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Abstract. Recent studies on the evolutionary dynamics of the prisoner’s
dilemma game in scale-free networks have demonstrated that the heterogeneity of
the network interconnections enhances the evolutionary success of cooperation. In
this paper we address the issue of how the characterization of the asymptotic states
of the evolutionary dynamics depends on the initial concentration of cooperators.
We find that the measure and the connectedness properties of the set of nodes
where cooperation reaches fixation is largely independent of initial conditions, in
contrast with the behaviour of both the set of nodes where defection is fixed, and
the fluctuating nodes. We also check for the robustness of these results when
varying the degree heterogeneity along a one-parametric family of networks
interpolating between the class of Erdős–Renyi graphs and the Barabási–Albert
networks.
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1. Introduction

Evolutionary dynamics has proved to be a useful theory to describe evolution of biological
systems at all levels of organization [1]. Rooted in the basic tenet of Darwinism, the replicator
dynamics [2]–[4] of evolutionary game theory provides an elegant mathematical description of
how natural selection among (phenotypes) strategies takes place when the reproductive success
of individuals (and then the future abundance, i.e. frequency, of strategies) depends on the current
phenotypic composition of the population (frequency-dependent fitness). In this regard, one of
the current theoretical challenges to the explanatory powers of evolutionary game dynamics is the
understanding of the observed evolutionary survival of cooperative behaviour among individuals
when selfish actions provide a higher benefit (fitness). Perhaps the best suited (and most used)
model to formally describe the puzzle of how cooperation arises is the prisoner’s dilemma (PD), a
two-players-two-strategies game, where each player chooses one of the two available strategies,
cooperation or defection: a cooperator receives R when playing with a cooperator, and S when
playing with a defector, while a defector earns P when playing with a defector, and T against a
cooperator. When T > R > P > S, the game is a PD. Given this payoff ordering, in a well-mixed
(unstructured) population where each agent interacts with all other agents (or a representative
sample of the population composition), defectors are fitter and thus the fraction of cooperators
asymptotically vanishes.

Among the various mechanisms that have been proposed to explain how natural selection can
lead to cooperative behaviour (like kin selection, group selection, direct or indirect reciprocity)
[5], a simple one is based on leaving off the well-mixed population hypothesis, so that each
individual only interacts with agents in its neighbourhood, as specified by some graph or
network of ‘social’ interactions.Agent-based-modelling approaches [6] of this kind in theoretical
biology [7], economics [8] and social sciences [9] often benefit in a natural way from statistical
physics methods, concepts and techniques (also scientists), so favouring fruitful (synergic)
interdisciplinary (socio-, bio-, econo-)physics research [10], often termed the physics of complex
systems [11, 12].

Early pioneering numerical work [13] on the PD game in two-dimensional square lattices,
made the observation that, unlike in unstructured populations, cooperators and defectors can
coexist in the lattice indefinitely. In [13] each individual node played with its immediate
neighbours each time step accumulating a payoff, then updated its strategy by imitating the
one of highest payoff in its neighbourhood, including itself (best-takes-over reproduction rule)
and back again for very large times. When passing from a ‘mean field’ (well mixed population)
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interaction description to a lattice structure of interactions, one has to specify various details (of
varying importance) on both, (i) the lattice characteristics, e.g. regular or not, randomness of
various kinds, finite size effects, etc, and (ii) the specific form of the microscopic dynamics of
reproduction process, e.g. deterministic rules or probabilistic ones, synchronous or asynchronous
updating, what types of stochastic fluctuations are allowed, etc. The study of many, if not most,
of the important aspects of the issue have generated for more than a decade a wealthy literature,
of a great interest from the statistical physics perspective (e.g. [14]–[28]; for a recent review,
see [10], where an extensive list of references can be found).

Nowadays, the existence of cooperation-promoting feedback mechanisms that are rooted
deep into the interaction structure is indisputably accepted. It has been termed spatial, or
lattice reciprocity, in analogy to direct reciprocity (through iterated game strategies) and indirect
reciprocity (through reputation, or scoring, of agents). Simply said, the clustering of cooperators
in the lattice could provide high enough fitness to the cooperator nodes exposed to invasion, to the
extent of preserving cooperators from evolutionary extinction, even when defection is blatantly
favoured by the one-shot (two-players) game analysis. For negligible values of P − S � 0,
when T − R increases from zero cooperation decreases slowly, and becomes zero at values of
(T/R) − 1 well beyond zero. The region (in parameter space) of coexistence of strategists is
the genuine battlefield where the competition between strategies adopts interesting, nontrivial
aspects: the transition region between two clear-cut phases, i.e. all-cooperators (all-C) prevailing
at T/R � 1, and all-defectors (all-D) at higher values of T/R. More recently, a set of works have
extended this perspective to a most intriguing and ubiquitous class of networks, say scale-free
(SF) networks, a ‘focus issue’ nowadays.

There is an accumulated evidence that many real biological [29, 30], social [31] and
technological [32]–[34] systems are neither regular nor simplest random graphs (not to say
well-mixed populations) of entities or agents, but they are described by some distinctive metric
(path length based) and topological (structure and size of local neighbourhoods) properties. They
often show a so-called SF distribution density of degree, P(k) ∼ k−γ , where the degree k of a
node is the number of connections it shares with its neighbours [35, 36], so their connectivity
patterns depart considerably from lattice homogeneity (lacking of a sharp characteristic scale
of connectivity). The ubiquity and importance of complex networks raised quite naturally the
question of how natural selection works on top of different types of complex networks of agents
[19], [37]–[41]. In this case (as in other nonlinear dynamical processes in networks [42, 43]) one
has to deal with two sources of complexity, the evolutionary dynamics and the complex structure
of the substrate, which are entangled. Interestingly, the sort of processes that evolutionary game
dynamics is aimed to model may well be very relevant to understand real networked systems
through the study of a variety of scenarios of co-evolution of both strategies (phenotype survival)
and network (evolving topological features) [38]. Among other works exploring various aspects
on the evolution in complex networks, see [44]–[46]. From here we focus attention on fixed
network settings and how degree heterogeneity influences evolutionary dynamics of PD.

Some recent extensive numerical works on PD (and closely related) games [39]–[41] on SF
networks, using probabilistic updating rule (random neighbour pair-comparison, and update
with probability proportional to fitness difference) have shown that the absence of a sharp
characteristic scale of degree in the network greatly enhances the ‘lattice reciprocity’mechanisms
of evolutionary survival of cooperation. For example, highly connected (hubs) cooperator nodes
have the chance of high payoffs and resist invasion well by easily invading less connected
neighbours, which in turn increase the hub’s payoffs and invading capabilities [40]; this positive
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feedback mechanism does not operate in the case of defector hubs and illustrates in a simple
way one of the biasing effects of graph heterogeneity.

In a recent exploration of these heterogeneity-based cooperation-promoting mechanisms,
using the kind of implementation of replicator dynamics on graphs specified above in the previous
paragraph, one observes generically [41] that fixation of the cooperation (as well as defection)
strategy on certain nodes occurs after (often-not-large) sensible transients, so that any asymptotic
trajectory of population states defines a partition of the network into three sets: the set C of nodes
where cooperation is fixed, the set D of nodes where defection is fixed, and the set F of fluctuating
nodes that experience forever cycles of invasion by the competing strategies. In other words, the
observed stationary value of the average fraction c̄ of cooperators (see definition in section 3), in
any asymptotic (long-term) trajectory, has two additive contributions: (i) the relative size µ(C)

of the set of pure cooperators, and (ii) the overall fraction of time T̄c spent by fluctuating nodes
as cooperators, weighted by its relative size µ(F), say

c̄ = µ(C) + µ(F)T̄c. (1)

The analysis of global connectedness inside the sets C and D of fixed strategy nodes
reveals that the lack of a significant characteristic scale of degree is neatly associated to a
simply connected C set, while D is fragmented into many clusters in the wide transition region
(coexistence of strategies) between asymptotic uniform (µ(C) = 1, all-C, and µ(D) = 1, all-D)
equilibria. This structure of D in the strategies coexistence regime is similar to that exhibited
by both C and D sets for the Erdős–Renyi (ER) random class of networks (i.e. with Poissonian
distribution density of degrees, and thus a significant characteristic scale: the network average
degree) [41]. All previous results [41], were obtained for a unbiased (50%) initial proportion of
(randomly placed) cooperators, for all the analysed stochastic trajectories.

In this paper, we are interested in exploring the robustness of these observations reported in
[41] on the behaviour of the partition sets, for a limiting one-parameter form of the PD game, say
P − S = 0: the border with the snowdrift game (see next section). Robustness against parameter
P − S variation, and others, will be analysed elsewhere [47]. In particular, we focus here on
two aspects of robustness: firstly, the influence of varying initial fraction of cooperators on the
network partition sets (C, D, F) of asymptotic trajectories. The model, its dynamical rules and
structural characteristics, as well as the necessary technical details, are the contents of section 2.
The results are described and analysed in section 3. Secondly, in section 4, we show how those
observed behaviours of the partition vary along an interpolating family of networks whose
heterogeneity can be one-parametric tuned, from the ER limit to the Barabasi–Albert (BA) limit,
that is, we check robustness against decreasing heterogeneity of the network. Conclusions and
some prospective remarks can be found in section 5.

2. The model

The PD game is defined in its more general form by the payoff matrix:
(

R S

T P

)
, (2)
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where the element aij is the payoff received by an i-strategist when playing against a
j-strategist, with i = 1 meaning cooperator, and i = 2 defector. The payoff ordering is given
by T > R > P > S. Other payoff orderings have received other names, e.g. T > R > S > P

corresponds to the so-called snowdrift (or hawks and doves, or chicken) game. Following several
studies [13, 39], the PD payoffs have been set to R = 1 (so the reward for cooperating fixes the
payoff scale), T = b > 1, P = 0 (no benefit under mutual defection), and P − S = ε = 0. This
last choice places us at the very frontier of the PD game. It has the effect of not favouring any
strategy when playing against defectors (while being advantageous to play defection against
cooperators). Small positive values of the parameter ε � 1 leads to no qualitative differences in
the results [13, 39, 49], so the limit ε → 0+ is agreed to be continuous.

The dynamic rule is specified as follows: each time step is thought of as one generation of
the discrete evolutionary time, where every node i of the system plays with its nearest neighbours
and accumulates the payoffs obtained during the round, say Pi. Then, individuals are allowed
to synchronously change their strategies by comparing the payoffs they accumulated in the
previous generation with that of a neighbour j chosen at random. If Pi > Pj, player i keeps the
same strategy for the next time step, when it will play again with all of its neighbourhood. On
the contrary, whenever Pj > Pi, i adopts the strategy of j with probability �i→j = β(Pj − Pi),
where β−1 = max{ki, kj}b. Note that this dynamic rule, though stochastic, does not allow the
adoption of irrational strategy, i.e. �i→j = 0 whenever Pj � Pi.

Let us now specify precisely the family of networks on top of which the evolutionary PD
game is evolved. Strategists are located on the vertices of a fixed graph of average connectivity
〈k〉 = 4. The heterogeneity of the networks is controlled by tuning a single parameter α, so that
when α = 0 the networks are of the ER class of random graphs, and when α = 1 they are of
the BA [48] SF networks class. Let us first describe the algorithm to construct a BA network of
size N. In this case, one starts from a fully connected set of m0 nodes and at each time step a new
node is linked to m = 2 nodes preferentially chosen, namely, the probability that node i receives
one new link is proportional to its degree, ki/

∑
j kj. Avoiding multiple connections and iterating

the preferential attachment rule N − m0 times a SF network with an exponent γ = 3 is generated.
On the other hand, random single-scale networks are built up following the standard recipe to
generate ER networks [36]. Finally, networks with an intermediate degree of heterogeneity can
be built following the recipe introduced in [49]. The algorithm combines the mechanisms of
preferential (with probability α) and uniform random linking (1 − α) in such a way that starting
from α = 0 and increasing its value, the networks generated are successively more homogeneous
with a heavy tail whose exponent is equal to (α = 0) or larger than (α > 0) γ = 3.

From any initial condition {si(t = 0)}, i = 1, . . . , N (where si = 1 if node i is an
instantaneous cooperator and si = 0 if defector), and after many generations, the instantaneous
fraction of cooperators c(t) = N−1

∑
i si(t) in the stochastic trajectory, {si(t)}, fluctuates around

a well-defined mean value c̄, which depends on the parameter b, as well as on the particular
initial condition. The transient time t0 that we allow before measuring observable quantities is
assured to be larger than the one required for the stationarity of c̄ (see below). The average level
of cooperation 〈c〉 is computed as the average of c̄ over initial conditions (of fixed fraction ρ0

of cooperators), and network realizations. We numerically identify as pure cooperators all those
individuals that always cooperate, for all times larger than the transient time t0. Pure defectors
are those that always defect for any t > t0. Fluctuating nodes are those that are neither pure
cooperators nor pure defectors. In this way we estimate the measure of the partition sets (C, D, F).
To inspect the connectedness of the sets of pure strategists, C and D, we define cooperator (CC)
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Figure 1. Average cooperation level in ER networks (left panel) and BA networks
(right panel) as a function of the initial concentration ρ0 and several values of b

as indicated. The size of the networks is N = 4000 nodes and 〈k〉 = 4.

and defector cores (DC) as clusters (connected subgraphs) fully composed by pure cooperators
and defectors, respectively, their numbers being denoted by Ncc and Ndc. It is easy to realize that
for generic (irrational) b values, no pure defector can be a neighbour of a pure cooperator, so that
the presence of both types of nodes in the long-term stochastic trajectory, assures the existence
of fluctuating nodes.

The timescale of microscopic invasion processes (updating rule) is controlled by β−1, which
is the highest connectivity of a pair’s nodes; this makes that very high payoff of a hub due to its
very high k is sensibly balanced by β ∝ k−1 [39], with the side effect that the invasion processes
from and to hubs are slowed down, if a hub’s (and neighbour’s) payoff is much smaller than
its connectivity k. On the other hand, the transient time t0 should be greater than characteristic
fixation times for nodes in C and D, if one is interested in measuring observable quantities
associated to the partition. Fixation times of strategies at the nodes in turn, obviously depend
on the initial conditions (i.e. on ρ0, the initial fraction of cooperators), so that henceforth in
the simulations we use a variable time window, t0, of at least 104 generations as the transient
time. Once the system is at (a fluctuating) equilibrium regarding stationarity of 〈c〉, we let the
dynamics evolve for 104 additional time steps, while measuring quantities. All the results have
been averaged over at least 103 different realizations of the networks and initial conditions. Most
of the results shown below correspond to N = 4000 nodes, though other values have been also
used; we will comment on this issue in the concluding section.

3. Dependence on the initial conditions

The initial conditions for the stochastic trajectories that we consider here are such that an initial
number ρ0N of nodes (0 < ρ0 < 1) are randomly chosen as cooperators. In figure 1 we show,
for some values of the parameter b, how the stationary value of 〈c〉 depends on the initial
fraction ρ0 of cooperators for ER and BA networks. As seen in that figure, 〈c〉 typically increases
with ρ0 until saturation is reached much before ρ0 approaches 1. One observes that saturation
occurs sooner for smaller values of b. These features are common for both classes of networks.
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Figure 2. Average cooperation level in ER (left) and SF (right) networks as a
function of b and different initial concentration of cooperators ρ0 as indicated.
The size of the networks is N = 4000 nodes and 〈k〉 = 4. The SF network is a
BA graph whose P(k) ∼ k−3.

However some details of the 〈c〉(ρ0) curves are different: firstly, for ER network, the departure
from zero of 〈c〉(ρ0) occurs, as b increases, only above some (b-dependent) threshold value of
the initial fraction of cooperators; on the contrary, for BA networks 〈c〉 departs from zero as
soon as ρ0 > 0, at all values of b inside the coexistence region. Secondly, saturation is more
perfect for ER networks, while for BA graphs the plateau in the 〈c〉(ρ0) curve has some small
positive slope.

The variation with the game parameter b of the stationary (asymptotic) average cooperation,
〈c〉(b), for several values of ρ0, is shown in figure 2 for ER graphs (left panel) and BA networks
(right panel). In the case of ER networks, different initial concentrations ρ0 produce a family of
curves that mainly differs in their tails in such a way that the larger the value of ρ0, the slower
the decay of 〈c〉 as b increases, in correspondence with the perfect saturation of 〈c〉(ρ0) at fixed b

observed in figure 1. On the other hand, in BA networks the effects of different initial conditions
are appreciated in the whole range of b values. We thus see that degree heterogeneity not only
favours the survival of cooperation, but also makes the value of the average cooperation, at fixed
b value, more dependent on initial conditions. In this regard one should note that ER networks,
often termed as homogeneous, have indeed some small heterogeneity, i.e. the degree distribution
density has a nonzero variance. In fact, the average level of cooperation in ER networks is clearly
enhanced with respect to random regular networks (where all the nodes have exactly the same
degree k), see e.g. [24]. In other words, even the small amounts of heterogeneity of ER networks
are enough to allow for cooperation-promoting feedback mechanisms to work.

As stated in the introductory section 1, it has been reported in [41] that for any asymptotic
trajectory there is a partition of the network into three sets, namely the set C of pure cooperator
nodes, the set D of pure defector nodes, and the set F of fluctuating nodes. From now on we
denote by ρc = 〈µ(C)〉 the measure (relative size) of the set of pure cooperators (averaged over
initial conditions and network realizations), and by ρd = 〈µ(D)〉 that of the set of pure defectors.
The behaviour of ρc and ρd versus the game parameter b is plotted in figure 3 for different initial
distributions as a function of the parameter b.

The first remarkable result is that in ER networks, the density of pure cooperators does
not depend on ρ0 for the whole range of b values, in sharp contrast to the above mentioned
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Figure 3. Fraction of pure strategists in ER (left) and SF (right) networks as a
function of b and several values of ρ0. Network parameters are those of figure 2.

results for the tails of the average level of cooperation 〈c〉(b) (see figure 2). As anticipated in the
introduction (see equation 1), there are two additive contributions to the average fraction 〈c〉 of
cooperators, namely the measure ρc of the set of pure cooperators, and the overall fraction of time
T̄c spent by fluctuating nodes as cooperators, weighted by the relative size ρf = 〈µ(F)〉 of the
fluctuating set:

〈c〉 = ρc + ρf T̄c. (3)

Though the first contribution is, for ER networks, independent of ρ0, the second one does
indeed depend on initial conditions, as inferred from figure 2 and the relation ρc + ρd + ρf = 1.
High initial concentrations of cooperators favour the fluctuating set F at the expense of pure
defectors, while the number of nodes where fixation of cooperative strategy occurs remains
largely unaffected: ρc is thus being mainly determined by the network structural features. For
example, in our simulations, for large values of b where ρc is very small, we have observed that
the pure cooperator nodes form cycles. The fixation of cooperation in these structures is assured
if none of their elements is linked to a fluctuating individual that, while playing as a defector,
is coupled to more than kc/b cooperators, where kc is the number of cooperators attached to the
element. The number of such structures is finite in ER graphs, but as soon as their vertices are
occupied by cooperators, they will be immune to defectors invasion.

The bottom panel of figure 3 shows the results obtained for BA networks. Regarding
the proportion of pure cooperators, one may differentiate two regimes: for b < 1.7, there is
a moderate dependence of ρc on ρ0, while ρc is almost independent of ρ0 for larger values
of b. This behaviour correlates well with our observations [47] on the distribution of strategists
inside the degree classes. In the first range, pure cooperators are present in all k-classes and
fluctuating individuals are almost homogeneously disseminated over low-to-intermediate k

classes. However, for b > 1.7, there is a b-dependent value of k, say k∗, such that k-classes
are fully occupied by pure cooperators if k > k∗ while basically no pure cooperators are found
in lower k-classes. In this second range, where the degree-strategy correlations are strong, the
influence of ρ0 on the asymptotic proportion of pure cooperators is very small.
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Figure 4. Dependence with b of the number of cooperator (Ncc) and defector
(Ndc) cores in ER graphs (top) and BA (bottom) networks for different values
of ρ0.

While as discussed in previous paragraphs, the proportion of pure cooperators is either
independent (ER) or slightly dependent (BA) on initial concentration ρ0, the measures of the
other sets in the partition, F and D, are indeed more influenced by the initial conditions.
The dependence of ρd on ρ0 for BA and ER networks is qualitatively the same, that is, the
proportion of pure defectors is favoured (at the expense of the fluctuating set) by a higher initial
proportion of defectors. This is consistent with the lack of degree preference (correlation) of
pure defectors, which cannot take distinctive advantage of degree inhomogeneity: the higher
their instantaneous payoff, the more likely they invade neighbouring nodes, which has the effect
of diminishing their future payoff.

Finally, we analyse the connectedness of the pure strategists sets, as measured by the number
of cooperator cores Ncc, and defector cores Ndc. For BA networks, and ρ0 = 1/2, we reported in
[41] the result that for all values of b where C is not an empty set, it is connected, i.e. Ncc = 1.
This result turns out to be independent of ρ0 (see figure 4). There is only one CC in BA networks,
which always contains the most connected nodes, for any initial fraction of cooperators. The
grouping of pure cooperators into a single connected set C allows to keep a significant fraction of
pure cooperators isolated from contacts with fluctuating nodes. This ‘Eden of cooperation’ inside
C provides a safe source of benefits to the individuals in the frontier, reinforcing the resilience to
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invasion of the set. Pure defectors, on the contrary, do not benefit from grouping together, and
the set D appears fragmented into several DC. Note that for values of b � 1, where the set D is
empty, Ndc = 0, while for very high values of b defection reaches fixation in the whole network,
so that Ndc = 1. Thus, Ndc(b) must increase first and then decrease to 1. In figure 4 we show
the computed Ndc(b) curves for BA networks for several values of ρ0. It is remarkable that these
curves almost collapse, in spite of the fact that the fraction ρd of pure defectors does indeed
depend on ρ0, a numerical fact for which we have not found a plausible explanation.

In figure 4 we also show for ER graphs Ncc(b) and Ndc(b), for different values of ρ0.
Regarding the number of CC, we see that except in the small range 1.4 < b < 1.6, the different
curves coincide, in fair agreement with the independence of ρc on initial conditions. Note that in
the small interval where they do not coincide, the fraction ρc of pure cooperators is below 1%,
for all values of ρ0. On the other hand, we see that for higher initial proportion ρ0 of cooperators,
the set D is more fragmented and also that Ndc reaches its maximal values at higher values of b.

4. Influence of the degree of heterogeneity

In order to inspect how the results depend on the distribution of nodes’degrees, we have monitored
the same magnitudes studied throughout this paper when the value of α varies between 0 and 1.
As introduced above, this makes the networks less heterogeneous as α grows and approaches 1.
Figure 5 shows, from left to the right, the average level of cooperation 〈c〉, the density of pure
cooperators ρc and the density of pure defectors ρd as a function of b for several values of α.
In this case, the initial distribution of cooperators was set to ρ0 = 1/2, i.e. the nodes have the
same probability to cooperate or defect at t = 0. The results show that indeed the densities of
pure strategists and the average level of cooperation do depend on α, that is to say, the figure
confirms the role played by the underlying topology. The more homogeneous the graph is, the
smaller the level of cooperation in the system. Moreover, the transition for different values of α

is smooth and does not exhibit an abrupt crossover from one kind of behaviour (α = 0) to the
other (α = 1).

We have also explored how nodes where strategies have reached fixation are organized into
clusters of cooperation and defection as a function of α. Figure 6 summarizes our computations
for the number of CC. In this case, we have represented Ncc as a function of 1 − ρc (that grows
with b) in order to have the same scale for different values of α until cooperation breaks down.
The observed dependence with α is again smooth and no abrupt change in the behaviour of this
magnitude occurs. It is worth stressing that as soon as the underlying network departs from the
limit α = 0 corresponding to a BA SF network (whose P(k) ∼ k−3), the number of CC slightly
differs from 1. This means that some realizations give rise to more than one cluster of CC. The
probability to have such realizations is very small, but in principle, they are possible. As α is
further increased beyond zero, it is clear that pure cooperators do not organize anymore into
a single CC. We think that this deviation is due to the fact that when α > 0 the exponent γ

of the underlying network, which still is a SF degree distribution, is larger than 3. It is known
that this value of γ marks the frontier of two different behaviours when dynamical processes
are run on top of complex heterogeneous networks [50, 51]. This is the case, for instance, for
epidemic spreading. For 2 < γ � 3, the second moment of the degree distribution P(k) diverges
in the thermodynamic limit, while it is finite if γ > 3. As the critical properties of the system are
determined by the ratio between the first (that remains finite for γ > 2) and the second moment,
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Figure 5. Average cooperation level and densities of strategists as a function
of b for different values of α. α = 0 corresponds to a BA network while α = 1
generates an ER graph. In this case, the networks are made up of N = 2000 nodes
and 〈k〉 = 4. See the main text for further details.

the divergence of the latter when N → ∞ and 2 < γ � 3, makes the epidemic threshold null.
On the contrary, when the process takes place in networks whose γ > 3, the epidemic threshold
is recovered, although no singular behaviour is associated with the critical point [50, 51]. We
expect that a similar phenomenology is behind the results shown in figure 6. It would be very
interesting to test this hypothesis by simulating the PD implemented here on top of SF networks
with an exponent in between 2 and 3. As a by-product, such a study may guide our search for
analytical insights and provide a deeper understanding of what drives the structural organization
of cooperation at the microscopic level.

5. Conclusions

SF-structured populations offer to the cooperative strategy the opportunity of positive feedback
evolutionary mechanisms making cooperation the most fit overall strategy, in spite of not being
the best reply to itself in one-time step. We have shown here that the enhancement of cooperation
due to the heterogeneity of the structure of connections among agents is robust against variation
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Figure 6. CC for different networks defined by the value of α as a function of
the density of nodes that are not pure cooperators 1 − ρc. Network parameters
are those used in figure 5.

of initial conditions (initial concentration ρ0 of cooperators): while both the measure of the set
C where cooperation reaches fixation, and its connectedness properties are either independent
or only slightly dependent on ρ0, the measure of the fluctuating set F and the set D where
defection is fixed, both show a clear dependence on initial conditions, for defection cannot profit
from degree heterogeneity. On the other hand, the characteristics of the asymptotic evolutionary
states of the PD analysed here show a smooth variation when the heterogeneity of the network
of interconnections is one-parametric tuned from Poissonian to SF, demonstrating a strong
correlation between heterogeneity and cooperation enhancement.

Though the numerical results presented here correspond to network sizes N = 4000 (in
section 3) and N = 2000 (section 4), we have also studied larger networks (up to N = 104), with
no qualitative differences in the results. The increase of network size, while keeping the average
degree 〈k〉 constant, turns out to be beneficial for cooperation, due to the fact that it has the effect
of increasing the maximal degree, and thus the range of degree values. This further confirms how
efficiently cooperation takes advantage from degree heterogeneity.

The robustness of these results against game parameters variation will be analysed elsewhere
[47], one should expect that the network partition (C, D, F) along asymptotic stochastic
trajectories is generic in evolutionary game dynamics in graphs, for the kind of stochastic
updating rule considered here. Our results also suggest that more works are needed in order
to fully characterize the behaviour of the PD game in heterogeneous graphs. The use of real
networks, with emphasis on the role of mesoscopic (community) structures is addressed in [46].
Of particular interest would be to perform the sort of analysis carried out here in SF networks
with an exponent 2 < γ < 3, which will make it feasible to connect evolutionary dynamics with
other dynamical processes taking place on top of SF networks. Our hope is that this sort of study
might provide a deeper understanding of what is going on at the microscopic level and might
help to comprehend what universal mechanisms drive the evolution of complex heterogeneous
networks as well as the reasons behind their ubiquitous presence in nature.
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[18] Szabó G and Töke C 1998 Phys. Rev. E 58 69–73
[19] Abramson G and Kuperman M 2001 Phys. Rev. E 63 030901(R)
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[30] Solé R V and Montoya J M 2001 Proc. R. Soc. Lond. B 268 2039

New Journal of Physics 9 (2007) 184 (http://www.njp.org/)

http://dx.doi.org/10.1090/S0273-0979-03-00988-1
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1006/tpbi.1994.1032
http://arxiv.org/abs/cond-mat/0607344
http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/10.1038/359826a0
http://dx.doi.org/10.1073/pnas.90.16.7716
http://dx.doi.org/10.1142/S0218127494000046
http://dx.doi.org/10.1016/0167-2789(94)90289-5
http://dx.doi.org/10.1006/jtbi.1996.0243
http://dx.doi.org/10.1103/PhysRevE.58.69
http://dx.doi.org/10.1103/PhysRevE.63.030901
http://dx.doi.org/10.1103/PhysRevLett.89.118101
http://dx.doi.org/10.1002/cplx.10092
http://dx.doi.org/10.1016/j.jtbi.2004.06.003
http://dx.doi.org/10.1038/nature02360
http://dx.doi.org/10.1016/j.physd.2005.07.005
http://dx.doi.org/10.1119/1.1848514
http://dx.doi.org/10.1103/PhysRevE.72.047107
http://dx.doi.org/10.1103/PhysRevE.73.067103
http://dx.doi.org/10.1088/1367-2630/8/9/183
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1098/rspb.2001.1767
http://www.njp.org/


14 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[31] Newman M E J 2001 Proc. Natl Acad. Sci. USA 98 404
[32] Faloutsos M, Faloutsos P and Faloutsos C 1999 Comput. Commun. Rev. 29 251
[33] Pastor-Satorras R and Vespignani A 2004 Evolution and Structure of the Internet: A Statistical Physics

Approach (Cambridge: Cambridge University Press)
[34] Wang F, Moreno Y and Sun Y 2006 Phys. Rev. E 73 036123
[35] Newman M E J 2003 SIAM Rev. 45 167–256
[36] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D-U 2006 Phys. Rep. 424 175–308
[37] Kim B J et al 2002 Phys. Rev. E 66 021907

Holme P et al 2003 Phys. Rev. E 68 030901
Tomassini M, Luthi L and Giacobini M 2006 Phys. Rev. E 73 016132

[38] Zimmermann M G, Eguiluz V M and San Miguel M 2004 Phys. Rev. E 69 065102(R)
Eguiluz V M, Zimmermann M G, Cela-Conde C J and San Miguel M 2005 Am. J. Sociol. 110 977
Zimmermann M G and Eguiluz V M 2005 Phys. Rev. E 72 056118

[39] Santos F C and Pacheco F C 2005 Phys. Rev. Lett. 95 098104
Santos F C, Rodrigues J F and Pacheco J M 2006 Proc. Biol. Sci. 273 51
Santos F C and Pacheco J M 2006 J. Evol. Biol. 19 726

[40] Santos F C, Pacheco J M and Lenaerts T 2006 Proc. Natl Acad. Sci. USA 103 3490
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