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We study the distribution of fluctuations of the S&P 500 index over a time skalby analyzing three
distinct databases. Databasecontains approximately 1 200 000 records, sampled at 1-min intervals, for the
13-year period 1984-1996, databas¢ contains 8686 daily records for the 35-year period 1962—-1996, and
databasdiii ) contains 852 monthly records for the 71-year period 1926—-1996. We compute the probability
distributions of returns over a time scal¢, whereAt varies approximately over a factor of 8from 1 min
up to more than one month. We find that the distributionsf6= 4 d (1560 min are consistent with a
power-law asymptotic behavior, characterized by an exponen8, well outside the stable Mg regime
0<a<?2. To test the robustness of the S&P result, we perform a parallel analysis on two other financial
market indices. Databag#/) contains 3560 daily records of the NIKKEI index for the 14-year period 1984—
1997, and databage) contains 4649 daily records of the Hang-Seng index for the 18-year period 1980-1997.
We find estimates of consistent with those describing the distribution of S&P 500 daily returns. One possible
reason for the scaling of these distributions is the long persistence of the autocorrelation function of the
volatility. For time scales longer thamA¢)..~4 d, our results are consistent with a slow convergence to
Gaussian behaviofS1063-651X99)11211-X

PACS numbeps): 05.40.Fb, 05.45.Tp, 89.96n

[. INTRODUCTION AND BACKGROUND quency, and the values of market indi¢€gy. 1). A number
of studies investigated the time series of returns on varying
The analysis of financial data by methods developed fotime scalesAt in order to probe the nature of the stochastic
physical systems has a long traditidn-4], and has recently process underlying if10,13-15,29-4B For a time series
attracted the interest of physicists—28. Among the rea- S(t) of prices or market index values, the retu@(t)
sons for this interest is the scientific challenge of understand=Gat(t) over a time scaleAt is defined as the forward
ing the dynamics of a strongly fluctuating complex systemchange in the logarithm d(t) [44],
with a large number of interacting elements. In addition, it is
possible that the experience gained by studying complex Ga(D)=InS(t+At)—In S(t). D
physical systems might yield new results in economics.
Financial markets are complex dynamical systems witheor small changes irS(t), the returnG,,(t) is approxi-
many interacting elements that can be grouped into two cainately the forward relative change,
egories:(i) the traders— such as individual investors, mu-

tual funds, brokerage firms, and banks — dingthe assets S(t+At)— S(t)
— such as bonds, stocks, futures, and options. Interactions Gy~ —————— 2)
between these elements lead to transactions mediated by the S(t)

stock exchange. The details of each transaction are recorded
for later analysis. The dynamics of a financial market are In 1900, Bachelier proposed the first model for the sto-
difficult to understand not only because of the complexity ofchastic process of returns—an uncorrelated random walk
its internal elements but also because of the many intractablith independent, identically distributed.i.d.) Gaussian
external factors acting on it, which may even differ from random variable$l]. This model is natural if one considers
market to market. Remarkably, the statistical properties ofhe return over a time scal&t to be the result of many
certain observables appear to be similar for quite differenindependent “shocks,” which then lead by the central limit
markets[29-43, consistent with the possibility that there theorem to a Gaussian distribution of retufi$ However,
may exist “universal” results. empirical studie$4,10,13-15,29—43Xhowed that the distri-
The most challenging difficulty in the study of a financial bution of returng45] has pronounced tails in striking con-
market is that the nature of the interactions between the diftrast to that of a Gaussian. To illustrate this fact, we show in
ferent elements comprising the system is unknown, as is thEig. 2 the 10-min returns of the S&P 500 market indég]
way in which external factors affect it. Therefore, as a startfor 1986 and 1987, and contrast it with a sequence of i.i.d.
ing point, one may resort to empirical studies to help uncovefaussian random variables. Both are normalized to have unit
the regularities or “empirical laws” that may govern finan- variance. Clearly, large events are very frequent in the data,
cial markets. a fact largely underestimated by a Gaussian process. Despite
The interactions between the different elements compristhis empirical fact, the Gaussian assumption for the distribu-
ing financial markets generate many observables such as thien of returns is widely used in theoretical finance because
transaction price, the share volume traded, the trading fresf the simplifications it provides in analytical calculation;
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FIG. 1. The S&P 500 index is the sum of the market capitalizations of 500 companigs. Wwe display both the value of the S&P 500
index (bottom line and the index detrended by inflation to 1994 U.S. dol{&mp line). The sharp jump seen in 1987 is the market crash of
October 19(b) Comparison of the time evolution of the S&P 500 for the 35-year period 1962-1898ine) and a biased Gaussian random
walk (bottom ling. The random walk has the same bias as the S&P 500 —approximately 7% per year for the period considered.

indeed, it is one of the assumptions used in the classic Blaclcilitated the probing of the asymptotic behavior of the distri-
Scholes option pricing formulgl1,47-49. bution. For these reasons, recent empirical studies of the
In his pioneering analysis of cotton prices, MandelbrotS&P 500 index such as Refl10] analyze typically 16
observed that in addition to being non-Gaussian, the process10’ data points, in contrast to approximately 2000 data
of returns shows another interesting property: “time scal-points analyzed in the classic work of Mandelbfét. Ref-
ing” — that is, the distributions of returns for various erencd10] reports that the central part of the distribution of
choices ofAt, ranging fran 1 d up to onenonth have simi- S&P 500 returns appears to be well fit by aviedistribu-
lar functional forms[4]. Motivated by (i) the pronounced tion, but the asymptotic behavior of the distribution of re-
tails, and(ii) the stable functional form for different time turns shows faster decay than predicted by aylL@istribu-
scales, Mandelbrdi4] proposed that the distribution of re- tion. Hence Ref. [10] proposed a truncated i
turns is consistent with a 'y stable distribution[2,3] —  distribution—a Ley distribution in the central part followed
that is, the returns can be modeled as aylLstable process. by an approximately exponential truncation—as a model for
Lévy stable distributions arise from the generalization of thethe distribution of returns. The exponential truncation en-
central limit theorem to random variables which do not havesures the existence of a finite second moment, and hence the
a finite second momerisee Appendix A truncated Ley distribution is not a stable distribution
Conclusive results on the distribution of returns are diffi-[50,51]. The truncated Dy process with i.i.d. random vari-
cult to obtain, and require a large amount of data to study thables has slow convergence to Gaussian behavior due to the
rare events that give rise to the tails. More recently, the availtévy distribution in the center, which could explain the ob-
ability of high frequency data on financial market indices,served time scaling for a considerable range of time scales
and the advent of improved computing capabilities, has faf10].
In addition to the probability distribution, a complemen-
20 tary aspect for the characterization of any stochastic process

0L (a) S&P 500 (10 min data) ] is the quantification of correlations. Studies of the autocorre-

0 WWMWWMMWMWWWM lation function of returns show exponential decay with char-
2 -0 . acteristic decay timesg, of only 4 min[33,52-54. As is
5 207 clear from Fig. 8a), for time scales beyond 20 min the cor-
s 10} (b) S&P 500 (monthly data) | relation function is at the level of noise, in agreement with
S 0 "”’M‘MNWWW L bt b i) the efficient market hypothesighich states that it is not pos-
R -10r ] sible to predict future stock prices from their previous values
& 20 ] ] [55]. If price correlations were not short range, one could

0 (¢) Gaussian noise 1 devise a way to make money from the market indefinitely.

O bt st A Il A g At

ok ] It is important to note that lack of linear correlation does

not imply an i.i.d. process for the returns, since there may

exist higher-order correlatiof&ig. 3(b)]. Indeed, the ampli-

tude of the returns, referred to in economics asvbilatility
FIG. 2. Sequence dfa) 10-min returns, from databag®, and  [56], shows long-range time correlations that persist up to

(b) one-month returns, from databagi), for the S&P 500, nor-  several month$14,33,53—-63 and are characterized by an

malized to unit variance(c) Sequence of i.i.d. Gaussian random asymptotic power-law decay.

variables with unit variance, which was proposed by Bachelier as a

model for stock returngl]. For all three panels, there are 850 Il. MOTIVATION

events —i.e., in panela) 850 min and in pane(b) 850 months.

Note that, in contrast t) and(b), there are no “extreme” events A recent preliminary study reported that the distributions

in (c). of 5-min returns for 1000 individual stocks and the S&P 500

Time
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FIG. 3. (a) Semilog plot of the autocorrelation function for the S&P 500 retuBng(t) sampled at a\t=1 min time scaleC(7)
=[(Gy(t) Gar(t+ 7)) —(Gar(1))2V[{Gar(1)2) —(G(1))?]. The straight line corresponds to an exponential decay with a characteristic
decay timer,,=4 min. Note that after 20 min the correlations are at the noise IéveLog-log plot of the autocorrelation function of the
absolute returns. The solid line is a power-law regression fit over the entire range, which gives an estimate of the power-law gxponent,
=0.29+0.05. Better estimates of this exponent can be obtained from the power spectrum or from other more sophisticated methods. It has
been recently reported using such methods that the autocorrelation function of the absolute value of the returtwospower-law
regimes with a crossover at approximately 1.5 d&g. (c) Log-log plot of the time averaged volatility=v(At) as a function of the time
scaleAt of the returns obtained from databag@s-(iii). For At<20 min, we observe a slopé=0.67+0.03, due to the exponentially
damped time correlations. F&t=20 min, we observé=0.51+0.06, indicating the absence of significant correlations.

index decay as a power law with an exponer3, well  results consistent with a slow convergence to Gaussian be-
outside the stable vy regime[34]. Consistent results for havior[10,42,43.
the value ofa in the range Z a<4 were reported by pre- Second, power-law distributions with<x<4 are not

vious studies both on stock markg¢80,35—37 and on for-  stable distributions, but the distribution of returns retains its
eign exchange markef88—42. These results raise two im- functional form for a range of time scales. It is then natural
portant questions: to ask how can thiscaling behaviorpossibly arise? One
First, the distribution of returns has a finite second mo-possible explanation is the recently proposed exponentially
ment; thus we would expect it to converge to a Gaussiatruncated Ley distribution [10,50,5]. However, the trun-
because of the central limit theorem. On the other hand, presated Lery process is constructed out of i.i.d. random vari-
liminary studies suggest the distributions of returns retairables, and hence is not consistent with the empirically ob-
their power-law functional form for long time scales. So we served long persistence in the autocorrelation function of the
can ask which of these two scenarios is correct? We find thatolatility of returns[33,54—62. Moreover, our data support
the distributions of returns retain their functional form for the possibility that the asymptotic nature of the distribution is
time scales up to approximately 4 d, after which we finda power law with an exponent outside thévieregime.
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FIG. 4. (a) Log-log plot of the cumulative distribution of the normalized 1-min returns for the S&P 500 index. Power-law regression fits
in the region 3<g=<50 yield = 2.95+ 0.07 (positive tai), anda=2.75+ 0.13(negative tail. For the region 0.5 g=<3, regression fits give
a=1.6+0.1 (positive tai), and@=1.7+0.1 (negative tail. (b) Log-log and(c) linear-log plots of the probability density function for the
normalized S&P 500 returns. The solid lines are power-law fits with exponehi®~14. Power-law regression fits in the regior<8
<50 yield estimatesr=3.01+0.11 (positive tai) and «=3.02+0.08 (negative tail.

Also, we will argue that the scaling behavior observed in thendex, we perform a parallel analysis on two other market
distribution of returns may be connected to the slow decay oindices. Databaséiv) contains 3560 daily records of the
the volatility correlations. NIKKEI index of the Tokyo stock exchange for the 14-year
The organization of the paper is as follows. Section Illperiod 1984—-1997, and databa&g contains 4649 daily

describes the data analyzed. Sections IV and V study theecords of the Hang-Seng index of the Hong Kong stock
distribution of returns of the S&P 500 index on time scalesexchange for the 18-year period 1980-1997.

At=1 d andAt>1 d, respectively. Section VI discusses
how time correlations in volatility are related to the time
scaling of the distributions, and Sec. VII presents concluding
remarks. A. Distribution of returns for At=1 min

IV. DISTRIBUTION OF RETURNS FOR At=<1 DAY

We first analyze the values of the S&P 500 index from the
ll. DATA ANALYZED high-frequency data for the 13-year period 1984-1996,

We analyze the S&P 500 index, which comprises 500which extends the database studied in R&@] by an addi-

companies chosen for market size, liquidity, and industr)}'on"’lI seven years. The data are typically recorded at 15-s

group representation in the US. The S&P 500 is a market|_ntervals. We first sample the data at 1-min intervals and

value weighted indeXstock price times number of shares generate a time serieS(t) with approximately 1.200000

outstanding, with each stock’s weight proportional to its data points. From the time seri&t), we compute the re-

market value. The S&P 500 index is one of the most Widelytum GE.GAt(t) which is the relative change in the index,
efined in Eq(2).

d benchmarks of U.S. i f A tud . o
USed bENChmarks o equity performance. In our study, In order to compare the behavior of the distribution for

we first analyze databaséi) which contains “high- i : los\ def lized
frequency” data that covers the 13 years period 1984—19odlifferent time scalesit, we define a normalized returm

with a recording frequency of less than 1 min. The totaIEgAt(t)'

number of records in this database exceeds<4®. To G—(G)

investigate longer time scales, we study two other databases. g= T 3
Databaséii) contains daily records of the S&P 500 index for v

the 35-year period 1962-1996, and datab@is¢ contains

monthly records for the 71-year period 1926—1996. Here the time averaged volatilitwy=v(At) is defined

In order to test if our results are limited to the S&P 500 throughv?=(G?)1—(G)%, and(- - -); denotes an average
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over the entire length of the time series. Figufe)&hows k

the cumulative distribution of returns fakt=1 min. For
both positive and negative tails, we find a power-law
asymptotic behavior

FIG. 6. () Log-log plot of the cumulative distribution of nor-
malized returns of the positive tails fat=16, 32, 128, and 512
min. Power-law regression fits yield estimates of the asymptotic
power-law exponents a=2.69+0.04, «=2.53+0.06, «=2.83
+0.18, ande=3.39+0.03 for At=16, 32, 128, and 512 min, re-
spectively.(b) The moments of the distribution fdxt=1, 32, 128,
and 512 min. The change in the behavior of the moments from the
1-min scale is probably the effect of the gradual disappearance of
the Levy slope for small values of. For At>30 min there is no
region with slopes in the vy range, and we observe good agree-
ment between all time scales.

1
P(9>X)~X—a, (4)

similar to what was found for individual stock34]. For the
region 3=g=<>50, regression fits yield

2.95+0.07 (positive tai)
~|2.75£0.13 (negative tai,

1.6 (positive tai)

®) N (negative tail, ™

a
i which are consistent with the resuit=1.4 found for small

well outside the Ley stable range, &«<2 . Consistent yalues ofg in Ref.[10]. Note that in Ref[10] the estimates
values fora are also obtained from the density function. Forof a were calculated using the Sca”ng form of the return
a more accurate estimation of the asymptotic behavior, Wgrobability to the originP(0). It is possible that for the
use the modified Hill estimatdFigs. Fa) and §b); see also  financial data analyzed her(0) is not the optimal statistic,
Appendix B]. We obtain estimates for the asymptotic slopepecause of the discreteness of the individual-company distri-
in the region 3<g=<50: butions that comprise [i64]. It is also possible that our val-
ues ofa for small values ofg could be due to the discrete-
ness in the returns of the individual companies comprising

N . .
3.45+0.07 (positive tai) © the S&P 500.

~|3.29+0.07 (negative tail.

o

B. Scaling of the distribution of returns for At up to 1 d

For the regiong=3, regression fits yield smaller esti-
mates ofa, consistent with the possibility of a’lg distri- longer time scales. Figure@® shows the cumulative distri-
bution in the central region. The values @fobtained in this  bution of normalized S&P 500 returns for time scales up to
range are quite sensitive to the bounds of the region used f@12 min (approximately 1.5 d The distribution appears to
fitting. Our estimates range from~1.35 up toa~1.8 for  retain its power-law functional form for these time scales.
different fitting regions in the interval 0s1g<6. For ex-  We verify this scaling behavior by analyzing the moments of
ample, in the region 05g=<3, we obtain the distribution of normalized returrgs

Next, we study the distribution of normalized returns for
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FIG. 7. (a) Cumulative distribution of the normalized S&P 500 daily returns from two different databases: ddiapadéch contains
1-min records for 13 years; and datab&éisg which contains daily records for 35 years. Power-law regression fits in the rggidnlead
to the estimates=3.75+0.30 for databasé) and «=3.660.11 for databaséi). (b) The cumulative distribution from databa&g for
At=1, 2, and 4 d. The apparent scaling behavior of these distributions is confirmed by the estm&&5§+0.41 At=2 d) and
a=3.77+0.29 (At=4 d). (c) The behavior of the moments for these time scales is in agreement with the apparent scaling behavior.

,U«k5<|g|k>Tv (8) V. DISTRIBUTION OF RETURNS FOR At=1 DAY

A. S&P 500 index

where (- - - )1 deno_tes an average over all the n_ormalized For time scales beyond 1 [66], we use databaséi)
returns for all the bins. Since~3, we expeci, to diverge  which contains daily sampled records of the S&P 500 index
for k=3, and hence we compujg, for k<3. for the 35-year period 1962—-1996. Figuréa)7shows the
Figure @b) shows the moments of the normalized returnsagreement between distributions of normalized S&P 500
g for different time scales from 5 min up to 1 d. The mo- daily returns from databaséi), which contains 1-min
ments do not vary significantly for the above time scalessampled data, and databagi), which contains daily
confirming the scaling behavior of the distribution observedsampled data. Regression fits for the regicrg&10 give

in Fig. 6(a). estimates otx~3. Figure
10° . 3.0
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=
S
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FIG. 8. (a) Cumulative distribution for the positive tail of S&P 500 returns for time scales4, 8, and 16 d. The bold curve shows the
cumulative distribution of a Gaussian with zero mean and unit varidbg@he moments for time scalés=8 and 16 d are consistent with
a slow convergence to Gaussian behavior. Note that the curvestfoll and 4 d coincide.
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Normalized daily returns function of the time scal@t is shown in Fig. &). We find

a power-law dependence

FIG. 9. Comparison of the cumulative distributions for the posi-
tive tails of the normalized returns for the daily records of the
NIKKEI index from 1984 to 1997, the daily records of the Hang- . ~ . . . .
Seng index from 1980 to 1997, and the daily records of the S&PWe estimatey~0. 7 for time scaledt<20 min. This value is

500 index. The apparent power-law behavior in the tails is characl-arger than 1/2 due to the exponentially damped time corre-

terized by the exponents=3.05+0.16 (NIKKEI ), a=3.03+0.16 lations, which are significant up to approximately 20 min.

(Hang-Seny anda—3.34+-0.12(S&P 500. The fits are performed B€yond 20 min,6~0.5, indicating the absence of correla-
in the region g1. tions in the returns, in agreement with FigaB The time-

averaged volatility is also consistent with essentially uncor-
related behavior for the daily and monthly returns.

V(At)oc(At)°. (10)

7(b) shows the scaling behavior of the distribution fdt
=1, 2, and 4 d. For these choicesXy, the scaling behavior
is also visible for the momenf{sig. 7(c)].

Figure 8a) shows the distribution of the S&P 500 returns  We have presented evidence that the distributions of re-
for At=4, 8, and 16 d. The data are now consistent with g&urns retain the same functional form for a range of time
slow convergence to Gaussian behavior. This is also visiblscales(see Fig. 10 and Table.IHere, we investigate pos-

VII. VOLATILITY CORRELATIONS AND TIME SCALING

for the momentgFig. 8b)]. sible causes of this scaling behavior. Previous explanations
of scaling relied on [ey stable[4] and exponentially trun-
B. NIKKEI and Hang-Seng indices cated Lery processeg§6,10. However, the empirical data

that we analyze are not consistent with either of these two

The S&P 500 is but one of many stock market indices. rocesses
Hence we investigate whether the above results regarding the '
power-law asymptotic behavior of the distribution of returns
hold for other market indices as well. Figure 9 compares the
distributions of daily returns for the NIKKEI index of the We first compare the rate of convergence of the probabil-
Tokyo stock exchange and the Hang-Seng index of the Hongy of the returns to that of a computer-generated time series
Kong stock exchange with that of the S&P 500. The distri-which has the same distribution but is statistically indepen-
butions have similar functional forms, suggesting the possident by construction. This way, we will be able to study the

A. Rate of convergence

6-0 T T T T 60 T T T T
o ® positive tail o ® positive tail ] ‘
50 F = negative tail 1 50F o - negative tail o 1
N [ ]
4.0 . - 4.0 o = ‘ b
e el ® L . ® S $
3 3.0 S5 = o F{ssf ey e ]
o S T Y. 9 5 |
ey UL & T
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3 4 3

10° 10
At (min) At (min)
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FIG. 10. The values of the exponeatcharacterizing the asymptotic power-law behavior of the distribution of returns as a function of
the time scale\t obtained usinga) a power-law fit, andb) the Hill estimator. The values af for At<1 d are calculated from database
(i) which contains 13 years of 1-min records, while for=1 d they are calculated from databds¢ which has 35 years of daily records.
The unshaded region, corresponding to time scales larger thign £4 d (1560 min, indicates the range of time scales where we find
results consistent with slow convergence to Gaussian beh@sderthe text and the preceding figyres
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TABLE I. The values of the exponent, for different time
scalesAt, for the S&P 500 index(a) power-law regression fit to
the cumulative distribution, an¢b) Hill estimator. The daggered
values are computed using databdse, which contains daily-
sampled records, while the values without the dagger are computed
using databasé), which contains records with a 1-min sampling.
Note that we use the conversion £890 min[65].

At (min) Power-law fit Hill estimator
Positive Negative Positive Negative
1 295:0.07 2.75:0.13 3.29-0.07 3.45-0.07
2 3.39£0.05 3.3720.07 3.38-0.08 3.71-0.09
4 3.41+0.14 3.36:0.11 3.180.09 3.22:0.10
8 3.18:0.14 3.34-0.15 3.14-0.13 3.00:0.12 e n=1 ()
16 2.69-0.04 2.74-0.10 3.0%0.26 2.75-0.16 T

N
o
T

32 2530.06 266:0.09 277016 2.53:0.07 - /
64 2.78-0.05 252-0.05 2970.14 2.71%0.09
128 2.83:0.18 2.44-0.08 3.74-0.23 2.870.17
256 2.53:0.23 2.32:0.09 3.330.30 2.63-0.23
390" 3.66+0.11 3.61-0.11 3.19-0.17 3.33-0.16

moments |\,
-
[4)]

512 3.3%-0.03 2.86:0.07 3.705 3.12:0.23 1.0
780" 3.75+0.41 3.58-0.22 3.06:0.26 4.670.38 Gaussian
15600 3.77£0.29 3.58-0.14 3.58-0.29 2.99-0.32
3120° 3.31+0.30 3.52-0.04 4.9-0.6 3.85-0.45 05 ] 5 3
6240° 3.49+0.31 2.8%0.05 4.9-1.1 3.97-0.48 k

12480 43x1.0 2.45-0.32 8.7+ 2.0 4.5-2.2

24960 3.00:023 221021 At11 7224 FIG. 11. Convergence of distribution for independent variables.

We first generate a time seri¢& distributed asP(X=x)~ 1/x°.

We then generate the variables==!_, X, for n=1, 16, and 256.

(a8) Cumulative distributions of,,. Note that the curve fon=256
convergence to Gaussian behavior of independent randoiwindistinguishable from the Gaussian curve revealing convergence

variables distributed as a power law, with an exponent to Gaussian behaviofb) The moments fom=1, 16, and 256.
~3. These results can be compared with Fig. 8. Note that for the S&P

Next we generate a time serie$=X,, k=1,...,40 SQO even for time scalest= 16 d(corresponding tem= 6,240), we
X 10 distributed asP(X>x)~1/x%. We next calculate the Still do not observe a good degree of convergence.
new random variableg,=="_,X,, and compute the cumu-
lative distributions ofl, for increasing values ofi. These Figure 12a) shows the cumulative distribution &3\t)
distributions show faster convergence with increasingan  for increasing values of. We find a progressive conver-
the distributions of returngFig. 11(a)]. This convergence is gence to Gaussian behavior with increasmgrhis conver-
also visible in the moments. Figures(aland 11b) show gence to Gaussian behavior is also clear in the moments of
that for n=256, both the moments and the cumulative dis-Gﬁh(t), which rapidly approach the Gaussian values with in-
tribution show Gaussian behavior. In contrast, for the distri-creasingn [Fig. 12b)]. This rapid convergence confirms that
bution of returns, we observe significantly slower conver-the time dependencies cause the observed scaling behavior.
gence to Gaussian behavior: In the case of the S&P 500
index, one observes a possible onset of convergencatfor VIIl. DISCUSSION
~ 4 d (1560 min, starting from 1-min returns. ) ) o
These results confirm the existence of time dependencies W€ have presented a detailed analysis of the distribution
in the returns[33,53—61. Next, we show that the scaling Of returns for market indices, for time intervalt ranging
behavior observed for the S&P 500 index no longer holdVver roughly four orders of magnitude, from 1 min up to one

when we destroy the dependencies between the returns &onth (=16 000 min. We find that the distribution of re-
different times. turns is consistent with a power-law asymptotic behavior,

characterized by an exponents3, well outside the stable

Lévy regime 0<a<2. For time scale\t>(At), , where

) ] (At)x=~4 d, our results are consistent with slow conver-
We start with the 1-min returns and then destroy all thegence to Gaussian behavior.

time dependencies that might be present by shuffling the \we have also demonstrated that the scaling behavior does

time series 0fG,;—4(t), thereby creating a new time series ot hold if we destroy all the time dependencies by shuffling.

G3(t) which containsstatistically independenteturns. By — The breakdown of the scaling behavior of the distribution of

adding upn consecutive returns of the shuffled se@3(t),  returns upon shuffling the time series suggests that the long-

we construct the-min returnsGﬁh(t). range volatility correlations, which persist up to several

B. Randomizing the time series of returns
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FIG. 12. We randomize the time series of returns for the S&P 50@ferl min, and create a time series with the same distribution but
with independent random variables. We then sumnugonsecutive shuffled returns to create a shuffiedin return.(a) Cumulative
distributions of the positive tails of the shuffled returns are shown for increasiifge find slow convergence to Gaussian behavior on
increasingn. (b) The slow convergence to a Gaussian behavior is shown by the moments. The redltaimbe compared with Fig. {d)
if we note thatn=512 corresponds tdt~1.5 d. The data are normalized to have the same second moment.

months[33,53—63, may be one possible reason for the ob-patible with the power-law decay of volatility correlations
served scaling behavior. with a small exponent. A microscopic model that is consis-
Recent studieg59] show that the distribution of volatility tent with the asymptotic behavior of the distribution of price
is consistent with an asymptotic power-law behavior withfluctuations and the long-range correlations in volatility was
exponent 3, just as observed for the distribution of returnsdeveloped in Refs[16,17. If the process of returns were
This finding suggests that the process of returns may be wrigoverned by the volatility, as in E¢11), then the volatility
ten as would seem to be the more fundamental process. In fact,
since the volatility is related to the amount of information
g(t)=e(t) v(t), (1)) arriving into the market, the statistical properties of the re-

) turns may be “driven” by this information.
where g(t) denotes the return at time v(t) denotes the

volatility, and e(t) is an i.i.d. random variablendependent
of v(t) [14,20,30,6& Since the asymptotic behavior of the
distributions ofv(t) andg(t) is consistent with power-law We thank J.-P. Bouchaud, M. Bartemy, S. V. Bul-
behavior, e(t) should have an asymptotic behavior with dyrev, P. Cizeau, X. Gabaix, |. Grosse, S. Havlin, K. lllinski,
faster decay than eitheg(t) or v(t). In fact, Eq.(11) is  P. Ch. Ilvanov, C. King, C.-K. Peng, B. Rosenow, D. Sor-
central to all the ARCH modelg30,66], with €(t) assumed nette, D. Stauffer, S. Solomon, J. Voit, and especially R. N.
to be Gaussian distributed. Mantegna for stimulating discussions and helpful sugges-
Different ARCH processes assume different recursion retions. The authors also thank Bob Tompolski for his help
lations for v(t). In the standard ARCH model(t)=«  throughout this work. M.M. thanks DFG and L.A.N.A.
+ B g%(t—1), leading to a power-law distribution of returns thanks FCT/Portugal for financial support. The Center for
with exponent depending on the parameterand 3. How-  Polymer Studies is supported by the NSF.
ever, the standard ARCH process predicts volatility correla-
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tions that decay exponentially, sine€t) depends only on APPENDIX A: LE VY STABLE DISTRIBUTIONS
the previous event. Thus the ARCH model cannot account
for the observed long-range persistenceviit). To try to Levy stable distributions arise from the generalization of

remedy this, one can requirgt) to depend not only on the the central limit theorem to a wider class of distributions.
previous value ofy(t) but on a finite number of past events. Consider the partial sur®,=X_ ,x; of independent identi-
This generalization is called the GARCH model. Depen-cally distributed(i.i.d.) random variables; . If the x;’s have
dence ofv(t) on the finite past leads not to a power-law finite second moments, the central limit theorem holds and
decay(as is observed empiricallybut to volatility correla- P, is distributed as a Gaussian in the limits .

tions that decay exponentially —with larger decay times as If the random variables; are characterized by a distribu-

the number of events “remembered” is increased. tion having asymptotic power-law behavior
In order to explain the long-range persistence of the auto-
correlation function of the volatility, one must assume that P(x)~x"1Fa), (A1)

v(t) depends on all the past rather than a finite number of

past events. Such a descripti@¥] would be consistent with wherea<2, thenP,, will converge to a Ley stable stochas-
the empirical finding of long-range correlations in the vola-tic process of indexy in the limit n—oo,

tility, and the observation that the distributions gft) and Except for special cases, such as the Cauchy distribution,
v(t) have similar asymptotic forms. Another approach pro-Leévy stable distributions cannot be expressed in closed form.
posed in Ref[14] is a hierarchical model wherein the vola- They are often expressed in terms of their Fourier transforms
tility correlations decay logarithmically, which is also com- or characteristic functions, which we denaiéq), whereq
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FIG. 13. (a) Schematic representation of the evaluation of the local slope from the cumulative distribution. First, the normalized returns
g are sorted in descending ordej,>g,, 1. The dotted line indicates the local slofb) Hill estimator for a sequence of i.i.d. random
variables with asymptotic behavioP(g>x)=(1+x) 3. (c) Hill estimator for a sequence of i.i.d. random variables with asymptotic
behavior:P(g>x)=exp(—x). Note that the asymptotic estimatesx¥0.33 and 1¢=0 recover for both cases the correct valuesrpf
=3 anda ==, respectively.

denotes the Fourier transformed variable. The general form P(x)~x~ 1+, (A4)

of a characteristic function of a’\vg stable distribution is
Hence the second moment diverges. Specific&{yx|"} di-

— o L verges forn=a when a<2. In particular, all Ley stable
lna= vl 1B lq| '9 2 a) La#1] processes witha<<2 have infinite variance. Thus non-
In¢(q)= q 2 Gaussian stable stochastic processes do not have a character-
ixgq—7ylall 1+iB= —In|q| [a=1], istic scale. Although well defined mathematically, these dis-
lal = tributions are difficult to use and raise fundamental problems

(A2) " \when applied to real systems where the second moment is
often related to the properties of the system. In finance, an
infinite variance would make risk estimation and derivative
pricing impossible.

where O<a<2, y is a positive numbery is the mean, and
B is an asymmetry parameter. For symmetrizyeistribu-
tions (8=0), one has the functional form

APPENDIX B: HILL ESTIMATOR (“LOCAL SLOPES” )

1 (= :
P(x)= —f exp— “) e '%dq. (A3)
27 ) P lal d A common problem when studying a distribution that de-

) o cays as a power law is how to obtain an accurate estimate of

For =1, one obtains the Cauchy distribution, and, for thethe exponent characterizing the asymptotic behavior. Here
limiting casea=2, one obtains the Gaussian distribution. e review the methods of Hil[68]. The basic idea is to

By construction, Ley distributions are stable, that is, the ¢5|culate thanverseof the local logarithmic slopg of the
sum of two independent random variablesandx,, char-  cymulative distributiorP(g>x),
acterized by the same iz distribution of indexe, is itself
characterized by a lvy distribution of the same index. The dinP
functional form of the distribution is maintained, if we sum = (dIT
up independent, identically distributed \ye stable random
variables. We then estimate the inverse asymptotic slope hy ex-

For Levy distributions, the asymptotic behavior B{x) trapolating{ as 1k—0. We start with the normalized re-
for x>1 is a power law, turnsg and proceed in the following steps:

-1
(B1)
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Step I: We sort the normalized returrs in descending
order. The sorted returns are denotggd k=1,... N, where
0k>0k+1 andN is the total number of events.

Step Il: The cumulative distribution is then expressed in
terms of the sorted returns as

Kk
P(g>gk)=N. (B2)

ON OF FLUCTUATION . .. 5315

l m
(0= 2, 4w, (B5)

where the choice of the averaging window lengthvaries
depending on the number of eveNsavailable.

Step 1V:We plot the locally averaged inverse sloge$
obtained in step Il as a function of the inverse normalized

Figure 13 is a schematic of the cumulative distribution thUSreturnS ]_g (see, e.g., F|g)5We can then define two meth-

obtained. Thenverselocal slopes/(g) can be written as

()= — IN(gk+1/9k)
9= T (P9 )/P(90)

(B3)

Using Eq.(B2), the above expression can be well approxi-
mated for largek as

¢(gr)=k(n(gyx+1)—In(gyw)),

yielding estimates of the local inverse slopes.

Step Ill: We obtain the inverse local slopes through Eq.
(B4). We can then compute an average of the inverse slop
over m points,

(B4)

es

ods of estimatingy. In the first method, we extrapolateas

a function of 1¢ to 0, similarly to the method of successive
slopes[69]; this procedure yields the inverse asymptotic
slope 1k. In the second method, we average over all events
for 1/g smaller than a given thresho[@8], with the average
yielding the inverse slope &/

To test the Hill estimator, we analyze two surrogate data
sets with known asymptotic behaviof@ an independent
random variable witiP(g>x)=(1+x) 3, and(b) an inde-
pendent random variable with(g>x) = exp(—x). As shown
in Figs. 13b) and 13c), the method yields the correct results

a=3 anda=x, respectively.
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