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The unequal utilization of synonymous codons affects numerous cellular

processes including translation rates, protein folding and mRNA degra-

dation. In order to understand the biological impact of variable codon

usage bias (CUB) between genes and genomes, it is crucial to be able to accu-

rately measure CUB for a given sequence. A large number of metrics have

been developed for this purpose, but there is currently no way of systemati-

cally testing the accuracy of individual metrics or knowing whether metrics

provide consistent results. This lack of standardization can result in false-

positive and false-negative findings if underpowered or inaccurate metrics

are applied as tools for discovery. Here, we show that the choice of CUB

metric impacts both the significance and measured effect sizes in numerous

empirical datasets, raising questions about the generality of findings in pub-

lished research. To bring about standardization, we developed a novel

method to create synthetic protein-coding DNA sequences according to

different models of codon usage. We use these benchmark sequences to

identify the most accurate and robust metrics with regard to sequence

length, GC content and amino acid heterogeneity. Finally, we show

how our benchmark can aid the development of new metrics by providing

feedback on its performance compared to the state of the art.

1. Introduction
As many as six different synonymous codons can be used to code for a single

amino acid in protein-coding genes. However, these synonymous codons may

be translated with varying degrees of speed and accuracy owing to different

tRNA concentrations and interactions with the ribosome [1–8]. Unequal synon-

ymous codon utilization has important consequences for a variety of processes,

including mRNA degradation and translation, protein folding, horizontal gene

transfer and viral resistance [9–16]. Additionally, codon usage optimization is a

widely used strategy to engineer protein-coding sequences for increased

expression, and CUB has also been used to decrease the expression of viral

genes to aid in vaccine development [17–20].

Given its biological significance, it is not surprising that a variety of metrics

have been developed to quantify the level of CUB in a genetic sequence. These

metrics fall primarily into two classes: (i) those that require knowledge of

highly expressed genes, preferred codons, genomic-context or tRNA copy num-

bers/modification patterns, and (ii) those that calculate deviations from

random expectation [6,21–23]. Here, we focus on metrics from the latter class.

One of the first metrics proposed to quantify CUB was the ‘effective number

of codons’, NC, which is based on the concept of heterozygosity in population

genetics [23]. Over the years, a number of variations of NC have been proposed

to address its theoretical and practical shortcomings [24–30]. Meanwhile,

researchers have developed a number of other CUB metrics that take

into account various facets of coding sequences, such as uneven amino acid

distributions and GC contents [31–33].
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Table 1. Definitions of variables.

variable definition

Ai ith amino acid in a given translation table

cij jth synonymous codon of Ai

pij probability of picking cij

p(cij j Ai) probability of picking cij given Ai

p(Ai) probability of observing Ai

ki number of synonymous codons that code for Ai

K total number of sense codons, K ¼
P20

i¼1 ki

Eij number of G/C nucleotides in cij

fGC fraction of nucleotides that are G or C

nAi
number of times Ai is observed in the gene or

sequence

L number of codons in the sequence
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Few studies have attempted to systematically evaluate the

performance of these different metrics [22]. Most commonly,

researchers proposing new metrics focus on the ability to

identify highly expressed genes in particular datasets. As

we demonstrate below, this measure of performance is pro-

blematic. Furthermore, it has not been demonstrated

whether a metric is measuring solely codon usage bias

(CUB) or accounting for other features of coding sequences.

This caveat is due to the fact that there has been little theor-

etical benchmarking to test performance limitations with

regard to sequence length, GC content and amino acid com-

position—all important features of real genes that may

obscure the signature resulting from CUB.

Here, we introduce a rigorous framework for evaluating

the performance of CUB metrics comprising of benchmark-

ing tests with synthetic ‘ground-truth’ datasets. We extend

a recently published maximum entropy framework to gener-

ate synthetic random coding sequences with known levels of

CUB, and then test the ability of metrics to differentiate

between sets of sequences under increasingly realistic con-

straints [34]. We run six different CUB metrics through our

benchmarking pipeline: three variations of the effective

number of codons (NC, N
0

C and N†
C) [23–25] and three

other metrics (Relative Codon Bias Score (RCBS) [33],

Codon Deviation Coefficient (CDC) [31] and Synonymous

Codon Usage Score (SCUO) [32]). These metrics were

selected because they represent a diversity of approaches

and are highly cited and/or recently published. We have

developed a python package that allows researchers to

rapidly test the performance of novel CUB metrics and

to compare results against a selected set of metrics, which

is also available at https://github.com/amarallab/cub_

benchmarking.
2. Material and Methods
2.1. Generation of random coding sequence with

known codon usage bias
The amount of CUB in a sequence can be intuitively expressed

through the number of codons used to construct the sequence.

Given no prior knowledge, it is safe to assume that a sequence

that uses all 61 codons is less biased than a sequence that uses

only 20 codons, one for each amino acid.

In addition to controlling for the number of different codons

that are used in each sequence, we also incorporated sequence

attributes such as length, amino acid content and GC content

to investigate how combinations of various sequence attributes

affect how metrics calculate CUB. To ensure that no additional

bias is incorporated into the sequences when controlling for these

attributes, we have devised a mathematical formulation control-

ling how each sequence is created. Table 1 is a list of variable

definitions that will be used.
2.1.1. Creating condensed translation tables
To generate sequences with known CUB, we first create con-

densed translation tables, where codons have been randomly

chosen to be removed from the standard translation table. For

example, to generate sequences that uses 40 codons, we would

randomly select 21 codons to be removed from the standard

translation table. If for a synthetic translation table, an amino

acid turns out to have 0 sense codons, then we discard that

translation table and draw a new one.
2.1.2. No constraints
These sequences are designed to simulate an ideal case of very

long coding sequences (2000 codons) that are not constrained

by either defined amino acid probabilities or G/C nucleotides.

In this simplest case, 2000 codon long sequences (not including

stop and start codons) are generated by randomly sampling

the codons from a given condensed translation table with

replacement according to the following probability:

pij ¼
1

K
: ð2:1Þ

This process is repeated 1000 times for all 42 CUB levels. We

expect the sequences generated under these perfectly random

conditions to be easy to discriminate.

2.1.3. Length constraints
To generate sequences in which we control for the length of the

sequences, we first randomly choose a sequence length from the

distribution of gene lengths in the E. coli genome. A condensed

translation table is created for a given CUB level and a random

sequence is generated by randomly sampling the codons in the

condensed translation table according to the probabilities in

equation (2.1). This process is repeated 1000 times for all 42

CUB levels. The sequences generated under these conditions

will elucidate how CUB metrics deal with the variability in

sequence length that is present in real sequences.

2.1.4. Amino acid constraints
To generate sequences in which we control for the amino acid

content of the translated sequence, we first randomly choose a

target amino acid content from a population of sets of amino

acid probabilities. These sets of amino acid probabilities are

calculated for each gene in the E. coli genome, where p(Ai) ¼

nAi
/L. A condensed translation table is created for a given CUB

level and a random sequence that is 2000 codons in length is

generated by randomly sampling codons from the condensed

translation table according to the probability

pij ¼
1

ki
p(Ai): ð2:2Þ

This process is repeated 1000 times for all 42 CUB levels. The

sequences generated under these conditions will elucidate how

CUB metrics deal with the variability in the amino acid content

that is present in real sequences.
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2.1.5. GC constraints
To generate sequences in which we control for the number of G/

C nucleotides in the sequence, we first randomly choose a target

GC content from the GC content distribution for all genes in the

E. coli genome. A condensed translation table is created for a

given CUB level and a random sequence that is 2000 codons in

length was generated by randomly sampling with replacement

codons from the condensed translation table according to the

probability

pij ¼
1

Z
exp (� bEij), ð2:3Þ

where Z is a normalization factor so that
P

i
P

j pij ¼ 1, and b is a

constant that fulfills the following equation:

fGC ¼
1

3

X20

i¼1

Xki

j¼1

Eijpij: ð2:4Þ

This process is repeated 1000 times for all 42 CUB levels.

Here, we also use artificially long sequences (2000 codons in

length) to minimize the uncertainty associated with the estima-

tor (the observed probability of using each codon in the

sequence). The maximum entropy approach generates

sequences with GC contents with extremely small variance

(0.0001); thus, all sequences created are accepted. The sequences

generated under these conditions will elucidate how CUB

metrics deal with the GC content variability that is present in

real sequences.

2.1.6. Amino acid and length constraints
To generate sequences that control for the amino acid content

and sequence length, we first randomly choose a target amino

acid content from a population of sets of amino acid probabilities

for all genes in the E. coli genome and a sequence length from the

distribution of gene lengths in the E. coli genome. A condensed

translation table is created for a given CUB level and a random

sequence was generated by randomly sampling with replace-

ment codons from the condensed translation table according to

the probability given by equation (2.2). This process is repeated

1000 times for all 42 CUB levels. The sequences generated

under these conditions will elucidate how CUB metrics deal

with simultaneous variability in the amino acid content and

sequence length that is present in real sequences.

2.1.7. GC content and length constraints
To generate sequences that control for the GC content and

sequence length, we first randomly choose a target GC content

from the GC content distribution for all genes in the E. coli
genome and a target sequence length from the distribution of

gene lengths in the E. coli genome. A condensed translation

table is created for a given CUB level and a random sequence

was generated by randomly sampling with replacement codons

from the condensed translation table according to the probability

given by equation (2.3). This process is repeated 1000 times for all

42 CUB levels. The sequences generated under these conditions

will elucidate how CUB metrics deal with simultaneous variabil-

ity in the amino acid content and sequence length that is present

in real sequences.

2.1.8. Amino acid and GC constraints
To generate sequences that control for both the amino acid con-

tent and GC content of the sequence, we first randomly choose

a target amino acid content from a population of sets of amino

acid probabilities for all genes in the E. coli genome and ran-

domly choose a target GC content from the GC content

distribution for all genes in the E. coli genome. A condensed

translation table is then created for a given CUB level and a
random sequence that is 1000 in length is generated by randomly

sampling codons from the condensed translation table according

to the probability given by the following equation:

p(cij) ¼ p(cij jAi)p(Ai), ð2:5Þ

where

p(cij jAi) ¼
1

Z
exp (� bEij), ð2:6Þ

where Z is a normalization factor so that
P

j p(cij jAi) ¼ 1 for a

given set of synonymous codons, and b is a constant that fulfills

the following equation:

fGC ¼
1

3

X20

i¼1

p(Ai)
Xki

j¼1

Eijp(cij jAi): ð2:7Þ

This process is repeated 1000 times for all 42 CUB levels.

2.1.9. Organismal genome
To combine all of these features together and create a challenging

discriminative task, we simulate sequences where sequence

length, GC content and amino acid contents are constrained sim-

ultaneously. This essentially codes all genes in the organism’s

genome with sequences of known levels of CUB. In order to

accomplish this, a condensed translation table of known CUB

level is created for each gene and one random sequence is created

in accordance with the length, GC content primary amino acid

sequence of that gene. That is to say that for a given gene and

condensed translation table, a synonymous codon is chosen for

each amino acid in the gene according to the probability given

by equation (2.6). This process is repeated for all protein-coding

genes in an organism and for all 42 levels of CUB.

Here, we are interested in asking whether a metric can deter-

mine, for instance, whether a 300 amino acid long, 55% GC

content protein composed of mainly hydrophobic residues uses

more or fewer codons than a 150 amino acid long, 48% GC content,

protein composed of mainly hydrophilic residues.

2.1.10. Combined
In order to simulate a situation where sequences may come not

from a single defined organism but rather from a community,

we combined all sequences created in the organismal genomes

into one large dataset with sequences that have properties of

each of the three genomes. For each CUB level, the sequences

that correspond to that CUB level in the E. coli, B. subtilis and

S. coelicor datasets are aggregated into one larger dataset. This

task is particularly challenging because the organisms in ques-

tion come from three very different degrees of GC content

making the spread on GC contents far more variable than in

the ‘Organismal Genome’ task.

2.2. Performance of codon usage bias metrics
2.2.1. Calculating theoretical performance
For each constraint, we have generated 1000 (unless otherwise

stated) random sequences for each of the 42 CUB levels. A

metric’s performance is determined by its ability to differentiate

sequences with two different CUB levels.

Specifically, for a given constraint, 1000 random sequences

were generated for each CUB level. We then chose two CUB

levels and for each sequence in the two sampled sets, we

measured the CUB level using one of the metrics in question.

Based on the measured CUB level, the metric’s ability to classify

the sequences into the correct ‘high codon bias’ and ‘low codon

bias’ category was then determined using AUC. The process was

repeated to get the AUC for all 861 pairs of CUB levels (electronic

supplementary material, figures S2 and S3). To summarize this

information, the average of the AUCs (AUC) for all pairs of

http://rsif.royalsocietypublishing.org/
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CUB level was calculated and linearly transformed to a 0 to 1

scale:

Score ¼ 2AUC� 1: ð2:8Þ

This score quantifies a metric’s ability to correctly identify

two sets of sequences of known CUB under a given constraint.

The entire process was repeated 10 times and the average and

standard deviation of the score was determined. The entire pro-

cess was then repeated for all constraints and all CUB metrics to

yield the results are presented in figure 4.
 rg
J.R.Soc.Interface

15:20170667
2.2.2. Calculating Drg
Drg is a genome-wide measure that quantifies the relative differ-

ence between the CUB of the ribosomal genes and the CUB in the

genome. This relationship is described using the following

equation:

Drg ¼
Bg � Br

Bg
, ð2:9Þ

where Bg is the calculated CUB of the concatenated sequence of

all protein-coding genes in the genome and Br is the calculated

CUB of the concatenated sequence of the ribosomal genes in

the genome.
2.3. Data assembly
2.3.1. Organismal minimum growth rate
We first assembled a database of prokaryotic genomes from

NCBI using the GBProks software (https://github.com/

hyattpd/gbproks), including only ‘complete’ genomes in our

download and subsequent analysis (accessed 10 March

2016). For the data on minimum doubling time, we down-

loaded the data table from Vieira-Silva et al. [35], and paired

each bacterial species with a complete genome from our data-

base, resulting in 187 data points. To control for shared

ancestry in subsequent analyses, we constructed a phylo-

genetic tree based on the rRNA sequences for this set of

species. We first used RNAmmer to extract the 16S and 23S

rRNA sequences, followed by MUSCLE (v. 3.8.31) on each

individual rRNA to produce a multiple-sequence alignment

[36]. These were concatenated together and we conducted a

partitioned analysis using RAxML to construct a final tree.

We performed 100 rapid Bootstrap searches, 20 maximum-

likelihood searches and selected the best maximum-likelihood

tree for subsequent analysis [37].
2.3.2. tRNA gene copy number
For the larger dataset of tRNA gene copy numbers, we relied on

a previously computed high-quality dataset published by Hug

et al. [38]. We used custom scripts to match entries in this tree

with genomes from our complete-genome database, and

pruned all species without a high-quality match resulting in

618 species in our final dataset for subsequent analyses. We

ran tRNAscan-SE on each of these genomes to calculate the

number of tRNA genes [39].
2.4. Phylogenetically generalized least-squares analysis
We use phylogenetically generalized least-squares (PGLS)

regression in order to mitigate the effects of shared ancestry in

statistical analyses relating to growth rates and tRNA abun-

dances. Our PGLS analysis relies on the most common null

model, which assumes a Brownian motion model of trait evol-

ution. For all statistical analyses presented in the paper, we use

the R package ‘caper’ and perform a simultaneous maximum-

likelihood estimate of Pagel’s l, a branch length transformation,
alongside the coefficients for independent variables of interest in

order to control for false-positive and false-negative rates.

2.5. Information-based codon usage bias
Information theory provides a solid framework that allows us to

quantify the amount of information in a message by using Shan-

non’s information entropy which is described by the following

equation:

H ¼ �
X

i

pi log2 pi, ð2:10Þ

where pi is the probability of the occurrence of the ith source

symbol.

This means that if we take a sequence of ones and zeros, in

which ones appear with a probability of p(1) and zeros appear

with a probability of p(0), the information entropy of the

sequence will be H ¼ 2 p(0)log2p(0) 2 p(1)log2p(1).

To determine the amount of information entropy within the

coding of an amino acid, we take the framework given in

equation (2.10) to yield the following:

HAi ¼ �
Xki

j¼1

p(cij jAi) log2 p(cij jAi): ð2:11Þ

The information entropy for all fHAi
g can be aggregated into

the information entropy of the entire gene given by

Hg ¼
X20

i¼1

p(Ai)HAi : ð2:12Þ

However, this only gives us the raw information entropy of a

gene. In order to gain useful information from this, Hg should be

compared to the maximum possible information entropy of a

gene (Hn) given the various constraints including GC content.

The maximum possible information entropy of a gene can be

determined by many different ways. Given no additional infor-

mation and no further constraints, we assume that all codons

are used equally for a given amino acid. Thus, Hn can be defined

as follows:

Hn ¼
X20

i¼1

p(Ai) log2 ki: ð2:13Þ

The problem with this definition is that genes have specific

GC and amino acid content requirements they need to fulfil in

order to ensure their functionality. As a result, Hn as given by

equation (2.13) is not an appropriate null model to compare

against Hg. Instead, we propose that Hg be compared against

the information entropy of a random nucleotide sequence that

fulfils the GC and amino acid contents of the gene. That is to

say p(cij jAi), should obey equations (2.6) and (2.7).

Using the fp(cij jAi)g from equation (2.6) to determine Hn, we

define the raw CUB score as follows:

Sg ¼
Hg

Hn
: ð2:14Þ

We define iCUB on a 20–61 scale, similar to the implemen-

tation of the effective number of codons. As such the final

value of iCUB is given by

iCUB ¼ 20þ Sg(61� 20): ð2:15Þ
3. Results and discussion
3.1. Broad range of correlations among metrics
All CUB metrics aim to quantify the level of CUB within

protein-coding sequences. Therefore, if a coding sequence
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can be said to have a given level of CUB, one would expect

the measurements obtained with different metrics for the

same set of sequences to be highly correlated despite slight

differences in their underlying methodologies.

To test this expectation, we measured the CUB of 3740

coding sequences in the E. coli genome using the six CUB

metrics listed earlier. One of the most well-cited and frequently

used metrics is the previously mentioned effective number of

codons (NC) [23]. Subsequently, a variant of NC was proposed

that explicitly accounts for GC bias (N
0

C) [24], and a more

recent implementation of NC (N†
C) purports to alleviate a

number of theoretical shortcomings that are apparent in the

original method [25]. In addition to these three metrics that

are all based on the principle of the effective number of

codons, we chose three more metrics to include in our analysis:

RCBS [33], CDC [31] and SCUO [32] (see electronic sup-

plementary material text for a more thorough discussion of

each method including mathematical derivations).

Overall, we observe that these six metrics show a surpris-

ingly broad range of correlation values with one another—r

[ [0.36, 0.92] (electronic supplementary material, figure S1).

The wide range of correlations between measured CUB

points to several non-exclusive scenarios: (i) some or all

CUB metrics have large systematic biases due to, for example,

not taking into account GC content, or (ii) some or all CUB

metrics have large random measurement errors due to, for

example short sequence length.
3.2. Correlating codon usage bias to gene expression
One of the most striking and reproducible findings obtained

with CUB metrics is the observation that highly expressed

genes exhibit higher levels of CUB. For this reason, corre-

lations between CUB and endogenous gene expression have

been widely used as a proxy in determining the ability of a

metric to measure CUB. Indeed, a number of experimental

investigations have attempted to quantify the latter question

[40–42]. However, errors associated with gene expression

measurements and the fact that one does not know the true

magnitude of the impact that CUB has on gene expression,

make it very difficult to extract uncontroversial conclusions

from this approach.

One of the pitfalls of using correlations with gene

expression to determine the performance of CUB metrics is

that it is very susceptible to which organisms and datasets

are chosen for the evaluation. To illustrate this point, we eval-

uated the correlation between individual CUB metrics and

bacterial protein abundances for the 26 bacterial species col-

lected by Wang et al. [43]. We found that, depending on the

organism that is chosen for the evaluation, one can reach mark-

edly different conclusions. For example, if one considers E. coli,
the conclusion that could be drawn is that all metrics exhibit a

similar degree of performance, with N
0

C only slightly ‘outper-

forming’ the other metrics (figure 1a). However, if one were

to choose B. subtilis instead, one would conclude that RCBS,

SCUO and CDC are ‘superior’ CUB metrics (figure 1b).

A way to eliminate the bias associated with poorly chosen

datasets is to look at the strength of the correlation across

diverse species. One could make the case that the metric

that exhibits the strongest average correlations across a set

of diverse species is the better metric. However, our analysis

demonstrated that this approach also does not yield conclus-

ive results concerning the performance of CUB metrics. We
found that for a given metric, the strength of the correlation

between CUB and protein abundances varies markedly

across species (figure 1c). Overall, N
0

C exhibits the highest

median correlation. The ‘performance’ of this metric, how-

ever, is not significantly higher than that of RCBS or SCUO

(Wilcoxon signed-rank test, p . 0.05). Indeed, of the 15 differ-

ent pair-wise comparisons between the six different metrics,

only five yielded statistically significant results (electronic

supplementary material, table S1).

The large degree of heterogeneity in the correlation coef-

ficients could arise from uncertainties associated with

measuring both CUB and protein abundances, and of the

variability associated with the underlying biological mechan-

isms that control gene expression in different species and

conditions. Regardless of the underlying causes, the large

heterogeneity that we observe makes it difficult to determine

which metric exhibits the highest performance.
3.3. Evaluation of biological findings that use codon
usage bias

Without understanding what a specific CUB metric is truly

measuring, biological findings that stem from the use of

these measurements are limited. Here, we provide two

examples where biological findings could potentially depend

on which metric is chosen.

Vieira-Silva et al. [35] reported that the relative difference

in CUB between ribosomal protein-coding genes and the rest

of the genome (Drg) is highly predictive of the minimum dou-

bling time for 187 bacterial species. Vieira-Silva et al. [35]

concatenated sets of genes into two groups so that biases

associated with short sequence lengths would be eliminated,

and measured CUB using N
0

C. We repeat this analysis for the

set of six CUB metrics, while also performing phylogeneti-

cally generalized least-squares (PGLS) regression to account

for shared ancestry. Figure 2a shows that there is substantial

variation in the performance of these metrics, with N
0

C and

RCBS clearly showing a stronger correlation between Drg

and growth rates than the other metrics. In the most extreme

case, there is a sixfold difference in the magnitude of corre-

lation observed for the lowest performing metric (CDC)

and the highest (N
0

C).

In another study, Rocha [2] showed that CUB and tRNA

gene copy numbers are correlated with one another,

suggesting co-evolution between codon preference and the

tRNA anti-codon pool. We repeated this analysis using

PGLS regression for the set of CUB metrics, and again

found substantial variation in the strength of the underlying

correlation, with N
0

C and RCBS exhibiting the highest corre-

lations (figure 2b). In this case, there is a fourfold change in

magnitude between the lowest correlating metrics (N†
C) and

the highest correlating metric (RCBS).

This lack of replicability puts into question the use of CUB

metrics for the purpose of drawing biological conclusions. To

know whether or not an association exists, and to determine

the overall size of these effects, one must have a rigorous

understanding of the accuracy of a given metric. In order to

rectify the current lack of rigour in determining metric accu-

racy, we sought to develop a series of benchmark tests that

are able to determine the strengths and limitations of CUB

metrics.
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3.4. Ground truth benchmarking
We use ground truth benchmarking to determine whether a

metric is accurately measuring the level of CUB. We devel-

oped a pipeline that tests the performance of individual

metrics on synthetic sequences with a priori known levels of

CUB (figure 3). This approach allows us to test metrics in a
controlled manner that accounts for changes in confounding

features.

In addition to different levels of CUB, different genes

within an organism have variable lengths, amino acid utiliz-

ation and GC contents, all of which will pose measurement

challenges that can affect the accuracy of a CUB metric

http://rsif.royalsocietypublishing.org/
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[44,45]. While these features may covary in real coding

sequences (i.e. short genes may have more pronounced

CUB or skewed GC contents, etc.), we develop an approach

for the evaluation of synthetic sequences that allows us to

study the impact of each factor in isolation.

We first choose a set of constraints to impose on syntheti-

cally generated random sequences in order to test whether

methods are capable of isolating signals of CUB from other

biases that may confound calculations in real sequences.

Here, we evaluate null models to explicitly test how variabil-

ity in GC content, amino acid usages and gene lengths

can affect the accuracy of CUB metrics. These null models

we consider are not meant to be exhaustive, and future

work that evaluates more complex constraints such as di-

nucleotide biases, codon pair biases, position-dependent
signals, avoidance of particular sequence motifs [46–52],

etc., may provide further insight into the performance of

different metrics. For each of the null models that we con-

sider, we generate 42 unique sets of sequences with

increasing CUB by progressively removing codons from the

available genetic code, and apply a maximum entropy

approach to generate random sequences according to the

different constraints (see Material and methods). We use

this extreme version of CUB, where entire codons are

absent from the available genetic code, as a simplified test

case. We pursued this approach because in order to simulate

sequences with more subtle ‘degrees’ of CUB, we would first

have to define those degrees somehow according to a metric,

creating a tautology and favouring whatever metric was

used to simulate sequences.
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For a given metric, we then compare its ability to dis-

criminate between two sets of coding sequences generated

with differentially constrained genetic codes. We use the

area under the curve (AUC) of the receiver operating charac-

teristic as an assessment of a metric’s ability to correctly

classify items from the two sequence sets [53]. To summarize

the theoretical performance of a given metric, we repeat this

process for all 861 unique pairs of sets of sequences, take the

average of all the AUCs and convert it to a 0 to 1 scale (see

Material and methods; figure 4).

We find that all metrics perform equally well on the sim-

plest cases of sequences with no imposed GC or amino acid

constraints and with artificially long sequences to reduce

the sampling variability (figure 4). Predictably, metrics per-

form much better at discriminating between genes with

highly disparate levels of CUB; all metrics are able to per-

fectly discriminate (AUC¼1) between sets of sequences

constructed using only 20 codons from those constructed

using all 61 codons (electronic supplementary material,

figures S2 and S3). By contrast, the ability to discriminate

codon usage differences of 1 (such as 40 versus 41 or 55

versus 56) is a more challenging task (AUC � 0.55).

The performance of all CUB metrics decreases as the syn-

thetic sequences more closely approximate real gene

sequences by incorporating amino acid, length and GC het-

erogeneity—illustrating the difficulty that existing metrics
have in isolating the impact of CUB (see Material and

methods). Specifically, we observe that there is a notable

drop in performance for all metrics when length constraints

are introduced. This indicates that accounting for the sampling

variability that arises from short sequences is one of the most

difficult tasks associated with measuring CUB. There is a fun-

damental limit with regard to sequence length past which no

metric could be expected to accurately estimate CUB (i.e. a 20

amino acid long sequence). Rather than drawing a hard

threshold for required gene sequence length, researchers

should be aware that confidence in CUB estimates for a par-
ticular method is strongly tied to the observable sequence

length. Individual methods, however, are differently able to

address the confounding effect of sequence length.

Overall, N
0

C, RCBS, SCUO and NC have approximately

similar performances in the most difficult tasks, while the

average performance of N†
C and CDC is substantially lower.

The two best performing metrics on the most challenging

task, which incorporates a wide degree of GC heterogeneity

(N
0

C and RCBS), both explicitly control for the underlying

nucleotide content of the sequences in their calculations.
3.5. Implementation of benchmarking framework
Developing a pipeline for the benchmarking of CUB metrics

is essential not only for the assessment of the current state of
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the field but also for the continued advancement of CUB

metrics. To demonstrate how this pipeline could potentially

be used to evaluate the efficacy of new metrics, we present

here a new metric and ran it through our benchmarking pipe-

line in order to compare its performance against existing

metrics. Our method—termed information-based codon

usage bias (iCUB)—relies on formulating CUB in the frame-

work of information entropy, while explicitly controlling for

the GC and amino acid contents of the sequence (see Material

and methods).

Our benchmarking package automatically compares a

new CUB metric (in this case iCUB) with the four most accu-

rate metrics in the literature and outputs a figure with the

comparison results (figure 5). This comparison will allow

researchers to instantaneously gauge the performance of

their metric against the current state of the art.

iCUB performs comparably if not better than other

metrics under most conditions. Nevertheless, performance

in the most stringent benchmarking test still shows consider-

able room for improvement (average score � 0.78 compared

to theoretically perfect performance of 1). Interestingly,

analysis with iCUB suggests that the correlation between

minimum doubling time and CUB is stronger than pre-

viously reported. A Python package allowing researchers to

calculate iCUB scores for input sequences is available at

https://github.com/amarallab/iCUB.
4. Conclusion
Rigorous evaluation and standardization of metrics is essen-

tial to limit the occurrence of false-negative and false-positive

results in the literature. Measuring CUB is far from trivial.

Short coding sequences, GC contents far from 50% and vari-

able amino acid compositions all conspire to make estimation

of the level of CUB from a gene sequence quite a challenging
task. We have demonstrated here that there is still ample

room for improvement based on the performance of existing

metrics.

Our pipeline provides a tool to aid in the continued

development of CUB metrics. Researchers can quickly

assess the performance of their new metric by running

it through the computational pipeline which we have

packaged and released at https://github.com/amarallab/

cub_benchmarking.

It is possible that different CUB metrics, such as those we

evaluated here, are measuring different aspects of coding

sequence biases. This is problematic only if conclusions based

on a single metric with a particular set of assumptions are gen-

eralized to apply to CUB as a whole. Our goal is to highlight

that the choice of an individual metric for a particular appli-

cation should be a rational and explicit choice determined by

the hypothesis one is choosing to investigate. Our study can

serve as an important guide for how to make this choice.
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