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Abst rac t .  We address a current question in econophysics: Are fluctuations in eco- 
nomic indices correlated? To this end, we analyze 1-minute data on a stock index, 
the Standard and Poor index of the 500 largest stocks. We extend the 6-year data 
base studied by Mantegna and Stanley by including the 13 years 1984-1996 inclu- 
sive, with a recording frequency of 15 seconds. The total number of data points in 
this 13 years period exceed 4.5 million, which allows for a very detailed statistical 
analysis. We find that the fluctuations in the volatility are correlated, and that the 
correlations are well described by a power law. 

1 I n t r o d u c t i o n  

Today we are going to look at some examples of scale-invariant correlations 
that  are of interest to social scientists. 

At one time, it was imagined that the "scale-free" phenomena are rel- 
evant to only a fairly narrow slice of physical phenomena (Stanley 1971). 
However, the range of systems that  apparently display power law and hence 
scale-invariant correlations has increased dramatically in recent years, rang- 
ing from base pair correlations in noncoding DNA (Pent  et al. 1992, Arneodo 
et al. 1995), lung inflation (Suki et al. 1994, Barabgsi et al. 1996) and inter- 
beat intervals of the human heart (Peng et al. 1993, Peng et al. 1995, Ivanov 
et al. 1996, Ivanov et al. 1998) to complex systems involving large num- 
bers of interacting subunits that  display "free will," such as city growth 
(Makse et al. 1995, Makse et al. preprint, Zanette and Manrubia 1997, Ball 
1998), animal behaviour (Peterson 1996, Peterson 1997, Viswanathan et al. 
1996, Viswanathan et al. submitted, Keitt and Stanley 1998, Keitt and Stan- 
ley, preprint), and even economics (Mandelbrot 1997, Mantegna et al. 1997). 
In particular, economic time series, as e.g., stock market indices or currency 
exchange rates depend on the evolution of a large number of strongly inter- 
acting systems far from equilibrium, and belong to the class of a complex 
evolving systems. Thus, the statistical properties of financial markets have 
at tracted the interests of many physicists (Bak et al. 1994, Stanley et al. 
1996, Levy et al. 1994; Levy et al. 1995, Bouchaud et al. 1994; Sornette et al. 
1996, Mantegna and Stanley 1995; 1994, Ghashghaie et al. 1996; Mantegna 
and Stanley 1996; Arneodo et al. preprint, Levy et al. 1996, Potters et al. 
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preprint, Takayayasu et al. 1992, Hirabayashi et al. 1993, Takayayasu and 
Okuyama 1998, Krugman 1996). Methods originating in statistical physics 
have been proven useful in analyzing financial indices. They are also used to 
construct new models for the pricing of derivatives and the assessment of the 
involved risk (Bouchaud et al. 1994; Sornette et al. 1996). 

The recent availability of very high frequency data allows to study eco- 
nomic time series with a high accuracy on a wide range of time scales vary- 
ing from less than 1 minute up to more than 10 years. Consequently, a large 
number of methods known from statistical physics have been applied to char- 
acterize the time evolution of stock prices and foreign exchange rates (Bak et 
al. 1994, Stanley et al. 1996, Levy et al. 1994; Levy et al. 1995, Bouchaud et 
al. 1994; Sornette et al. 1996, Mantegna and Stanley 1995; 1994, Takayayasu 
et al. 1992, Hirabayashi et al. 1993, Takayayasu and Okuyama 1998, Krug- 
man 1996). It turns out that the distributions of the increments of economic 
time series, both in stock market indices and foreign currency exchange 
rates, are nearly symmetric and have strong "leptokurtic" wings (Mandel- 
brot 1963, Mantegna and Stanley 1995; 1994). Index increments as a function 
of time show only weak correlations on short time scales below 10 minutes 
(Mandelbrot 1963, Fama 1970), which seemingly makes them fundamentally 
different from well known examples of complex dynamic systems in physics 
such as, e.g., turbulent flow where power law correlations on long time scales 
are commonly observed (Kolmogorov 1961). 

The situation is different for the volatility, i.e., the market fluctuations 
averaged on a suitable time interval. There is long time persistence much 
larger than the correlation time in volatility (Ding et al. 1983). Volatility 
is the key input of virtually all option pricing models, including the classic 
Black and Scholes (Black and Scholes 1973) and Cox, Ross, and Rubinstein 
(Cox et al. 1979) binomial models that are based on estimates of the asset's 
volatility over the remaining life of the option. So to understand the dynamics 
of the volatility has very important practical reason. 

Here, we quantify long range power law correlations in the volatility of 
the S&P 500 stock index and report an occurrence of a cross-over phenomena 
of this long range correlation. Furthermore, we discuss the distribution of the 
volatility, and show that it can be fitted very well by a log-normal distribution. 

2 Quantification of Correlations in S&P 500 

2.1 Data Description and Detrending 

The S&P 500 index, an index of the New York Stock Exchange, consists of 
the 500 largest companies in the US. It is a market-value weighted index 
(stock price times number of shares outstanding), with each stock's weight in 
the index proportionate to its market value. The S&P 500 index is one of the 
most widely used benchmarks of U.S. equity performance. Our data cover 13 
years (from Jan 1984 to Dec 1996) with a recording frequency of 15 seconds 



Fluctuations and their Correlations in Econophysics 199 

interval. The total number of data points in this 13 years period exceed 4.5 
million, which allows for a very detailed statistical analysis. 

The S&P 500 index Z( t )  from 1984 to 1996 tends to increase constantly 
on a semi-log graph except during crashes, e.g., October 1987 and May 1990. 
Since the standard deviation of Z( t  + A t )  - Z ( t )  is proportional to the price 
level, we take the logarithmic of the index as everyone does. We define the 
forward change 

G(t)  - log~ Z( t  + At )  - log~ Z( t )  , (1) 

where At is the time-lag (set to 1 minute in the correlation study). 
We only count the number of minutes during the opening hours of the 

stock market, and remove the nights, weekends and holidays from the data 
set, i.e., the closing and the next opening of the market is continuous. 

~3 
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Fig. 1. The intra-day pattern I(t)  of S&P 500 index marked by 1-minute interval. 
Before Sept. 30, 1985, the data length is 6 hours per day. After then, it's 6 3 hours. 
Two curves have the same pattern, only the latter curve is shown here. Big changes 
in the price happens within the first 10 minutes when the market opens. 

The absolute value of G(t)  describes the amplitude of the fluctuation. 
IG(t)l is, by definition, always positive, and there are no obvious global trends 
visible, which is due to the logarithmic difference, i.e. the relative increment 
on the original index Z(t ) .  The large values of Z( t )  correspond to the crashes 
and big rallies of the index. It is known in the financial literature that  the 
volatility varies in time (Bollerslev et al. 1992; Schert 1989; Gallant et al. 
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1992; Le Baron 1992; Chan et al. 1991), as expected the IG(t)l quantity also 
fluctuates in time. 

It is known that there exits intra-day patterns in NYSE and S&P 500 
index data, one simple explanation is that  there are many information traders 
active near the open and many liquidity traders active near the close (Admati 
and Pfleiderer 1988a). We find the similar intra-day pattern in our S&P 500 
index data set [Fig. (1)]. The intra-day pattern 

A(t) =_ ~u=l ]G(ti,same)] (2) 
N 

where N is the total trading days over the 13-year period and ts~me is the 
same time of each day (N = 3309 in our study). In order to avoid the artificial 
correlation caused by this daily oscillation, G(t) signal is normalized by the 
intra-day pattern 

g(t) - G(t)/A(t),  (3) 

i.e. each data point divided by the intra-day pattern of its corresponding time 
during the day. 

2.2 M e t h o d s  to  C a l c u l a t e  C o r r e l a t i o n s  

We have three methods to quantify the correlations. The direct method to 
study the correlation property is the correlation function estimation, which 
is defined as 

( c ( t ) c ( t  + - ( c ( t ) )  (4) 
c ( T )  - - ' 

where r is the time lag. The problem with the correlation function estimation 
is that  it depends on the estimated average value of the time series. Since it 
is difficult to calculate the true average value, the correlation function can 
only give us a qualitative estimation (Beran 1994). 

Another method to calculate the correlation functions is the traditional 
power spectrum analysis. Since this method can only apply to linear and sta- 
tionary (or strictly periodic) time series, although it could give quantitative 
measures, we still need other method to confirm its results. 

We applied the third method- - te rmed  detrended fluctuation analysis 
(DFA) (Peng et al. 1994, Peng et al. 1995)--to quantify the correlation ex- 
ponent. The advantages of DFA over conventional methods (e.g. spectral 
analysis and Hurst analysis) are that it permits the detection of long-range 
correlations embedded in a nonstationary time series, and also avoids the 
spurious detection of apparent long-range correlations that  are an artifact of 
nonstationarities. This method has been validated on control time series that  
consist of long-range correlations with the superposition of a nonstationary 
external trend (Peng et al. 1994). The DFA method has also been successfully 
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Fig. 2. (a) Semi-log plot of correlation functions of g(t) and Ig(t)l, (b) The same 
correlations in the double log plot. The g(t) decays exponentially to 0 within hMf an 
hour. But the curve of Ig(t)l decays very slowly for more than 4 decades. A power 
law correlation seems to exist in the Ig(t)l. Note that both graphs are truncated at 
the first zero value of C(r). 

applied to detect long-range correlations in highly complex heart beat  t ime 
series (Peng et al. 1995, Iyengar et al. 1997), and other physiological signals 
(Hausdorff et al. 1996, Hausdorff and Peng 1996). 

A detailed description of the DFA algorithm appears elsewhere (Peng et 
al. 1994, Peng et al. 1995). Briefly, the tg(t)l t ime series (with N data) is first 
integrated, 
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t 

v(t) - Z I g ( i ) i  • ( 5 )  
i=1 

Next the integrated time series is divided into boxes of equal length, n. In 
each box of length n, a least squares line is fit to the data (representing the 
trend in that  box). The y coordinate of the straight line segments is denoted 
by yn(t). Next we detrend the integrated time series, y(t), by subtracting 
the local trend, yn(t), in each box. The root-mean-square fluctuation of this 
integrated and detrended time series is calculated by 

11 = - ( 6 )  
t = l  

This computation is repeated over all time scales (box sizes) to provide a 
relationship between F(n),  the average fluctuation as a function of box size. 
In our case, the box size n ranged from 10 rain to 10 a min, the upper bound of 
n is determined by the actual data length. Typically, F(n) will increase with 
box size n. A linear relationship on a double log graph indicates the presence 
of power law (fractal) scaling. Under such conditions, the fluctuations can be 
characterized by a scaling exponent a, the slope of the line relating log F(n) 
to log n. 

For exactly self-similar process, as e.g. fractional Brownian motion, the 
DFA exponent ~ is related to the power spectrum exponent /3 through the 
relation ct = (1 + /3)/2 (Beran 1994). The calculation of F(n) can dis- 
tinguish four types of behavior. (1) Uncorrelated time series give rise to 
uncorrelated random walks described by F(n) ~ n ~ with a = 1/2, as ex- 
pected from the central limit theorem. Power spectrum would be flat with 
/3 = 0. (2) Markov processes with a characteristic correlation length to, gives 
C(r) ~ exp(-v / to) ;  For t < to, it is the Brownian process with a = 1.5 and 
corresponding /3 = 2, nonetheless the asymptotic behavior for sufficiently 
large t with a = 1/2 would be unchanged from the purely random case. (3) 
In the presence of long-range correlations with no characteristic time scale, 
the scaling property would be a power law function with a ¢ 1/2 and/3 :~ 0. 

2.3 C o r r e l a t i o n  R e s u l t s  o f  S&:P 500 I n d e x  

Using correlation function estimation, we find that the correlation function 
of g(t) decays exponentially with a characteristic time of the order of 1- 
10 min, but the absolute value Ig(t)l does not (Fig. 2). This result is consistent 
with previous studies on several economic series (Fares 1970, Ding et al. 
1983, Dacorogna et al. 1993). 

The power spectrum calculation of Ig(t)l shows that the data fit not one 
but rather two separate power laws: for f > fx the power law exponent is 
/31 = 0.31, while for f < fx the exponent /32 = 0.90 is three times larger; 
here fx  is called the crossover frequency. 
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DFA method confirms our power spectrum results. From the behavior 
of the power spectrum, we expect that the DFA method will also predict 
two distinct regions of power law behavior, with exponents a l  = 0.66 and 
ct2 = 0.95 for t less than or greater than a characteristic time scale tx ~ 1 / f x ,  
where we have used the relation 

= (i + Z ) / 2 .  (7) 

The data yield O' 1 • 0.66, a2 = 0.93, thereby confirming the consistency of 
the power spectrum and DFA methods. Also the crossover time is very close 
to the result obtained from the power spectrum, with 

t× ,.~ 1/ f x ,~ 600min (s) 

about 1.5 trading days. 
To test whether this correlation is due to the distribution function, we 

shuffled each point of the ]g(t)l time series randomly. The shuffling operation 
keeps the distribution of Ig(t)l unchanged, but kills the correlations in the 
time series totally if there are any. DFA measurement of this randomly shuf- 
fled data does not show any correlations and gives exponent ~ -= 0.50. This 
tells us that  the long-range correlations are actually due to the dynamics of 
the economic system and not simple due to the distribution. 

The observed long range correlation and the crossover behavior noted 
above is from the entire 13-year period, so it is natural to enquire whether 
it will still hold for periods smaller than 13 years. Therefore, we choose a 
sliding window (with size 1year) and calculate both exponents a l  and c~2 
within this window as the window is dragged, down the data  set with one 
month step. We find that the value of o~1 is very "stable" (independent of the 
position of the window) fluctuating around the mean value 2/3. Surprisingly, 
however, the variation of c~ is much greater, showing sudden jumps when 
very volatile periods enter or leave the time window. 

We studied several standard mathematical  models, such as fractional 
Brownian motion (Beran 1994, Mandelbrot and van Ness 1968) and frac- 
tional ARIMA processes (Granger and Ding 1996), commonly used to ac- 
count for long-range correlation in a time series and found that  none of them 
can reproduce the large fluctuation of a2. 

3 The Volatil ity Distribution of S&P 500 

The volatility is a measure of the mean fluctuation of a market price over 
a certain time interval T. The volatility is of practical importance since it 
quantifies the risk related to assets (Bouchaud et al. 1994; Sornette et al. 
1996). As shown above, unlike price changes that are correlated only on very 
short time scales (Fama 1970) (a few minutes), the absolute values of price 
changes (which are closely related to the volatility) show correlations on time 
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scales up to many years (Ding et al. 1983, Dacorogna et al. 1993, Liu et al. 
1997, Cizeau et al. 1997). 

The same data  set of the S&P 500 index of the New York stock exchange 
is explored here to study the volatility distribution. This data set has been ex- 
tended by 7 years the data set previously analyzed in (Mantegna and Stanley 
1995; 1994). 

We calculate the logarithmic increments G(t) in Eq. 1, where G(t) is the 
relative price change AZ/Z  in the limit At --+ O. Here we set At = 30 min, 
well above the correlation time of the price increments; and we obtain similar 
results for other choices of At (larger than the correlation time). 

As we show in the correlation discussion, there is a strong "U-shape" 
market activity over the day. To remove artificial correlations resulting from 
this intra-day pattern of the volatility (Wood et al. 1985, Harris 1986, Admati  
and Pfleiderer 1988a, Ekman 1992), we normalized IG(t)I by A(t) as shown 
in gq. 3. 

We obtain the volatility at a given time by averaging Ig(t)l over a time 
window T = n - At with some integer n, 

1 t+n-a  
VT(t) = - -  ~ [g(t')l. (9) 

n 
V : t  

The volatility fluctuates strongly showing a marked maximum for the 1987 
crash. Generally periods of high volatility are not independent but tend 
to "cluster." This clustering is especially marked around the 1987 crash, 
which is accompanied by precursors (possibly related to oscillatory patterns 
(Bouchaud et al. 1994; Sornette et al. 1996)). Clustering occurs also at other 
times (e.g., during the second half of 1990), while there are extended periods 
where the volatility remains at a rather low level (e.g., in 1985 and 1993). 

When we consider a scaled probability distribution P(VT) for several val- 
ues of T, the data for different averaging windows collapse to one curve. 
Remarkably, the scaling form is log-normal, not Gaussian. In the limit 
of very long averaging times, one expects that  P(vT) becomes Gaussian, 
since the central limit theorem holds also for correlated series (Beran 1994), 
with a slower convergence than for non-correlated processes (Potters et al. 
preprint, Cont 1977). However, a log-normal fits the data better than a Gaus- 
siam 

Correlations can be accurately quantified using detrended fluctuation 
analysis (Peng et al. 1994). The analysis reveals power-law behavior inde- 
pendent of the T value chosen with an exponent a - 0.9 in agreement with 
the value found for the absolute price increments (see Sec. 2). 

4 D i s c u s s i o n  o f  E m p i r i c a l  R e s u l t s  o n  F i n a n c e  

In this study, we have used the DFA method to display correlation in the 
volatility of S~P  500 index. We find that the volatility is highly correlated, 
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and that  the correlation is remarkably long range, indeed, over 5 decades. 
Moreover, the quantitative scaling of the correlation follows the power law 
form observed in numerous phenomena which have a self-similar or "fractal" 
origin. 

We have also found that the probability distribution of the S&P 500 
volatility can be well described by a log-normal function. This functional 
shape does not depend on the averaging time interval T used to calculate 
volatility VT(t). The log-normal shape of the distribution is consistent with a 
multiplicative process (Bunde and Havlin 1996) for the volatility (Ghashghaie 
et al. 1996; Mantegna and Stanley 1996; Arneodo et al. preprint). However, 
a multiplicative behavior would be surprising, because efficient market theo- 
ries (Fama 1970) assume that the price reflects all current information that 
could anticipate future events and the price changes, G(t), are caused by 
incoming new informations about an asset. Since such information-induced 
price changes are additive in G(t), they should not give rise to multiplicative 
behavior of the volatility. 

To account for the time dependence of the volatility and its long-range 
correlations, ARCH (Engle 1982), GARCH (Bollerslev 1986) models and re- 
lated approaches (Granger and Ding 1996) have been developed, which as- 
sume that  the volatility depends on time and on the past evolution of the 
index. It may be also worthwhile to test these models with regard to the 
volatility distribution P(vT). 

5 S c a l e  I n v a r i a n c e  i n  E c o n o m i c s  

Economics is different than finance, and we have also looked at economic 
data. Specifically, in collaboration with a card-carrying economist, Michael 
Salinger--we studied the possibility that  all the companies in a given economy 
might interact, more or less, like an Edwards-Anderson spin glass. As in an 
Edwards-Anderson spin glass, each spin interacts with another sp in- -but  not 
with the same coupling and not even with the same sign. 

If the sales in a given company x decreases by, e.g., 10%, it will have 
repercussions in the economy. Some of the repercussions will be favorable--  
company y, which competes with x, may experience an increase in market 
share. Others will be negative--service industries that  provide personal ser- 
vices for company x employees may experience a drop-off in sales as employee 
salaries will surely decline. There are positive and negative correlations for 
almost any economic change. Can we view the economy as a complicated 
Ising system or spin glass? 

To approach this interesting bit of statistical "poetry" and make sense 
of it, we first located and secured a database that lists the actual size of 
every firm in the United States. With this information, we did an analysis 
to determine how the distribution of firm size changes from one year to the 
next. We then made a histogram for each of three characteristic firm sizes. 
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The largest firms have a very narrow distribution--plausible because the 
percentage of size change from year to year for the largest firms cannot be 
that great. On the other hand, a tiny company or a garage-based start-up 
can radically increase (or decrease) in size from year to year. The histograms 
have a width determined by the size of the firm. When this width is plotted 
on the y axis of log-log paper as a function of the size of the firm on the x 
axis, the data are approximately linear over 8 orders of magnilude, from the 
tiniest firms in the database to the largest. The width scales as the firm size 
to an exponent/? ,  with/3 ~ 1/6 (Buldyrev et al. 1997a). We can therefore 
normalize the growth rate and show that all the data collapse on a single 
curve--demonstrat ing the scaling of this measure of firm size. 

Why does this occur? We're working on that.  If we model this firm struc- 
ture as an approximate Cayley tree, in which each subunit of a firm reacts to 
its directives from above with a certain probability distribution. This model, 
developed primarily by Sergey Buldryev, seems to be consistent with the 
critical exponent - 1 / 6  (Buldyrev et al. 1997b). More recently, Amaral et 
al. (Amaral et al. 1998) have proposed a microscopic model, and Takayasu 
(Takayayasu and Okuyama 1998) has extended the empirical results to a wide 
range of countries. 

6 C o n c l u s i o n s  

Is the point of this talk just to show that a lot of different systems appear to 
develop scale-invariant correlations? If so, how do we understand this empir- 
ical fact? 

Bak's idea that systems self-organize themselves such that they are in 
effect near a critical point is an appealing unifying principle. Near a critical 
point, there is a delicate balance between the exponentially-growing number 
of different one-dimensional paths connecting any two faraway subunits and 
the exponentially-decaying correlations along each one-dimensional path (this 
concept is illustrated, e.g., in Fig. 9.4 of Ref. [1]. If the control parameter (say 
coupling constant) is too small, the correlations die out so fast along each 
one-dimensional path that  subunits far from one another are not well corre- 
lated. However, at a critical point, the exponentially-large number of paths 
connecting each pair of subunits is sufficient to balance out the exponential 
decay along each path and the "correction factor" wins ou t - - th i s  correction 
factor is the power law that governs the total number of one-dimensional 
paths connecting two distant subunits. The exponent in this correction fac- 
tor depends primarily on the system dimension, and not at all on the actual 
arrangement of the subunits (lattice or no-lattice). 

Could it be that somehow social systems push themselves up "up to the 
l imi t"- - jus t  as a sandpile is pushed to the limit before an avalanche starts, 
an image that has attracted recent attention in the debate between "self- 
organized criticality" and "plain old criticality" (see, e.g., Vespignani and 
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Zapperi (Vespignani and Zapperi 1997) and references therein)? For exam- 
ple, in economics every subunit plays according to rules and pushes itself 
up against the limits imposed by these rules. But social systems display a 
variety of rich forms of "order", far richer than we anticipate from studies of 
ferromagnets and antiferromagnets (see, e.g., some of the papers appearing 
in Knobler et al. (Knobler et al. 1997). Could such orderings arise from the 
complex nature of the interactions? Or from the range of different "sizes" 
of the constituent subunits as, e.g., one finds ordering in sandpiles when 
sand particles of two different grain sizes are dropped onto a heap--see, e.g., 
Refs. [66-69]. These are questions that occupy us now, and questions I would 
be delighted to discuss with any of the conference participants. 
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