
Review

Sexual networks: implications for the transmission
of sexually transmitted infections

Fredrik Liljerosa,b, Christofer R. Edlingb,c,*, Luis A. Nunes Amarald

a Department of Epidemiology, Swedish Institute for Infectious Disease Control, 171 82 Solna, Sweden
b Department of Sociology, Stockholm University, 106 91 Stockholm, Sweden

c Centre for Epidemiology, The National Board of Health and Welfare, Stockholm, Sweden
d Interdepartmental Biological Sciences Program, Northwestern University, 2-100 Hogan Hall, 2205 Tech Drive, Evanston, IL 60208-3500, USA

Abstract

The structures of sexual networks are essential for understanding the dynamics of sexually transmitted infections. Standard epidemiologi-
cal models largely disregard the complex patterns of intimate contacts. Social network analysis offers important insight into how to
conceptualize and model social interaction and has the potential to greatly enhance the understanding of disease epidemics.
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1. Introduction

Standard epidemiological models largely disregard the
complex patterns and structures of intimate contacts. In this
article we review contemporary literature on social networks
that has furthered our understanding of the social aspects of
sexual disease transmission. Sociologists, statisticians, and
mathematicians have been studying social networks since the
middle of the last century, and they have generated a large
and wide-ranging literature covering many different aspects
of social networks; empirically as well as conceptually and
methodologically [1]. And the network perspective has
proven to have wide-ranging implications for the study of
nature and many areas of modern society [2]. Lately, social
scientists have been accompanied in their interest in social
networks by physicists, who bring to the field novel models
and methods from statistical physics [3,4]. Social network
analysis (SNA) offers important insight into how to concep-
tualize and model social interaction. By offering the present
review of the research literature, we suggest that network
analysis provides important implications also for the epide-
miology of sexually transmitted infections (STI). The re-
view’s focus is on sexual contact networks and their implica-
tions for disease transmission (Sections 4–6). To provide

some background understanding, we start by briefly present-
ing the basics of traditional epidemiological modeling (Sec-
tions 2 and 3). And we finish with some concluding remarks
(Section 7).

2. The standard epidemiological model

In standard epidemiological models, persons are assumed
to be in either one of three states. According to these states
the population can be classified into three fractions of sus-
ceptible (S), infected (I), or resistant (R) persons. It is con-
ventional to distinguish between SI, SIS, and SIR models,
and in all these, interaction between persons is assumed to be
random [5]. The problem with this last assumption is the core
of this review. For most sexually transmitted diseases, the
SIS model makes most sense, since few sexually transmitted
diseases confer any immunity after infection. An important
exception is of course HIV, which is still appropriately de-
scribed, at least in the Western world, with the SI model.

The random interaction assumption is expelled by Eq. (1),
which gives the SIS model as a continuous model in its
simplest form, consisting of a system of two differential
equations,

dS
dt =

− cbS� t �I� t �
N +

I� t �
D , (1)
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There are two dependent variables in Eq. (1): the number
of susceptible persons, S, and the number of infected persons,
I. At each point in time S(t) + I(t) = N, where N is the
population size. Parameter c is the number of potentially
infectious contacts per person, parameter b is the probability
of infection per contact between susceptible and infected,
and D is the mean duration of the infection [6]. Evidently,
this model is homogeneous across persons, as each person is
assumed to have the same number of contacts, c. This is what
we refer to as the assumption of random interaction. Of
course, in the case of STI, this simple model could also take
into account gender differences, etc., by adding more equa-
tions to the system of equations [7,8].

For many diseases, like measles or flu, diffused through
droplets from the breadth of infected persons, random inter-
action is a reasonable assumption and probably a good ap-
proximation. That is, there is an abundance of everyday
situations where a person is exposed to such infections, for
instance on public transportation, in the workplace, and in
shops. A significant advantage of the random interaction
assumption is that it can easily be modeled with differential
equations, and these models can be studied analytically [9].
If the rate of interaction and the transmission probability of
the disease between an infected and a susceptible person are
known, it is possible to estimate important variables. For
example, these models can be used to predict whether an
epidemic will occur, how big it will be, and the proportion of
the population that has to be vaccinated to prevent an epi-
demic.

A critical notion in disease epidemiology is the basic
reproduction number, R0. In the homogeneous deterministic
model (Eq. (1)) this number tells us how many uninfected
persons an infected person will transmit his or her infection
to on the average in a totally susceptible population [5]:

R0 = cbD. (2)

R0 has received special attention because in the homoge-
neous model it is quite intuitive. If R0 is less than one, then
the disease will go extinct. With R0 equaling exactly one, we
have an unstable equilibrium with no change in the number
of infected or susceptible, i.e., the disease is endemic. A
value larger than one upsets the replacement situation, which
means that if R0 > 1 the outcome is an epidemic.

From this simple model we clearly see that practitioners
will want to reduce R0, which can be done by reducing at
least one of the parameters c, b, or D. However, once we start
modeling stochastic processes, or heterogeneous popula-
tions, there is less consensus on the interpretation of R0 and,
as we will see, modeling implications are less straightfor-
ward. It should be noted that models based on Eq. 1 are only
suitable for the analysis of large populations. Stochastic
models are called for to analyze epidemics in smaller popu-
lations [9,10].

3. Heterogeneity in the standard model

The random interaction assumption, however, is not well
suited for modeling the diffusion of a STI. Sex is simply not
random [11]. As is the case in most social interaction, soci-
etal dimensions structure sexual contacts. An early approach
to this non-randomness problem in the diffusion of STIs has
been to divide the population into subpopulations defined by
gender and the level of sexual activity and then to model the
diffusion within subpopulations and between subpopulations
as systems of differential equations. The rationale is that a
small group of sexually very active persons can be modeled
by conceptualizing them as one of the subpopulations, usu-
ally referred to as a core group [12–16]. These types of
models have been used to study the difference between two
particular scenarios.

In the first scenario, known as assortative interaction, most
contacts take place within the different groups, i.e., sexually
active persons have sex with other sexually active persons,
while sexually low-active persons have sex with other sexu-
ally low-active persons. In the second scenario, known as
disassortative interaction, most contacts take place between
the groups, i.e., sexually active persons have sex with sexu-
ally low-active persons. Theoretical analyses have demon-
strated that assortative interaction generates a faster initial
spread of the STI, but a smaller size total epidemic. A dissa-
sortative interaction pattern on the other hand, generates a
slow initial spread, but a large-size epidemic. The mixed
scenario, where interaction takes place both within and be-
tween the subgroups, known as symmetric association, gen-
erates a spreading pattern somewhere between the two ex-
tremes.

Most empirical studies indicate that assortative interaction
is the closest match to empirical reality [17,18]. One interest-
ing exception is the results from a study of a male homo-
sexual population in Iceland that displays a disassortative
pattern [19]. The distinction between assortative and disas-
sortative interaction has also been used for other variables
besides gender and sexual activity, such as socio-economic
status [20], age, and ethnicity [21] and has been found to be
related to STI transmission. These studies demonstrate that
assortative interaction is structured across sociological vari-
ables, i.e., people are more likely to sexually interact with
people from the same social class, age group, and ethnic
group. An apparent exception is contact between prostitutes
and their clients [22], which can then act as bridges between
subgroups [23–25].

A further step away from the standard model, and the
assumption of a homogeneous c-parameter, is to study the
distribution of the number of contacts that persons have.
Several empirical studies have demonstrated that the varia-
tion in number of sexual partners is very large [11,26–28].
While most people report 1–4 sexual partners during their
lifetimes, some report several hundred or more. This has
extremely interesting implications that will be discussed later
in this article. Anderson and May [5] have shown that the
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variation in number of sexual partners has to be taken into
consideration when estimating R0. In a heterogeneous popu-
lation, R0 is no longer equal to the average number of infec-
tions produced by an infected person in an uninfected popu-
lation. Rather,

R0 = q0� 1 + r2

µ �, (3)

where q0 is the average number of infections produced by an
infected person in an uninfected population, σ2 is the vari-
ance of the number of contacts, and µ is the mean number of
contacts in the population. From this equation, it is clear that
the larger the variance in number of partners in the popula-
tion for a given µ, the less infectious an infection needs to be
in order to still be able to reproduce itself, i.e. to generate an
epidemic.

Even though modeling groups of persons with different
levels of sexual activity is more realistic than assuming
random interaction in the whole population, such models do
not take into account important factors such as partnership
formation, duration of partnership, and concurrency [29]. It
is theoretically possible to incorporate these factors in a
deterministic model by letting each unique combination be
represented by an equation in a system of differential equa-
tions. However, adding factors soon gives the system too
many dimensions to be analytically solvable [30,31].

4. Network models

It is evident that modeling structured interaction by means
of flow equations quickly becomes fairly cumbersome. More
seriously, however, random interaction between humans is at
odds with everyday intuition and experience as well as em-
pirical reports on human sexual behavior [11]. Still, to bring
leverage to intuitive ideas, analytical tools are needed to
conceptualize interaction structure at the level of persons. A
cross-disciplinary field known as SNA provides these tools.
An utterly simple depiction of social life starts with concep-
tualizing each human person as a dot, or node (or vertex).
Social, and physical, relations between persons are concep-
tualized as links between dots, or edges between nodes (or
arcs between vertices). This idea was first used some 70 years
ago when Jacob Moreno began to draw up “sociograms” of
relationships within social groups [32]. Mathematically, the
set of all nodes and edges in a social system define a graph,
and the analytical treatment of such graphs is known as graph
theory. Graph theory goes back at least to Leonard Euler’s
“solution” of the so-called Köningsberg bridge problem in
17361, but was not firmly established until the 1950s [33].
Together with anthropological studies stemming out of

Manchester, also in the 1950s, graph theory was the catalyst
in the development of SNA that now provides the basic tools
for analyzing sociograms [1,34].

The key to SNA is that the focus of study shifts from
persons only to relations between them, as well as overall
patterns of relationships in a population. These relations can
connect persons to form dyads, triads, or, in the present
context, larger networks. Several issues have to be consid-
ered when shifting the unit of observation from persons to
interrelated persons. We can here only mention the most
relevant in passing, but extensive discussions of core con-
cepts and measures for network analysis can be found else-
where [1,35–37]. From the perspective of statistical infer-
ence for example, we have to move beyond the assumption of
independent observations, as we deal with interrelated per-
sons. This also means that the problem of boundary specifi-
cation becomes acute when deciding on the boundaries of
populations of interest on social network studies. Boundary
specification is also problematic when deciding on sample
selection when studying ego networks [38].

An ego network begins from one particular person, for
whom relations to other persons are mapped. Thus, the col-
lection of data for an ego network of sexual contacts would
start with an identified person (possibly infected) and one
would re-construct all distinct sexual contacts for him or her,
as well as contacts between other persons in that ego net-
work. In contrast, the collection of data for a complete sexual
network could start with all (possibly infected) persons iden-
tified in a community, and then one would attempt to re-
construct all distinct sexual connections between them. Of
course, both types of data collection prevent informants from
being anonymous to the investigator [39]. There are advan-
tages and disadvantages in all strategies for data collection,
and both ego network and complete network data collection
can be affected by sampling and measurement errors if not
properly designed.

Some key concepts and ideas will be of relevance for the
continued discussion. First, a network consists of the set of
edges between a set of identified nodes; this is also referred to
as a graph. This implies that a node can be part of the network
(group or population), while not being connected to any other
node. Such a node is called an isolate. Second, the number of
edges that a node has defines the degree of a node; so that a
degree of four means that a node has four edges. In the
present context, persons with a high degree are of highest
interest, since these are the persons with many sexual con-
tacts. Third, degree centrality measures the degree of a node
relative to the degree of other nodes in the network. Nodes
with the highest centrality have the largest number of edges.
Fourth, the network density is given by the observed number
of edges in the network relative to the number of possible
number of edges in the network. Fifth, a set of nodes in a
network that are connected by a set of edges is called a1 Köningsberg consisted of four regions of land connected by seven

bridges. The problem is posed as a question: Is it possible to start a walk
anywhere in the city of Köningsberg, cross each bridge once and only once,
and return to the starting point? What Euler actually proved, by treating the
problem in network form, was that this could not be done. (The proof

demonstrates that for the walk to be possible the nodes have to have an even
degree, and the graph needs to be connected.)
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network component (sometimes a cluster or, if forming a
completely connected subgraph, a clique). Think of compo-
nents as isolated subsets within the network. Epidemics can
only take place within components. Note that a component is
different from the idea of a cluster as used in epidemiology.
In epidemiology, a cluster is defined by the set of infected
persons believed to be related by a common etiologic process
regardless of their personal interrelationship.

Social scientists have studied social diffusion along lines
very similar to the SIS models previously mentioned for
quite some time, but it is only recently that the details of
interaction structure have been seriously considered [40].
Classical sociological studies include the spread of drug
prescription among medical practitioners and the diffusion of
new techniques in agriculture. Early mathematical analyses
of disease transmission in so-called random networks are
found in [41,42]. However, it was not until the outbreak of the
HIV/AIDS epidemic that one came to fully realize that a
network perspective was crucial for understanding disease
dynamics [43], and it was then that serious empirical studies
began to show up [23,24].

5. The empirical study of sexual networks

Knowledge on the actual structure of sexual networks that
goes beyond ego-network data, such as number of partners
and relationship duration, is based on clinical contact tracing
and volunteered information associated with contact tracing.
Contact tracing means that a person diagnosed with an STI is
asked to list all of his or her sexual partners. These in turn are
contacted, tested, and asked to reveal the same information.
The frequency and procedure for contact tracing differs be-
tween different countries [44–46], but studies of contact
tracing have found a similar pattern. They reveal that sexual
networks consist of many relatively small sexual clusters
(components) [47,48]. This has a number of possible expla-
nations. With regards to data collection, contact tracing is
sometimes a blunt tool, as it relies on the memory and
willingness of clients to reveal information, not to mention
the difficulties in tracing people that might be known only on
a first-name basis, at best! There is also the possible compli-
cation of different strains of the same type of disease being
active in the same population.

The contact tracing system used in Manitoba, Canada is
especially well suited for studying sexual networks because
all persons that are found to have an STI, and their partners,
are registered in a centralized information system. In study-
ing a 6-month period (November 1997–May 1998), research-
ers were able to identify a network of 4544 individuals,
which consisted of 1503 connected components with sizes
varying from 2 to 82 persons [46]. The component distribu-
tion was very skewed, with only 23 components having 19 or
more persons. In a study of gonorrhea transmission in these
23 components, two distinct types of components were iden-
tified. One “ linear component” , characterized by assortative
mixing with a degree of the individual nodes ranging from

one to four, and one “ radial component” , characterized by
disassortative mixing with respect to number of partners,
having one highly centralized node, and many nodes with a
degree of 1–2. Examples of these two components are pre-
sented in Fig. 1. Interestingly they found no gonorrhea in the
radial components, but they did find gonorrhea in the major-
ity of the linear components.

A disadvantage with using contact tracing data is that it
limits generalizations about the structure of sexual interac-
tion in general, because it involves selection on the depen-
dent variable, i.e. being infected. The components of the
sexual contact network found in contact tracing are very
likely the subsets that exhibit those structural properties that
are optimal for the transmission of STIs. Careful statistical
research will hopefully propose future solutions to problems
like this. A second drawback of contact tracing data is that is
focuses solely on sexual contacts. Anthropological field
study suggests that in addition to sexual contacts, non-sexual
contacts can be good indicators for an increased risk of
catching syphilis [49]. Thus, depending on the context, con-
tact tracing should perhaps be systematically complemented
with the collection of other types of social network data, to
reveal structures of multiple and only partly overlapping
networks that foster disease transmission.

Few networks are static, and sexual networks are most
certainly not. The emergence and dissolution of sexual part-
nerships needs to be considered, because STIs are only trans-
mitted as long as there is an ongoing sexual relation between
two persons [50]. Therefore an alternative approach to study-
ing the network of sexual contacts between persons is to
study the network of concurrent sexual relationships [51,52].
This approach gives rise to another type of graph, called a
line graph [53], where the contacts between the persons are
seen as nodes in the network. When we let a contact between
two persons define a node in the graph, an edge is present
whenever a person has more than one contact. Two graphical
examples of sexual contacts and their corresponding line
graphs are shown in Fig. 2.

Both contact networks displayed in Fig. 2a and b have the
same level of network density, d = 4/102 . Despite this fact, it
is much easier for an STI to propagate in network a (left) than

2 Network density, d, is measured by calculating the ratio l
n� n − 1 �/2

,

where l is the number of edges and n is the number of nodes.

Fig. 1. Example of a radial component, A, and a linear component, B, as
identified by Wylie and Jolly [46]. Infection dynamics have been found to
differ between the two components.
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in network b. This is due to the fact that the level of concur-
rent sexual relations is much higher in network a than in
network b, as can be seen by considering the corresponding
line graphs.

A measure for assessing the level of concurrency in a line
graph has been suggested by Morris and Kretzchmar. The
concurrency, j2, is given by the following equation.

j2 = L2�N2� N2 − 1 �

2 �− 1

(4)

= �
1 all−pair−adjacent

0 < j2 < 1 some−pairs−adjacent

0 no−pairs−adjacent−� monogamy �

L2 is the number of links and N2 is the number of nodes in
the line graph (i.e. j2 is the density of the line graph). By
further calculating the mean number of concurrent relation-
ships per relationship, the index of concurrency j3, it has
been proven that concurrency is a function of the mean and
the standard deviation of the degree distribution [52]. Since
these properties can be calculated solely on the basis of
ego-network data (i.e. local information), it is possible to
estimate concurrency by using random samples of the popu-
lation [51,52], which is very difficult for several other net-
work measures such as e.g., density and component size [54].

The idea of using line graphs [51,52] has been developed
even further by taking into consideration that an STI can
propagate between two non-concurrent sexual relationships
that occur relatively closely in time [55]. To handle this
possibility in defining the line graph, it has been suggested
that a sexual relation should be seen as active for some
period, depending on the type of disease, after the sexual
partnership ended.

6. New approaches to the study of epidemics in
networks

In the late 1990s physicists became interested in the study
of complex networks [2], and in that they have introduced a
new angle of approach to the study of social networks. The
catalyst was a revisit to the small world problem, initially
explored by psychologist Stanley Milgram [56]. From a
famous experiment that he conducted in the mid 1960s,
Milgram drew the conclusion that any two randomly selected
persons in the US are on average separated by six steps.
Milgram’s finding suggests that the world of social acquain-
tances has a peculiar structure in which people are not as
locally embedded as we might think. Mathematically, no one
was able to make good sense of this finding until it was
recently demonstrated that for all types of large connected
graphs, only a few edges need to be rewired at random in
order to decrease the average distance between the nodes
dramatically [57]. Put more formally, by randomly rewiring
any connected graph, it will have the same average distance
as a random graph with similar density. This work has been
applied to various types of networks, e.g., the Internet, meta-
bolic networks and food webs [3,58].

In contrast to much of traditional SNA that has focused on
the relationship between single nodes and their relation to the
network, this new line of research has very much been fo-
cused on identifying classes of networks and their properties.
The classification is based on studying the degree distribu-
tion, i.e., the number of links, k, connecting to a node. This
relates back to our previous discussion on the number of
contacts in Section 3. So far, three types of networks have
been identified based on the their degree distributions, P(k).
These are single-scale, broad-scale and scale-free networks
[4]. There are indications that sexual networks belong to the
group of scale-free networks [27]. A scale-free network is a
network where nodes do not have a typical number of edges.
Most nodes have only a small number of edges, but a signifi-
cant number of nodes have a large number of edges, and all
frequencies of edges in between these two extremes are
represented. This means that the standard deviation around
the mean is extremely large, and growing with added obser-
vations. Consider the following comparison with a well-
known single-scale parameter (with a Gaussian distribution)
to see what this implies: if the height distribution of humans
were scale-free there would be men and women 100 m tall
walking around among us. The mathematical form of a scale-
free degree distribution has the form of a power-law,
P(k)~k–a. The typical way to identify a power-law distribu-
tion is to plot the frequency distribution of connectivities in a
graph with logarithmic axes. In such a graph, the power-law
will take the form of a straight line, as shown in Fig. 3 below.

As can be seen in Fig. 3, the tail of the power-law distri-
bution has a much slower decay than other probability distri-
butions, such as the Poisson distribution depicted here. The
probability that an extreme number will occur from a random
sample cannot be neglected if we are dealing with power-law

Fig. 2. Two contact networks, and corresponding line graphs following
Morris and Kretzschmar [51]. In the line graph, every edge in the contact
network is translated into a node, e.g., edge A–C in 2a becomes the node AC.
Nodes with degree >1 in the contact network will contribute to new edges in
the line graph, e.g., in 2b there is an edge between D and C and D and E in the
contact network (C has a degree of 2), thus there will be an edge between DC
and DE in the line graph.
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phenomena. The proposal that the network of sexual contacts
is scale free, with a degree distribution following a power-
law, helps explain why we observe such a wide spread in the
number of sexual contacts [27]. The skew of the distribution
might also help explain the large discrepancy in the number
of partners that males and females report [59].

It is interesting to note that a slope a < 3 means that the
standard deviation becomes infinite in populations of infinite
size. The human population is certainly not infinite, but this
also has implications for finite populations. It has recently
been demonstrated that in a scale-free network contagious-
ness needs only to be very low for an epidemic process to
develop [60]. This result was foreseen already by Anderson
and May [5] as can easily be seen be reflecting on Eq. (3) in
Section 3 [61]. Another property of scale-free networks is
that despite their high susceptibility they are very sensitive to
strategic removal of nodes. This turns out to be of importance
for the prevention of the spread of STIs because if only a few
very active persons are removed (or change their behavior),
the network very soon falls apart in separated components
[62,63], thus preventing the emergence of epidemics. Recent
refined analysis, however, points out that this does not hold
true under the assumption of assortative mixing [64]. It is
also worth noting that in a scale-free network, epidemics can
reproduce with a considerably lower number of infected
persons at each point in time, than in a random network [60].
The study of scale-free networks and of epidemics in scale-
free networks is still in its infancy, but it holds much promise
for the future3. Very recent work includes the analysis of
spread dynamics [65–67] and immunization strategies
[68,69] in scale-free networks. An exciting next step will be
to consider the fact that sexual contacts differ in their dura-
tion, and to incorporate this into epidemic models in scale-
free networks.

7. Discussion

The research literature convincingly demonstrates that a
full understanding of the transmission of STIs has to take into
account the structure of sexual networks [70]. Social network
analysis provides the essential tool for analyzing social struc-
tures, including sexual networks. Classic SNA offers a pow-
erful way to conceptualize static networks, but because
sexual interaction is not static, advances in the study of
network dynamics are highly relevant for the study of sexual
networks. Work in this direction is growing [37], and is, at
least partly, driven by the application of SNA to disease
transmission [51,55,71,72].

Some of the work reported here utilizes a new analytical
approach, namely computer simulation models [73]. In some
respects, computer simulation is a more flexible tool than
mathematical modeling. For instance, all sorts of heteroge-
neity of persons and networks are easily built into the model.
However, this also means that these models often contain a
very large parameter space, and thus are much is harder to
thoroughly analyze than an analytical mathematical model.
Computer simulations have recently been used to build large
dedicated dynamic models of disease transmission in net-
works [74]. This particular type of policy modeling is quite
new, but given previously successful attempts to model com-
plex phenomena of modern societies, such as traffic systems
and consumer behavior, it is a potentially useful tool for
epidemiologists. Other less grand examples of the use of
simulation models include the evaluation of centrality mea-
sures [75] ([76] for an evaluation using real data) and the
already mentioned models of concurrency [52] and mixing
[55]. Simulation models can also be used for data interpola-
tion. For example, if one has knowledge about the micro-
mechanisms of social interaction, this information could be
used to generate the network structure in the population
through computer simulations. Such structures can subse-
quently be used in modeling the epidemic [77].

Lastly, we wish to underscore the importance of intensi-
fied data collection. If we are to learn more about how social
interaction and social structure mediates disease transmis-
sion, more empirical work is crucial. And to conduct success-
ful empirical analysis, data on the interpersonal spread of
diseases is urgently needed. Recordings by physicians and
other practitioners who handle patients with sexual diseases
are important sources of data, as demonstrated by the use of
contact-tracing data in the Manitoba study [46]. Where rou-
tines for contact tracing are not worked out, they should be
developed, preferably in a supra-national spirit, with this
purpose in mind. An increased awareness about the impor-
tance of interpersonal relationships should also be more
widely incorporated when collecting large-scale survey data.
Combined with surveys and field studies of groups with
high-risk behavior, contact tracing can help paint an approxi-
mate picture of the complexity of sexual networks [78].3 See, e.g., <http://arxiv.org/archive/cond-mat> for work in progress.

Fig. 3. Comparison of the functional form of a Poisson distribution and a
power-law distribution for connectivity, k, with logged axes. Studies suggest
that the connectivity distribution for sexual contacts might follow a power-
law, thus indicating a scale-free network structure.
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