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Abstract. – We propose a general approach to the question of how biological rhythms sponta-
neously self-regulate, based on the concept of “stochastic feedback”. We illustrate this approach
by considering at a coarse-grained level the neuroautonomic regulation of the heart rate. The
model generates complex dynamics and successfully accounts for key characteristics of cardiac
variability, including the 1/f power spectrum, the functional form and scaling of the distribution
of variations, and correlations in the Fourier phases indicating nonlinear dynamics.

The principle of homeostasis asserts that biological systems seek to maintain a constant
output after perturbation [1]. Recent evidence, however, indicates that healthy systems even
at rest display highly irregular dynamics [2, 3]. Here, we address the paradox of how to
reconcile homeostatic control and complex variability. The concept of dynamic equilibrium or
homeostasis [1] led to the proposal that physiological variables, such as the cardiac interbeat
interval τ(n), maintain an approximately constant value in spite of continual perturbations.
Thus one can write in general τ(n) = τ0 + η, where τ0 is the “preferred level” for the interbeat
interval and η is a white noise with strength σ, defined as the standard deviation of η.

We first re-state this problem in the language of random walks. The time evolution of an
uncorrelated and unbiased random walk is expressed by the equation τ(n + 1) − τ(n) = η.
The deviation from the initial level increases as n1/2, so an uncorrelated and unbiased random
walk does not preserve homeostasis. To maintain a constant level, there must be a bias in the
random walk,

τ(n+ 1)− τ(n) = I(n) , (1a)

with

I(n) =

{
w (1 + η) , if τ(n) < τ0 ,
−w (1 + η) , if τ(n) ≥ τ0 ,

(1b)
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Fig. 1. – Schematic representation of the dynamics of the model. a) Random walk with a bias toward
τ0. For short time scales (high frequencies), the power spectrum scales as 1/f2 (Brownian noise) with
a crossover to white noise at longer time scales due to the attraction to level τ0. Note the shift of the
crossover to longer time scales (lower frequencies) when stronger noise is present. However, in both

cases, P (A) follows the Rayleigh distribution P (A) ∼ Ae−A
2

. b) Random walk with two stochastic
feedback controls. In contrast to a), the levels of attraction τ0 and τ1 change values in time. Each
level persists for a time interval Ti drawn from a distribution with an average value Tlock. Perturbed
by changing external stimuli, the system nevertheless remains within the bounds defined by ∆τ even
after many steps. We find that such dynamical mechanism, based on a single characteristic time scale
Tlock, generates a 1/f power spectrum over several decades. Moreover, P (A) decays exponentially,
which we attribute to the nonlinear character of the dynamics.

where the weight w is the strength of the feedback input biasing the walker to return to its
preferred level τ0. However, eq. (1) does not reproduce the statistical properties of the cardiac
data (fig. 1a). A more realistic description of physiologic control must generalize eq. (1) to
include several inputs Ik (k = 0, 1, · · · ,m), with different preferred levels τk, which compete
in biasing the walker

τ(n + 1)− τ(n) =
m∑
k=0

Ik(n) , (2a)

where

Ik(n) =

{
wk (1 + η) , if τ(n) < τk,
−wk (1 + η) , if τ(n) ≥ τk.

(2b)

From a biological point of view, it is clear that the preferred levels τk of the inputs Ik
cannot remain constant in time, for otherwise the system would not be able to respond to
varying external stimuli. We assume that each preferred interval τk is a random function of
time, with values correlated over a time scale T klock. We next coarse-grain the system and
choose a) τk(n) to be a random step-like function drawn from a uniform distribution and
constrained to have values within a certain interval and b) the length of the steps from a
normal distribution with an average value Tlock (fig. 1b). This model yields several interesting
features not fully explained by other models [4]: a) 1/f power spectrum, b) stable scaling
form for the distribution of the variations in the beat-to-beat intervals and c) Fourier phase
correlations.

To illustrate the approach for the specific example of neuroautonomic control of cardiac
dynamics, we first note that the healthy heart rate is determined by three major inputs: i) the
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Fig. 2. – a) Sequence of interbeat intervals τ for a healthy individual. b) Sequence of interbeat intervals
for the model with parameters N = 7, wSA = wSS = wPS/3 = 0.01 s. For the results presented
here, Ti is randomly chosen from a normal distribution with average Tlock = 1000 beats, and η is a
symmetrical exponential distribution with zero average and standard deviation σ = 0.5. Note that
this choice for the noise does not automatically lead to an exponential form for the distribution P (A)
of the amplitudes A of the variations (see fig. 1). The preferred values of the interbeat intervals for
the different inputs were picked according to the following rules: 1) τSA = 0.6 s, 2) τPS are randomly

selected from a uniform distribution in the interval [0.9, 1.5] s, and 3) the τ jSS’s are randomly selected
from a uniform distribution in the interval [0.2, 1.0] s. We note that the actual value of the preferred
interbeat intervals of the different inputs and the ratio between their weights are physiologically
justified and are of no significance for the dynamics —they just set the range for the fluctuations of τ ,
chosen to correspond to the empirical data. Also, any change of the shape of the distribution of the
noise term or of the locking times leaves the here reported statistical properties of the generated signal
unchanged. c) Power spectra of the interbeat intervals τ (n) from the data and the model described by
the relation S(f) ∼ 1/f1.1. The presence of patches in both heart and model signals lead to observable
crossovers embedded on this 1/f behavior at different time scales. The local exponent β from the
power spectrum of 24 h records (≈ 105 beats) for 20 healthy subjects shows a persistent drift, so no
true scaling exists. d) Power spectra of the increments in τ (n). The model and the data both scale as
power laws with exponents close to one. Since the nonstationarity is reduced, crossovers are no longer
present. Here the local exponent βI fluctuates around an average value close to one, so true scaling
does exist.

sinoatrial (SA) node; ii) the parasympathetic (PS); and iii) the sympathetic (SS) branches of
the autonomic nervous system.

i) The SA node or pacemaker is responsible for the initiation of each heart beat; in the
absence of other external stimuli, it is able to maintain a constant interbeat interval [1].
Experiments in which PS and SS inputs are blocked reveal that the interbeat intervals are
very regular and average only 0.6 s [5]. The input from the SA node, ISA, thus biases the
interbeat interval τ toward its intrinsic level τSA (see fig. 1b).

ii) The PS fibers conduct impulses that slow the heart rate. Suppression of SS stimuli,
while under PS regulation, can result in the increase of the interbeat interval to as much as
1.5 s [5]. The activity of the PS system changes with external stimuli. We model these features
of the PS input, IPS, by the following conditions: 1) a preferred interval, τPS(n), randomly
chosen from a uniform distribution with an average value larger than τSA, and 2) a correlation
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Fig. 3. – Left: Effect of the correlation time Tlock on the scaling of the power spectrum of τ (n) for a
generated signal comprising 106 beats. With increasing Tlock, the power spectrum does not follow a
single power law but actually crosses over from a behavior of the type 1/f2 at very small time scales
(or high frequencies), to a behavior of the type 1/f0 for intermediate time scales, followed by a new
regime with 1/f2 for larger time scales. At very large time scales, another regime appears with flat
power spectrum. Right: Schematic diagram illustrating the origin of the different scaling regimes in
the power spectrum of τ (n). For very short time scales, the noise will dominate, leading to a simple
random walk behavior and 1/f2 scaling (region A). For time scales longer than TA, the attraction
towards the “average preferred level” of all inputs will dominate, leading to a flat power spectrum
(region B, see also fig. 1b). However, after a time TB (of the order of Tlock/N), the preferred level of
one of the inputs will have changed, leading to the random drift of the average preferred level and the
consequent drift of the walker towards it. So, at these time scales, the system can again be described
as a simple random walker and we expect a power spectrum of the type 1/f2 (region C). Finally, for
time scales larger than TC , the walker will start to feel the presence of the bounds on the fluctuations
of the preferred levels of the inputs. Thus, the power spectrum will again become flat (region D).

time, TPS, during which τPS does not change, where TPS is drawn from a distribution with an
average value Tlock.

iii) The SS fibers conduct impulses that speed up the heart beat. Abolition of parasym-
pathetic influences when the sympathetic system remains active can decrease the interbeat
intervals to less than 0.3 s [5]. There are several centers of sympathetic activity highly
sensitive to environmental influences [5]. We represent each of the N sympathetic inputs by
IjSS (j = 1, · · · , N). We attribute to IjSS the following characteristics: 1) a preferred interbeat

interval τ jSS(n) randomly chosen from a uniform distribution with an average value smaller

than τSA, and 2) a correlation time Tj in which τ jSS(n) does not change; Tj is drawn from a
distribution with an average value Tlock which is the same for all N inputs (and the same as
for the PS system), so Tlock is the characteristic time scale of both the PS and SS inputs.

The characteristics for the PS and SS inputs correspond to a random walk with stochastic
feedback control (fig. 1b). Thus, for the present example of cardiac neuroautonomic control,
we have N + 2 inputs and eq. (2a) becomes

τ(n + 1)− τ(n) = ISA(n) + IPS (n, τPS(n)) +
N∑
j=1

IjSS

(
n, τ jSS(n)

)
, (3)

where the structure of each input is identical to the one in eq. (2b). Clearly, eq. (3) cannot fully
reflect the complexity of the human cardiac system, but it provides a general framework that
can easily be extended to include other physiological systems (such as breathing, baroreflex
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Fig. 4. – We apply to the signal generated by the model the wavelet transform with fixed scale a,
then use the Hilbert transform to calculate the amplitude A. Left: Normalized histogram P (A) for
the data (6 h daytime) and for the model (with the same parameter values as in fig. 2), and for
wavelet scale a = 8. The inset shows a similar plot for data collected during the night and for the
model with N < wPS/wSS. Note that the distribution is broader for this case with large values for the
amplitudes deviating from the exponential tail. Right: We test the stability of the analysis for the
model at different time scales a. The distribution is stable over a wide range of scales (identical to
the range observed for heart data) and indicates statistical self-similarity in the variations at different
time scales. We test the generated signal for nonlinearity and Fourier phase correlations, creating a
surrogate signal by randomizing the Fourier phases of the generated signal but preserving the power
spectrum (thus, leaving the results of fig. 2 unchanged). The histogram of the amplitudes of variations
for the surrogate signal follows the Rayleigh distribution, as expected theoretically (see inset). Thus
the observed distribution which is universal for healthy cardiac dynamics, and reproduced by the
model, reflects the Fourier phase interactions.

control [6], different locking times for the inputs of the SS and PS systems to account for the
differences in the response time of these two systems [5], etc.). Equation (3) captures the
essential ingredients responsible for a number of important scaling properties of the healthy
heart rate.

To qualitatively test the model, we first compare the time series generated by the stochastic
feedback model and the healthy heart and find that both signals display complex variability
and patchiness (fig. 2a). To quantitatively test the model, we compare the statistical properties
of heart data with the predictions of the model:

a) We first test for long-range anti-correlations in the interbeat intervals, which exist for
healthy heart dynamics [7]. These anti-correlations can be uncovered by calculating power
spectra, and we see in fig. 2 that the model correctly reproduces the observed long-range
anti-correlations. In particular, we note that the nonstationarity of both the data and model
signals leads to the existence of several distinct scaling regimes in the power spectrum of τ(n)
(figs. 2 and 3). The stochastic feedback mechanism thus enables us to explain the formation
of regions (patches) in the time series with different characteristics; cf. fig. 3.

b) By studying the power spectrum of the increments we are able to circumvent the effects
of the nonstationarity. Our results show that 1/f -scaling is indeed observed for the power
spectrum of the increments, both for the data and for the model (fig. 2).

c) We calculate the probability density P (A) of the amplitudes A of the variations of inter-
beat intervals through the wavelet transform. It has been shown that the analysis of sequences
of interbeat intervals with the wavelet transform [8] can reveal important scaling properties
for the distributions of the variations in complex nonstationary signals. In agreement with the
results of ref. [9], we find that the distribution P (A) of the amplitudes A of interbeat interval
variations for the model decays exponentially —as is observed for healthy heart dynamics
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(fig. 4). We hypothesize that this decay arises from nonlinear Fourier phase interactions and
is due to the underlying nonlinear dynamics. To test this hypothesis, we perform a parallel
analysis on a surrogate time series obtained by preserving the power spectrum but randomizing
the Fourier phases of a signal generated by the model (fig. 4); P (A) now follows the Rayleigh

distribution P (A) ∼ Ae−A
2

, since there are no Fourier phase correlations.
d) For the distribution displayed in fig. 4, we test the stability of the scaling form at different

time scales; we find that P (A) for the model displays a scaling form stable over a range of time
scales identical to the range for the data [9]. Such time scale invariance indicates statistical
self-similarity.

A notable feature of the present model is that in addition to the power spectra, it accounts
for the functional form and scaling properties of P (A), which as we show are independent
of the power spectra. No similar tests for nonlinear dynamics have been reported for other
models [4].

We find that the model is robust to changes in the parameters, whose values would vary
from one individual to another. So we next study the sensitivity of our results to variations
in these parameters. Only two parameters are relevant: The value of Tlock and the strength of
the noise σ are crucial to generate dynamics with scaling properties similar to those found for
empirical data. We find that the model reproduces key features of the healthy heart dynamics
for a wide range of time scales (500 ≤ Tlock ≤ 2000) and noise strengths (0.4 ≤ σ ≤ 0.6). Thus
the model is consistent with the existence of an extended “zone” in parameter space where
scaling behavior holds, and our picture is supported by the variability in the parameters for
healthy individuals for which similar scaling properties are observed.
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