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Abstract. Recent evidence suggests that physiological signals under healthy condi-
tions may have a fractal temporal structure. We investigate the possibility that time
series generated by certain physiological control systems may be members of a spe-
cial class of complex processes, termed multifractal, which require a large number of
exponents to characterize their scaling properties. We report on evidence for multi-
fractality in a biological dynamical system — the healthy human heartbeat. Further,
we show that the multifractal character and nonlinear properties of the healthy heart
rate are encoded in the Fourier phases. We uncover a loss of multifractality for a
life-threatening condition, congestive heart failure.

Biomedical signals are generated by complex self-regulating systems that process
inputs with a broad range of characteristics [1,2]. Many physiological time series
such as the one shown in Fig. la, are extremely inhomogeneous and nonstationary,
fluctuating in an irregular and complex manner. The analysis of the fractal prop-
erties of such fluctuations has been restricted to second order linear characteristics
such as the power spectrum and the two-point autocorrelation function. These
analyses reveal that the fractal behavior of healthy, free-running physiological sys-
tems is often characterized by l//-like scaling of the power spectra [3-6].

Monofractal signals are homogeneous in the sense that they have the same scal-
ing properties throughout the entire signal. Therefore monofractal signals can be
indexed by a single global exponent—the Hurst exponent  H [12]. On the other
hand, multifractal signals, can be decomposed into many subsets characterized by
different local Hurst exponents ft, which quantify the local singular behavior and
thus relate to the local scaling of the time series. Thus multifractal signals require
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FIGURE 1. (a) Consecutive heartbeat intervals measured in seconds are plotted vs beat number
from approximately 3 hours record of a representative healthy subject. The time series exhibits
very irregular and nonstationary behavior, (b) The top panel displays in color the local Hurst
exponents calculated for the same 3 hours record shown in (a). The heterogeneity of the healthy
heartbeat is represented by the broad range of local Hurst exponents h (colors) present and the
complex temporal organization of the different exponents. The bottom panel displays in color
the local Hurst exponents calculated for a monofractal signal — fractional Brownian motion with
H = 0.6. The homogeneity of the signal is represented by the nearly monochromatic appearance
of the signal which indicates that the local Hurst exponent h is the same throughout the signal
and identical to the global Hurst exponent H.
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many exponents to fully characterize their scaling properties [7-9].
The statistical properties of the different subsets characterized by these different

exponents h can be quantified by the function D(h), where D(h0) is the fractal
dimension of the subset of the time series characterized by the local Hurst exponent
h [10,11,7-9]. Thus, the multifractal approach for signals, a concept introduced
in the context of multi-affine functions [13,14], has the potential to describe a wide
class of signals that are more complex then those characterized by a single fractal
dimension (such as classical 1/f noise).

We test whether a large number of exponents is required to characterize hetero-
geneous heartbeat interval time series [Fig. 1] by undertaking multifractal analysis.
The first problem is to extract the local value of h. To this end we use methods
derived from wavelet theory [15]. The properties of the wavelet transform make
wavelet methods attractive for the analysis of complex nonstationary time series
such as one encounters in physiology [16]. In particular, wavelets can remove poly-
nomial trends that could lead box-counting techniques to fail to quantify the local
scaling of the signal [17]. Additionally, the time-frequency localization properties of
the wavelets makes them particularly useful for the task of revealing the underlying
hierarchy that governs the temporal distribution of the local Hurst exponents [18].
Hence, the wavelet transform enables a reliable multifractal analysis [17,18]. As

the analyzing wavelet, we use derivatives of the Gaussian function, which allows
us to estimate the singular behavior and the corresponding exponent h at a given
location in the time series. The higher the order n of the derivative, the higher
the order of the polynomial trends removed and the better the detection of the
temporal structure of the local scaling exponents in the signal.

We evaluate the local exponent h through the modulus of the maxima values of
the wavelet transform at each point in the time series. We then estimate the scaling
of the partition function Zq(a}, which is defined as the sum of the qih powers of the
local maxima of the modulus of the wavelet transform coefficients at scale a [18].

For small scales, we expect

Zq(a) ~ ar^ . (1)

For certain values of <?, the exponents r(q) have familiar meanings. In particular,
r(2) is related to the scaling exponent of the Fourier power spectra, S(f) ~ l//^,
as /? — 2 -f- r(2). For positive g, Zq(a) reflects the scaling of the large fluctuations
and strong singularities, while for negative q, Zq(a) reflects the scaling of the small
fluctuations and weak singularities [7,8]. Thus, the scaling exponents r(q)  can re-
veal different aspects of cardiac dynamics. The wavelet transform modulus maxima
approach we use proves superior to the standard box-counting techniques and the
structure factor method, which are limited only to positive moments q [18].

Monofractal signals display a linear r(q) spectrum, r(q) — qH — 1, where H is
the global Hurst exponent. For multifractal signals, r(q)  is a nonlinear function:
r(q) = qh(q) — D(K), where h(q) = dr(q)/dq is not constant. The fractal dimension
D(h], introduced earlier, is related to r(q) through a Legendre transform,
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FIGURE 2. Heartbeat time series contain densely packed, non-isolated singularities which un-
avoidably affect each other in the time-frequency decomposition. Therefore, rather than evalu-
ating the distribution of the inherently unstable local singularity exponents (as shown in color
on Fig. 1), we estimate the scaling of an appropriately chosen global measure: the q moments of
the probability distribution of the maxima of the wavelet transform Z (a) (as analyzing wavelet
we use the 3rd derivative of the Gaussian function). Here we show the scaling of the partition
function Zq(a) with scale  a obtained from daytime records consisting of « 25,000 beats for (a) a
healthy subject and (b) a subject with congestive heart failure. We calculate r(q) for moments
q = — 5 , 4 , . . . , 0 , . . . , 5 and scales a = 2 x 1.15% i = 0 , . . . , 41. We display the calculated values of
Z(a) for scales a > 8. The top curve corresponds to q — —5, the middle curve (shown heavy)

to q — 0 and the bottom curve to q = 5. The exponents r(q)  are obtained from the slope of
the curves in the region 16 < a < 700, thus eliminating the influence of any residual small scale
random noise due to EGG signal pre-processing as well as extreme, large scale fluctuations of

the signal, (c) Multifractal spectrum r(q] for individual records. A monofractal signal would
correspond to a straight line for r(q), while for a multifractal signal r(q) is nonlinear. Note the
clear differences between the curves for healthy and heart failure records.
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FIGURE 3. (a) Multifractal spectrum r(q) of the group averages for daytime and nighttime
records for 18 healthy subjects and for 12 patients with congestive heart failure. The results
show multifractal behavior for the healthy group and distinct change in this behavior for the
heart failure group, (b) Fractal dimensions D(h) obtained through a Legendre transform from

the group averaged r(q) spectra of (a). The shape of D(h)  for the individual records and for
the group average is broad, indicating multifractal behavior. On the other hand, D(h) for the
heart failure group is very narrow, indicating monofractality. The different form of D(h)  for the
heart failure group may reflect perturbation of the cardiac neuroautonomic control mechanisms
associated with this pathology.

= qh-r(q). (2)

We analyze both daytime (12:00 to 18:00) and nighttime (0:00 to 6:00) heartbeat
time series records of healthy subjects, and the daytime records of patients with
congestive heart failure. These data were obtained by Holter monitoring. Our
database includes 18 healthy subjects (13 female and 5 male, with ages between 20

and 50, average 34.3 years), and 12 congestive heart failure subjects (3 female and
9 male, with ages between 22 and 71, average 60.8 years) in sinus rhythm [19]. For

all subjects, we find that for a broad range of positive and negative  q the partition
function Zq(a) scales as a power law [Figs. 2a,b].

For all healthy subjects, we find that r(q) is a nonlinear function [Fig. 2c and
Fig. 3a], which indicates that the heart rate of healthy humans is a multifractal
signal. Figure 3b shows that for healthy subjects, D(h)  has nonzero values for a
broad range of local Hurst exponents h. The multifractality of healthy heartbeat
dynamics cannot be explained by activity, as we analyze data from subjects during
nocturnal hours. Furthermore, this multifractal behavior cannot be attributed to
sleep-stage transitions, as we find multifractal features during daytime hours as
well. The range of scaling exponents — 0 < h < 0.3 — with nonzero fractal
dimension D(h), suggests that the fluctuations in the healthy heartbeat dynamics
exhibit anti-correlated behavior (h = 1/2 corresponds to uncorrelated behavior
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while h > 1/2 corresponds to correlated behavior).
In contrast, we find that heart rate data from subjects with a pathological con-

dition — congestive heart failure — show a clear loss of multifractality [Figs. 3a,b].
For the heart failure subjects, r(q)  is close to linear and D(h) is non-zero only over
a very narrow range of exponents h indicating monofractal behaviour [Fig. 3].

Our results show that, for healthy subjects, local Hurst exponents in the range
0.07 < h < 0.17 are associated with fractal dimensions close to one. This means
that the subsets characterized by these local exponents are statistically dominant.
On the other hand, for the heart failure subjects, we find that the statistically dom-
inant exponents are confined to a narrow range of local Hurst exponents centered

at h « 0.22. These results suggest that for heart failure the fluctuations are less
anti-correlated than for healthy dynamics since the dominant scaling exponents  h
are closer to 1/2.

The multifractality of heart beat time series also enables us to quantify the
greater complexity of the healthy dynamics compared to pathological conditions.
Power spectrum analysis defines the complexity of heart beat dynamics through
its scale-free behavior, identifying a single scaling exponent as an index of healthy
or pathologic behavior. Hence, the power spectrum is not able to quantify the
greater level of complexity of the healthy dynamics, reflected in the heterogeneity
of the signal. On the other hand, the multifractal analysis reveals this new level of
complexity by the broad range of exponents necessary to characterize the healthy
dynamics. Moreover, the change in shape of the D(h) curve for the heart failure
group may provide insights into the alteration of the cardiac control mechanisms
due to this pathology.

To further study the complexity of the healthy dynamics, we perform two tests
with surrogate time series. First, we generate a surrogate time series by shuffling
the interbeat interval increments of a record from a healthy subject. The new
signal preserves the distribution of interbeat interval increments but destroys the
long-range correlations among them. Hence, the signal is a simple random walk,
which is characterized by a single Hurst exponent H — 1/2 and exhibits monofrac-
tal behavior [Fig. 4a]. Second, we generate a surrogate time series by performing a
Fourier transform on a record from a healthy subject, preserving the amplitudes of

the Fourier transform but randomizing the phases, and then performing an inverse
Fourier transform. This procedure eliminates nonlinearities, preserving only the
linear features of the original time series. The new surrogate signal has the same
I// behavior in the power spectrum as the original heart beat time series; however
it exhibits monofractal behavior [Fig. 4a]. We repeat this test on a record of a heart
failure subject. In this case, we find a smaller change in the multifractal spectrum
[Fig. 4b]. The results suggest that the healthy heartbeat time series contains im-
portant phase correlations cancelled in the surrogate signal by the randomization
of the Fourier phases, and that these correlations are weaker in heart failure sub-
jects. Furthermore, the tests indicate that the observed multifractality is related to
nonlinear features of the healthy heartbeat dynamics. A number of recent studies
have tested for nonlinear and deterministic properties in recordings of interbeat
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FIGURE 4. (a) The fractal dimensions D(h) for a 6h daytime record of a healthy subject.
After reshuffling and integrating the increments in this interbeat interval time series, so that all
correlations are lost but the distribution is preserved, we obtain monofractal behavior — a very
narrow point-like spectrum centered at h = H = 1/2. Such behavior corresponds to a simple
random walk. A different test, in which the I//-scaling of the heart beat signal is preserved but
the Fourier phases are randomized (i.e., nonlinearities are eliminated) leads again to a monofractal
spectrum centered at h « 0.07, since the linear correlations were preserved. These tests indicate
that the observed multifractality is related to nonlinear features of the healthy heart beat dynamics
rather than to the ordering or the distribution of the interbeat intervals in the time series, (b)

The fractal dimensions D(h) for a 6h daytime record of a heart failure subject. The narrow
multifractal spectrum indicates loss of multifractal complexity and reduction of nonlinearities
with pathology.

intervals [20-23]. Our results are the first to demonstrate an explicit relation be-
tween the nonlinear features (represented by the Fourier phase interactions) and
the multifractality of healthy cardiac dynamics [Fig. 4]. The exact nature of this
relation, however, remains an open question.

From a physiological perspective, the detection of robust multifractal scaling
in the heart rate dynamics is of interest because our findings raise the intriguing
possibility that the control mechanisms regulating the heartbeat interact as part
of a coupled cascade of feedback loops in a system operating far from equilibrium
[24,25], Furthermore, the present results indicate that the healthy heartbeat is even
more complex than previously suspected, posing a challenge to ongoing efforts to
develop realistic models of the control of heart rate and other processes under
neuroautonomic regulation.
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