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Scaling in the growth of geographically subdivided
populations: invariant patterns from a continent-wide
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We consider statistical patterns of variation in growth rates for over 400 species of breeding birds across
North America surveyed from 1966 to 1998. We report two results. First, the standard deviation of
population growth rates decays as a power-law function of total population size with an exponent
b = 0.36 ± 0.02. Second, the number of subpopulations, measured as the number of survey locations with
non-zero counts, scales to the 3/4 power of total number of birds counted in a given species. We show
how these patterns may be related, and discuss a simple stochastic growth model for a geographically
subdivided population that formalizes the relationship. We also examine reasons that may explain why
some species deviate from these scaling laws.
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1. INTRODUCTION

Perhaps one of the most intriguing patterns in ecology is
Taylor’s law (Anderson et al. 1982; Soberón & Loevin-
sohn 1987; Routledge & Swartz 1991; Leps 1993; Cur-
nutt et al. 1996; Maurer 1999). Taylor (1961) was the
� rst to notice that when the mean , S . of a population
survey is plotted versus its variance s 2(S), either in space
or time, the relationship is typically a power law with a
fractional exponent

s 2(S) ~ , S. g . (1.1)

Taylor was originally interested in the slope of the
power-law relationship as a scale-free measure of spatial
contagion or dispersion—values greater (less) than one
indicate spatial clustering (over-dispersion). Later, Taylor
used both spatial and temporal scaling as a basis for com-
parative studies of, in his words, ‘synoptic population
dynamics’ across taxonomic groups (Taylor & Woiwod
1982; Taylor 1984).

Taylor’s synoptic approach is, in many respects, a
precursor to the recent development of ‘macroecology’
(Brown 1995), a sub-discipline of ecology and bio-
geography (MacArthur & Wilson 1967) that seeks to
identify broad patterns in species’ abundance and dis-
tribution. Macroecology has largely focused on static
patterns, such as spatial relationships between abun-
dance and environmental factors (Brown et al. 1995)
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and relationships between metabolic energy use and
geographical distribution (Brown & Maurer 1987).
Thus, relatively few continental-scale macroecological
studies (Maurer 1994, 1999) have explored interactions
between spatial distribution and population variability
through time.

In this paper, we adopt Taylor’s synoptic approach and
analyse one of the most comprehensive macroecological
datasets available, the North American breeding bird sur-
vey (Peterjohn 1994). The data are estimates of local
abundance (counts) for over 600 bird species recorded at
2000–3000 sites (routes) across North America for the
years 1966 to 1998. Unlike many previous macroecolog-
ical studies, our focus is on linking geographical distri-
bution to population dynamics. We report two new scaling
laws, closely related to Taylor’s power law, for these data:
one relating variability of population time-series to their
mean, and another relating number of sites occupied to
total population size. In addition, we show how these pat-
terns may be related, and discuss a simple stochastic
growth model for a geographically subdivided population
that formalizes the relationship.

2. SCALING OF SPECIES GROWTH RATES

Our goal is to understand temporal variation in abun-
dance at the entire population level. We therefore com-
pute time-series of total counts for each species by
summing over all routes surveyed in a given year (� gure
1a). (We have previously analysed these data at the indi-
vidual route level; see Keitt & Stanley 1998.) The aggre-
gated time-series should be relatively robust to observer
errors inherent in the route-level data (Kendall et al.
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Figure 1. Scaling of ecological time-series. (a) Time-series of
total counts for three species of birds (northern cardinal
(Cardinalis cardinalis), alder � ycatcher (Epidonax alnorum)
and brown creeper (Certhia americana)). Dashed lines show
the uncorrected total number of birds counted in a given
year. Solid lines are bias-corrected totals (see text for
explanation). (b) Standard deviations of empirically observed
population growth rates plotted against average annual total
counts for 428 species of North American breeding birds.
Results for the time-series plotted in (a) are highlighted.
Notice that the highlighted time-series are less variable than
other species in the dataset with similar total population size.

1996), as random undercounts and overcounts will cancel
in the summation. After performing a bias correction (see
Appendix A for details), the resulting time-series are rela-
tively free of systematic trends, particularly in the early
years of the survey when the number of routes was
increasing rapidly (compare dashed with solid lines in
� gure 1a).

We choose as our measure of the magnitude of time-
series � uctuations the logarithm of the ratio of success-
ive counts,
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g(t) ; log S S(t 1 1)
S(t) D , (2.1)

where S(t) and S(t 1 1) are the total numbers of birds of
a given species counted in years t and t 1 1, respectively.
This measure has several good properties. First, any multi-
plicative, time-independent sample bias cancels in the
ratio. Second, the measure has a natural interpretation in
terms of population demography as, in a closed popu-
lation, exp[g(t)] < 1 1 (per capita birth rate 2 per capita
death rate).

As shown in � gure 1b, the standard deviation s (g) of
population growth rates is strongly related to the average
total population size. The relationship follows a power
law

s (g) ~ , S . 2 b , (2.2)

for over four orders of magnitude in , S . , the total count
averaged across years. For these analyses, we are not inter-
ested in predicting a ‘dependent’ variable from an ‘inde-
pendent’ variable. Rather, we are interested in modelling
the functional form of the interdependence among vari-
ables. We therefore use major-axis regression (Sokal &
Rohlf 1995) to estimate model parameters. Major-axis
regression is based on computing the leading eigenvector
of the covariance matrix, and minimizes squared errors
measured perpendicular to the trend line. We also restrict
our analysis to non-zero time-series of at least 25 years in
length and with a minimum average total count of no
fewer than � ve birds per year. Using major-axis regression
with bootstrap precision estimates, we � nd
b = 0.36 ± 0.02. Taylor’s exponent (here replicated across
species) is then simply g = 2(1 2 b ) = 1.28 ± 0.04.

We also study the scaling properties of population
growth rates by examining changes in the distribution of
growth rates with increasing population size, a technique
familiar to statistical physicists. First, we separate the
observed growth rates into three bins according to the
total count S(t) and then construct a histogram to estimate
the conditional probabilities p(g|S). The resulting distri-
butions are roughly triangular in shape with the width
depending on S (� gure 1a). (The triangular shape may
result from summing over a large number of time-series
with different local variances; see Amaral et al. (1998).) If
the distributions are ‘self-similar’ (i.e. exhibit scaling),
then we should be able to identify a function f that rescales
the distributions so that they ‘collapse’ onto each other.
We plot the scaled quantities

s (S)pS g
s (S)

u S D against
g

s (S)
(2.3)

(� gure 2a) and � nd that the three curves do indeed col-
lapse onto each other (� gure 2b), suggesting that p(g|S)
follows a universal scaling form

p(gu S) ~
1

s (S)
f S g

s (S)D . (2.4)

These results are interesting for a number of reasons.
In statistical physics, the presence of non-trivial scaling is
usually taken to mean that the dynamics is largely gov-
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Figure 2. Distribution of growth rates for different
population size classes. (a) Probability density p(g|S) of the
growth rate g for all bird species in the North American
breeding bird survey database. The distribution represents all
annual growth rates observed in the 31 year period 1966–
1996. We show the data for three different bins of initial
sizes (circles, 100 , S(t) , 101; squares, 101 , S(t) , 102.4;
diamonds, 102.4 , S(t) , 103.8). The solid lines are
exponential � ts to the empirical data close to the peak. The
approximately triangular shape of the distribution may be
the result of mixing Gaussians of different widths (Amaral et
al. 1998). (b) Scaled probability density pscal ; s p(g|S) as a
function of the scaled growth rate gscal ; [g 2 ḡ]/ s for all
species and years in the survey. The values were re-scaled
using the measured values of ḡ and s . All the data collapse
upon the universal curve pscal = f ( 2 |gscal|).

erned by simple geometric properties of the system and
does not depend strongly on detailed properties of the sys-
tem subcomponents (Wilson 1983). Thus, it is remarkable
that we should � nd strong evidence for scaling across such
a taxonomically and ecologically diverse set of species as
found in the North American breeding bird survey. These
results suggest that the dynamics of North American
breeding birds is unexpectedly ‘simple’ and depends prim-
arily on common patterns of internal population structure
across species ranges, rather than details of individual spe-
cies’ life histories.
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3. SPATIAL STRUCTURE OF SUBPOPULATIONS

Another reason that the growth-scaling results are inter-
esting is the large variability of highly abundant species.
Imagine the null model that each population is subdivided
into n equally sized, independent subpopulations, and that
the number of these subpopulations depends linearly on S.
The expectation, according to the central limit theorem, is
that the standard deviation in growth rates should decay
as the 2 1/2 power of S. The observed decrease in � uctu-
ations is considerably slower (i.e. b , 1/2), such that
highly abundant species are considerably more variable
than expected under the null model.

To account for the increased variability for highly abun-
dant species, we require that the number of subpopula-
tions does not scale in a simple, linear fashion with
increasing S, but instead takes the form

n ~ S12 a , (3.1)

with a Þ 0. Values of a . 0 will be found, for example,
when the ‘typical’ size of the subpopulations also scales
with total abundance, i.e. there is a positive relationship
between regional and local abundance, a well-documented
pattern in macroecology (Gaston & Lawton 1988; Gaston
1996). The positive correlation between local and regional
abundance results in fewer subpopulations for a given
total population size as each subpopulation accounts for
more individuals. Again appealing to our observation that,
under the central limit theorem, s (g) ~ n 2 1/2, and in com-
bination with equations (2.2) and (3.1), it is straightfor-
ward to show that for roughly equal-sized subpopulations,
the estimated exponents must obey

b =
1 2 a

2
. (3.2)

We do not have access to a precise estimate of the num-
ber of subpopulations for each species in the survey. How-
ever, we can use as a proxy the number of survey routes
where a species had a non-zero count in a given year. To
test the assertion in equation (3.2), we plot the number
of survey routes with non-zero counts ñ(t) versus the
(uncorrected) total count S(t) for all bird species recorded
in the survey in 1997, excluding species seen at fewer than
� ve routes or with fewer than � ve total individuals coun-
ted. The data follow closely the power-law dependence
predicted by equation (3.1) with an exponent
a = 0.25 ± 0.03, again using major-axis regression with
bootstrap precision estimates (� gure 3a). Remarkably, the
estimate of a predicts a value of b = 0.38 ± 0.02, very close
to the estimate (b = 0.36 ± 0.02) obtained by measuring
the standard deviation in growth rates directly (� gure 1b).
Even more striking is the consistency of our estimate of a

across the years, despite large changes in the number and
spatial distribution of sampling locations through time
(� gure 3b). These results directly imply that average local
abundance , S. = S(t)/ñ(t), scales with total (regional)
abundance according to , S . ~ S(t)a .

We can gain further insight into the organization of a
species population in different routes by considering how
the distribution of number of routes with non-zero counts
depends on total counts. That is, we may quantify the
organization of the subpopulations through the con-
ditional probability density r (ñ|S), which measures the
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Figure 3. Statistical analysis of the number of routes
populated by a given bird species. (a) Double logarithmic
plot of the number of routes with non-zero counts ñ(t)
versus total number of birds counted S(t) for each species
observed in 1997. The bias correction applied to the time-
series in � gure 1 is unnecessary in this case as all data come
from a single year. The data for all species closely follow a
straight line, the log–log plot suggesting a power-law
dependence. From the slope of the line, we estimate
1 2 a = 0.75 ± 0.03. (b) We performed a similar analysis for
all 31 years in the database and plotted the exponent
estimates for each of the years. Our results show that the
power-law dependence remains remarkably stable during the
31 survey years, clustering around a = 0.25. Error bars are
bootstrap 95% con� dence intervals.

probability of � nding a bird species with S total counts
having non-zero counts in ñ distinct routes. Figure 3 sug-
gests that r (ñ|S) will have a peak that increases as a power
law with S. As shown in � gure 4a this is indeed the case.
If the data exhibit scaling, we should be able to identify a
universal scaling function h such that

r (ñu S) ~
1
S a

hS ñ
S a D . (3.3)

We test the scaling hypothesis in equation (3.3) by plot-
ting the scaled variables
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Figure 4. Statistical analysis of the number of routes
populated by a given bird species. (a) Conditional
probability density function r (ñ|S) of � nding ñ non-zero
count routes for a bird species with S total counts. To
improve the statistics, we partitioned the bird species into
� ve groups according to size (squares, 101.2 , S , 101.9;
diamonds, 101.9 , S , 102.4; upright triangles, 102.4 , S
, 102.9; left pointing triangles, 102.9 , S , 103.5; down
pointing triangles, 103.5 , S , 105.2). (b) To illustrate the
scaling relation (equation (3.3)), we plot the scaled
probability density S12 a r (ñ/S12 a |S) versus the scaled
number of non-zero routes ñ/S12 a , combining data from all
years. In agreement with equation (3.3), we � nd that the
scaled data fall onto a single curve.

S a r S ñ
S a

u S D against
ñ
Sa

. (3.4)

Figure 4b shows that all curves collapse onto a single
curve, which yields the scaling function h(u).

4. DISCUSSION

Our analysis differs from Taylor’s original studies
(Taylor 1961, 1984; Taylor & Woiwod 1982) in an
important way. Taylor was interested in comparative
analysis and so calculated a separate exponent for each
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species. He did this by analysing multiple samples, repli-
cated across time or space, for each species. Here, we cal-
culate exponents replicating across species. One advantage
of this approach is that we analyse the time-series of total
counts, summed over the entire survey. These total counts
are considerably more robust estimates of abundance than
local counts taken at individual routes.

Another advantage of analysing scaling across species is
that it allows us to separate general patterns or ‘laws’ that
are invariant across taxonomic groups from general rules
that may explain deviations from these laws. Our reasoning
is that when the physical dimensions of a problem, such as
energy or material � ows, or spatial population structure,
predominate, we should observe scaling laws that do not
depend strongly on the biological differences among spec-
ies, but that species-speci� c differences should appear as
a residual variation after the common scaling laws are fac-
tored out. That so many species fall along a single scaling
relationship describing variability as a function of popu-
lation size (� gures 1 and 2) suggests that there may be
universal features to the way in which North American
breeding bird populations are subdivided spatially. We
� nd exactly these features in the invariant, 3/4-power sca-
ling of number of occupied survey routes versus total
population size (� gures 3 and 4).

However, not all of the variability in the data is
accounted for by these scaling laws. For example, species
with average total counts of approximately 250 individuals
exhibit more than two orders of magnitude range in
growth-rate standard deviation (� gure 1b). We believe that
this residual variation does re� ect important aspects of the
ecology of individual species (see also Kolasa et al. 1996).
There is a strong correlation between the residuals in � g-
ure 1b and the area of the corresponding species ranges,
measured in terms of the average number of non-zero
routes (T. Keitt, unpublished results). A probable expla-
nation for this pattern is that � uctuations in the abun-
dances of broadly distributed species will tend to average
out spatially because different regions are in� uenced by
geographically distinct climate regimes. Thus, it appears
that species whose life histories tend to produce strongly
aggregated distributions (i.e. species that are locally com-
mon but regionally rare) are the ones that � uctuate the
most relative to their total abundance. Species that have
broad spatial distributions (i.e. locally rare but regionally
common) are therefore expected to � uctuate less than
similar species with more restricted geographical ranges.

Ranking species in terms of their residual deviation from
the growth-scale law (� gure 1b) supports our hypothesis
that locally common but regionally rare species � uctuate
more than expected, and vice versa. Large positive
residuals correspond to species with restricted geographi-
cal ranges, such as the golden-cheeked warbler (Dendroica
chrysoparia; 2.5 times more variable), species that are habi-
tat specialists and nest in large colonies, such as the tri-
coloured blackbird (Agelaius tricolor; 13.7 times more
variable), species that breed in large groups called ‘leks’,
such as the greater prairie chicken (Tympanuchus cupido;
3 times more variable), and species that show strong local
migration patterns in response to changes in resource
availability , such as the white-winged crossbill (Loxia leuc-
optera, 3.5 times more variable) and red crossbill (Loxia
pytyopsittacus; 3.7 times more variable). Species that show
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low variability in relation to the scaling law are typically
solitary, territorial breeders such as the yellow-throated
warbler (Dendroica dominica; 2.8 times less variable), prai-
rie falcon (Falco mexicanus; 2.6 times less variable), swamp
sparrow (Melospiza georgiana; 2.5 times less variable),
Kentucky warbler (Oporornis formosus; 2.4 times less
variable) and Chuck-will’s-widow (Caprimulgus caroli-
nensis; 2.3 times less variable). The important point is that
had we started from a purely autecological standpoint and
ignored the important physical dimensions of the problem
(e.g. structure of geographical ranges), we could easily
have missed key patterns in terms of deviations from gen-
eral scaling laws.

We should, however, mention several caveats. We do
not as yet know whether our results can be generalized to
include other, non-avian taxonomic groups, or to other
continents and climate regimes. Also, despite our use of
highly aggregated, and therefore more robust, time-series,
we suspect that there remain sources of variation in our
analysis unrelated to actual population � uctuations. One
vexing problem is repeated local migration between
sampled and unsampled locations (we call this ‘sloshing’).
Even if there is no variation in the true abundance across
years, sloshing will lead to a given individual being coun-
ted in some years and not others, leading to measurement
errors in the time-series. We suspect this effect is not a
signi� cant component of variation in most of our time-
series, but may be substantial in a few cases. (Sloshing
may contribute to the extreme variability of the tricoloured
blackbird, for example.) Additional data, such as mark–
recapture, may be needed to resolve this issue.

There are two additional mechanisms related to our
model for geographically subdivided populations that we
have not discussed. We have shown how a nonlinear
dependency of the number of subpopulations versus
total population size may explain the observed deviation
from 1/2-power scaling of population � uctuations. Our
basic hypothesis depends on the average local abun-
dance scaling with total abundance in independently
� uctuating subpopulations of roughly equal size. How-
ever, there are other patterns that may in� uence the
‘effective’ number of independently � uctuating subpop-
ulations, and thus partially amount for the observed
exponent in the growth-scaling law. First, large spatial
variation in local abundance (Brown et al. 1995) could
cause widespread species to � uctuate with greater mag-
nitude than if all subpopulations have the same local
abundance, as most of the variation would be driven by
a few, high-abundance sites. Second, strong spatial auto-
correlation in population growth increments or ‘spatial
synchrony’ among � uctuating subpopulations (Grenfell
et al. 1998; Bjørnstad et al. 1999; Kendall et al. 2000;
Lundberg et al. 2000) may also cause a reduction in the
effective number of independent subpopulations, and
thus account for the increased magnitude of � uctuation
in broadly distributed species. Temporal autocorrelation
may act similarly to increase or decrease variability rela-
tive to our model. The consequences of these mech-
anisms need further exploration.

A surprising result of our analysis is the, to our knowl-
edge, previously unreported 3/4-power scaling of spatial
distribution as a function of total population size (� gure
3). This result is closely related to, but not the same as,
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the ‘distribution–abundance’ curve of Hanski & Gyllen-
berg (1997) that describes the fraction of regional habitats
occupied as a function of average local abundance. We do
not as yet have an explanation for why the exponent
should take this particular value, nor why it is so consistent
through years. Recently, there has been considerable inter-
est in explanations for the apparent 3/4-power scaling law
relating body mass to metabolic output (Enquist et al.
1998; West et al. 1999; Dodds et al. 2001; Niklas &
Enquist 2001). One explanation posited to explain 3/4-
power scaling is optimal structuring of a fractal transport
network, such as the vascular system of plants and animals
(West et al. 1999). This suggests an interesting hypothesis
to explain 3/4-power scaling in our analysis: if the geo-
graphical ranges of species are subdivided according to a
particular fractal pattern, perhaps because of the fractal
nature of the physical environment (e.g. Rinaldo et al.
1995), then it might lead to our observed scaling laws.
Testing this hypothesis will require additional study.

It is interesting to note that our results are in striking
qualitative agreement with similar studies from a broad
range of social systems, ranging from growth of companies
in the US economy to the GDP of countries (Stanley et
al. 1996; Lee et al. 1998; Plerou et al. 1999), suggesting
that our simple model of growth may apply quite broadly
(Amaral et al. 1998). Our observation that more ‘speciali-
zed’ bird species (in terms of smaller number of
subpopulations) � uctuate more than broadly distributed
species may have an interesting parallel in social organiza-
tions: those that specialize in a few economic activities,
e.g. countries with a single export product, may � uctuate
considerably more than a similarly sized organization with
diverse economic activities, e.g. countries that produce a
range of products. Putting all of one’s eggs in a single bas-
ket, as the saying goes, sometimes leads to catastrophes,
and, it appears, greater variability as well.

T.K. thanks the Santa Fe Institute and the National Center
for Ecological Analysis and Synthesis for support during the
initial phase of this research. This research was made possible
by the efforts by thousands of US and Canadian BBS parti-
cipants in the � eld, as well as USGS and CWS researchers
and managers.

APPENDIX A: CORRECTIONS APPLIED TO
TIME-SERIES

Let stuv be the number of birds of species u counted at

route v in year t. The raw total counts Rtu = S
Nt

v
stuv contain

information about the abundance of species u in year t as
well as information about the number Nt and distribution
of routes surveyed in year t. The goal is to remove the bias
in the counts Rtu introduced by variation in the number
and distribution of survey routes through time. We do this
by replacing each count stuv for a given species at a given
route with the time average m uv = Tv

2 1St stuv for that route
and species, where Tv is the number of years that route v
was surveyed. We then construct new, surrogate time-
series

Mtu = ONt

v

m uv
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whose variation only re� ects changes in the number and
distribution of survey routes through time (because the
same m uv is used in each year), and not any real change
in abundance. We can then generate a bias-corrected
time-series by subtracting these new time-series from the
raw totals:

Stu = Rtu 2 Mtu 1 M̄u, (A 1)

where M̄u is the time average of Mtu for species u. The
advantage of this approach is that survey routes added or
removed outside a species range will not in� uence the cor-
rected total, because these routes will have m uv = 0.
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