using a Mann-Whitney-Wilcoxon test implemented in R. By calculating the difference between all

randomly paired cell samples from wild-type versus mutant, the location shift m is estimated as the median of the difference between

a sample from sfGFP-Sens and a sample from sfGFP-Sensm1m2. Confidence intervals for the shift were inferred from the 2.5th and

97.5th percentile of the set of differences.

There was no exclusion of any data or subjects.

DATA AND CODE AVAILABILITY

Data Availability
The phenotype datasets generated and/or analyzed during the current study are available from the corresponding authors on

request.

The dataset of all model simulations:

https://arch.library.northwestern.edu/concern/generic_works/n296wz31t

The Yan-YFP dataset: https://arch.library.northwestern.edu/concern/generic_works/n296wz31t

The sfGFP-Sens dataset:

https://www.dropbox.com/sh/1m9silkrs76rvpr/AADunGcGUylP2rQ9WRo5bXVha?dl=0

Code Availability
All code is publicly available at:

Modeling and analysis: https://github.com/sebastianbernasek/GRaM

Pipeline for Eye Silhouette imaging analysis: https://www.silhouette.amaral.northwestern.edu/

Older pipeline for imaging analysis: https://www.dropbox.com/s/62i91i17c9ja1c5/Pipeline_eye_eLife.zip?dl=0
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Supplemental Figures

ILP2-GAL4 ILP2-GAL4 > UAS-Rpr

A B

Figure S1. ATP Synthase Abundance Is Reduced in Cells of IPC-Ablated Larvae, Related to Figure 1
Shown are peripodial cells of wing imaginal discs from third instar larvae stained with an antibody recognizing the alpha subunit of mitochondrial ATP synthase

(yellow). Cells have been counterstained with DAPI to highlight their nuclei (blue). ATP synthase localization and abundance are different between wild-type (A)

and IPC-ablated (B) samples. Wild-type mitochondria appear highly reticulated, whereas mitochondria from IPC-ablated tissue appear fragmented. Moreover,

ATP synthase abundance is reduced in the IPC-ablated tissue.
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Figure S2. Schematics of Fate Determination of R and Sensory Organ Cells, Related to Figures 1 and 2

(A) Relevant transcription factors, microRNAs, and signaling factors involved in regulating R cell fate determination in the Drosophila eye. (B) Relevant tran-

scription factors, microRNAs, and signaling factors involved in regulating determination of Sensory Organ Cells, which ultimately form many of the sensory

bristles in the Drosophila adult.
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Figure S3. Model Demonstrating that Error Frequencies Are Broadly Increased When an Auxiliary Repressor Is Lost, Related to Figure 4

(A) Control theoretic depiction of the mathematical model. Arrows represent the flow of biochemical information, boxes contain transfer functions relating up-

stream and downstream signals, open circles indicate summation points. Transfer functions are expressed in the Laplace frequency domain.

(B) Each of the ninemodel parameters was varied by one order of magnitude centered around the default value as defined in the STARMethods. Simulations with

full and partial post-translational repression were performed, and error frequencies with partial repression were calculated using a threshold of 30%peak. Shown

is a grid of all 36 pairwise combinations of parameter variations. Error frequencies are projected as color heatmaps on the 36 squares. Error frequencies are high

(dark brown) for most combinations of parameter values.

(C) The error frequencies for all parameter sets from (B) were calculated over a range of threshold values. The minimum andmaximum of the threshold range was

10% and 90% of mean peak value. Shown are error frequencies incurred by partial repression. Each line represents one of the parameter sets from (B). The color

of each line reflects the extent that error frequency varies as a function of the threshold value. The darkest lines are those parameter sets whose error frequency

varies the most with the threshold. Error frequencies are much greater than zero no matter where the threshold is set.
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Figure S4. Reduced Energy Metabolism Diminishes the Importance of Repressors over a Wide Range of Model Conditions, Related to
Figure 4

(A–G) Each of the nine model parameters was varied by one order of magnitude centered around the default value as defined in the STAR Methods. Simulations

with full and partial repression were performed for each parameter set.

(A) Distribution of error frequency for all parameter sets under conditions of normal or slow energy metabolism.

(B) Distribution of the difference in error frequency between slow versus normal metabolism for all parameter sets.

(C) The error frequency differences for all parameter sets from (B) were calculated over a range of threshold values. The minimum and maximum of the threshold

rangewas 10%and 90%ofmean peak value. Shown are error frequency differences incurred by slowmetabolism. Each line represents one of the parameter sets

from (B). The color of each line reflects the extent that error frequency difference varies as a function of the threshold value. The darkest lines are those parameter

sets whose difference varies the most with the threshold. The vast majority of parameter sets exhibit some reduction in error frequency across all thresholds.

(D–G) Systematic modification of model conditions showing the difference in error frequency between slow versus normal metabolism for all parameter sets. (D)

Model where a nonzero basal stimulus is applied. (E) Model where input duration is increased four-fold by slow metabolism. (F) Model where an upper bound is

placed on the number of sites firing transcription. (G) Model where cooperative transcription kinetics are considered. (H) Partial repression imparts few errors

when RNA and protein synthesis rate parameter values are reduced by 50%.



Figure S5. Reductions in Energy Metabolism Limit the Extent to which Protein Expression Dynamics Are Affected by Loss of a Repressor,

Related to Figure 5

(A) Confidence bands span the 1st to 99th quantiles of protein trajectories simulated under full repression (gray) and partial repression (purple). The dashed purple

line denotes the lower bound of the purple confidence band. The symbol t denotes the commitment time as defined previously. (B) Partial repression causes

overexpression E(t), which is the fraction of simulations that exceed the confidence band observed under full repression (gray) at a given time point t. Orange-

brown color scale reflects the value of E(t) for each time point. (C) Percent overexpression caused by loss of a repressor for model simulations performed with

2500 independent parameter sets. Percent overexpression is the fraction of simulations that exceed the confidence band, averaged over the entire time course. A

maximum of 100% overexpression would occur when all simulations exceed the confidence band at all time points. Overexpression is large for most parameter

sets. (D) Distribution of the difference in percent overexpression between slow versus normal metabolism for all parameter sets. For the majority of parameter

sets, overexpression is greatly reduced when energy metabolism is slow.
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Figure S6. A Reduced Protein Synthesis Rate Diminishes the Effects of Repressor Loss over a Wide Range of Model Conditions, Related to

Figure 7

Each of the ninemodel parameters was varied by one order of magnitude centered around the default value as defined in the STARMethods. Simulations with full

and partial repression were performed for each parameter set. (A) Distribution of the difference in error frequency between normal versus low rates of protein

synthesis for all parameter sets. (B) Distribution of the difference in percent overexpression between normal versus low rates of protein synthesis for all parameter

sets. (C) The error frequency differences for all parameter sets from (A) were calculated over a range of threshold values. The minimum and maximum of the

threshold range was 10% and 90% of mean peak value. Shown are error frequency differences incurred by low rates of protein synthesis. Each line represents

one of the parameter sets from (A). The color of each line reflects the extent that error frequency difference varies as a function of the threshold value. The darkest

lines are those parameter sets whose difference varies the most with the threshold. The vast majority of parameter sets exhibit some reduction in error frequency

across all thresholds. (D-G) Systematic modification of model conditions showing the difference in error frequency between normal versus low rates of protein

synthesis for all parameter sets. (D) Model where a nonzero basal stimulus is applied. (E) Model where input duration is increased two-fold by low rates of protein

synthesis. (F) Model where an upper bound is placed on the number of sites firing transcription. (G) Model where cooperative transcription kinetics are

considered.
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