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Scaling of the distribution of fluctuations of financial market indices
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We study the distribution of fluctuations of the S&P 500 index over a time scaleDt by analyzing three
distinct databases. Database~i! contains approximately 1 200 000 records, sampled at 1-min intervals, for the
13-year period 1984–1996, database~ii ! contains 8686 daily records for the 35-year period 1962–1996, and
database~iii ! contains 852 monthly records for the 71-year period 1926–1996. We compute the probability
distributions of returns over a time scaleDt, whereDt varies approximately over a factor of 104—from 1 min
up to more than one month. We find that the distributions forDt< 4 d ~1560 min! are consistent with a
power-law asymptotic behavior, characterized by an exponenta'3, well outside the stable Le´vy regime
0,a,2. To test the robustness of the S&P result, we perform a parallel analysis on two other financial
market indices. Database~iv! contains 3560 daily records of the NIKKEI index for the 14-year period 1984–
1997, and database~v! contains 4649 daily records of the Hang-Seng index for the 18-year period 1980–1997.
We find estimates ofa consistent with those describing the distribution of S&P 500 daily returns. One possible
reason for the scaling of these distributions is the long persistence of the autocorrelation function of the
volatility. For time scales longer than (Dt)3'4 d, our results are consistent with a slow convergence to
Gaussian behavior.@S1063-651X~99!11211-X#

PACS number~s!: 05.40.Fb, 05.45.Tp, 89.90.1n
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I. INTRODUCTION AND BACKGROUND

The analysis of financial data by methods developed
physical systems has a long tradition@1–4#, and has recently
attracted the interest of physicists@5–28#. Among the rea-
sons for this interest is the scientific challenge of understa
ing the dynamics of a strongly fluctuating complex syst
with a large number of interacting elements. In addition, i
possible that the experience gained by studying comp
physical systems might yield new results in economics.

Financial markets are complex dynamical systems w
many interacting elements that can be grouped into two
egories:~i! the traders— such as individual investors, mu
tual funds, brokerage firms, and banks — and~ii ! the assets
— such as bonds, stocks, futures, and options. Interact
between these elements lead to transactions mediated b
stock exchange. The details of each transaction are reco
for later analysis. The dynamics of a financial market
difficult to understand not only because of the complexity
its internal elements but also because of the many intract
external factors acting on it, which may even differ fro
market to market. Remarkably, the statistical properties
certain observables appear to be similar for quite differ
markets@29–43#, consistent with the possibility that ther
may exist ‘‘universal’’ results.

The most challenging difficulty in the study of a financi
market is that the nature of the interactions between the
ferent elements comprising the system is unknown, as is
way in which external factors affect it. Therefore, as a sta
ing point, one may resort to empirical studies to help unco
the regularities or ‘‘empirical laws’’ that may govern finan
cial markets.

The interactions between the different elements comp
ing financial markets generate many observables such a
transaction price, the share volume traded, the trading
PRE 601063-651X/99/60~5!/5305~12!/$15.00
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quency, and the values of market indices~Fig. 1!. A number
of studies investigated the time series of returns on vary
time scalesDt in order to probe the nature of the stochas
process underlying it@10,13–15,29–43#. For a time series
S(t) of prices or market index values, the returnG(t)
[GDt(t) over a time scaleDt is defined as the forward
change in the logarithm ofS(t) @44#,

GDt~ t ![ ln S~ t1Dt !2 ln S~ t !. ~1!

For small changes inS(t), the returnGDt(t) is approxi-
mately the forward relative change,

GDt~ t !'
S~ t1Dt !2S~ t !

S~ t !
. ~2!

In 1900, Bachelier proposed the first model for the s
chastic process of returns—an uncorrelated random w
with independent, identically distributed~i.i.d.! Gaussian
random variables@1#. This model is natural if one consider
the return over a time scaleDt to be the result of many
independent ‘‘shocks,’’ which then lead by the central lim
theorem to a Gaussian distribution of returns@1#. However,
empirical studies@4,10,13–15,29–43# showed that the distri-
bution of returns@45# has pronounced tails in striking con
trast to that of a Gaussian. To illustrate this fact, we show
Fig. 2 the 10-min returns of the S&P 500 market index@46#
for 1986 and 1987, and contrast it with a sequence of i.
Gaussian random variables. Both are normalized to have
variance. Clearly, large events are very frequent in the d
a fact largely underestimated by a Gaussian process. De
this empirical fact, the Gaussian assumption for the distri
tion of returns is widely used in theoretical finance beca
of the simplifications it provides in analytical calculatio
5305 © 1999 The American Physical Society
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FIG. 1. The S&P 500 index is the sum of the market capitalizations of 500 companies. In~a!, we display both the value of the S&P 50
index ~bottom line! and the index detrended by inflation to 1994 U.S. dollars~top line!. The sharp jump seen in 1987 is the market crash
October 19.~b! Comparison of the time evolution of the S&P 500 for the 35-year period 1962-1996~top line! and a biased Gaussian rando
walk ~bottom line!. The random walk has the same bias as the S&P 500 —approximately 7% per year for the period considered.
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indeed, it is one of the assumptions used in the classic Bla
Scholes option pricing formula@11,47–49#.

In his pioneering analysis of cotton prices, Mandelb
observed that in addition to being non-Gaussian, the pro
of returns shows another interesting property: ‘‘time sc
ing’’ — that is, the distributions of returns for variou
choices ofDt, ranging from 1 d up to onemonth have simi-
lar functional forms@4#. Motivated by ~i! the pronounced
tails, and~ii ! the stable functional form for different tim
scales, Mandelbrot@4# proposed that the distribution of re
turns is consistent with a Le´vy stable distribution@2,3# —
that is, the returns can be modeled as a Le´vy stable process
Lévy stable distributions arise from the generalization of
central limit theorem to random variables which do not ha
a finite second moment~see Appendix A!.

Conclusive results on the distribution of returns are di
cult to obtain, and require a large amount of data to study
rare events that give rise to the tails. More recently, the av
ability of high frequency data on financial market indice
and the advent of improved computing capabilities, has

FIG. 2. Sequence of~a! 10-min returns, from database~i!, and
~b! one-month returns, from database~iii !, for the S&P 500, nor-
malized to unit variance.~c! Sequence of i.i.d. Gaussian rando
variables with unit variance, which was proposed by Bachelier a
model for stock returns@1#. For all three panels, there are 85
events —i.e., in panel~a! 850 min and in panel~b! 850 months.
Note that, in contrast to~a! and~b!, there are no ‘‘extreme’’ events
in ~c!.
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cilitated the probing of the asymptotic behavior of the dist
bution. For these reasons, recent empirical studies of
S&P 500 index such as Ref.@10# analyze typically 106

2107 data points, in contrast to approximately 2000 da
points analyzed in the classic work of Mandelbrot@4#. Ref-
erence@10# reports that the central part of the distribution
S&P 500 returns appears to be well fit by a Le´vy distribu-
tion, but the asymptotic behavior of the distribution of r
turns shows faster decay than predicted by a Le´vy distribu-
tion. Hence Ref. @10# proposed a truncated Le´vy
distribution—a Lévy distribution in the central part followed
by an approximately exponential truncation—as a model
the distribution of returns. The exponential truncation e
sures the existence of a finite second moment, and henc
truncated Le´vy distribution is not a stable distribution
@50,51#. The truncated Le´vy process with i.i.d. random vari
ables has slow convergence to Gaussian behavior due to
Lévy distribution in the center, which could explain the o
served time scaling for a considerable range of time sc
@10#.

In addition to the probability distribution, a compleme
tary aspect for the characterization of any stochastic proc
is the quantification of correlations. Studies of the autocor
lation function of returns show exponential decay with ch
acteristic decay timestch of only 4 min @33,52–54#. As is
clear from Fig. 3~a!, for time scales beyond 20 min the co
relation function is at the level of noise, in agreement w
theefficient market hypothesiswhich states that it is not pos
sible to predict future stock prices from their previous valu
@55#. If price correlations were not short range, one cou
devise a way to make money from the market indefinitel

It is important to note that lack of linear correlation do
not imply an i.i.d. process for the returns, since there m
exist higher-order correlations@Fig. 3~b!#. Indeed, the ampli-
tude of the returns, referred to in economics as thevolatility
@56#, shows long-range time correlations that persist up
several months@14,33,53–63#, and are characterized by a
asymptotic power-law decay.

II. MOTIVATION

A recent preliminary study reported that the distributio
of 5-min returns for 1000 individual stocks and the S&P 5
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FIG. 3. ~a! Semilog plot of the autocorrelation function for the S&P 500 returnsGDt(t) sampled at aDt51 min time scale,CDt(t)
[@^GDt(t) GDt(t1t)&2^GDt(t)&

2#/@^GDt(t)
2&2^GDt(t)&

2#. The straight line corresponds to an exponential decay with a characte
decay timetch54 min. Note that after 20 min the correlations are at the noise level.~b! Log-log plot of the autocorrelation function of th
absolute returns. The solid line is a power-law regression fit over the entire range, which gives an estimate of the power-law exph
50.2960.05. Better estimates of this exponent can be obtained from the power spectrum or from other more sophisticated metho
been recently reported using such methods that the autocorrelation function of the absolute value of the returns showstwo power-law
regimes with a crossover at approximately 1.5 days@58#. ~c! Log-log plot of the time averaged volatilityv[v(Dt) as a function of the time
scaleDt of the returns obtained from databases~i!–~iii !. For Dt<20 min, we observe a sloped50.6760.03, due to the exponentially
damped time correlations. ForDt>20 min, we observed50.5160.06, indicating the absence of significant correlations.
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index decay as a power law with an exponenta'3, well
outside the stable Le´vy regime @34#. Consistent results fo
the value ofa in the range 2<a<4 were reported by pre
vious studies both on stock markets@30,35–37# and on for-
eign exchange markets@38–42#. These results raise two im
portant questions:

First, the distribution of returns has a finite second m
ment; thus we would expect it to converge to a Gauss
because of the central limit theorem. On the other hand,
liminary studies suggest the distributions of returns ret
their power-law functional form for long time scales. So w
can ask which of these two scenarios is correct? We find
the distributions of returns retain their functional form f
time scales up to approximately 4 d, after which we fi
-
n
e-
n

at

results consistent with a slow convergence to Gaussian
havior @10,42,43#.

Second, power-law distributions with 2<a<4 are not
stable distributions, but the distribution of returns retains
functional form for a range of time scales. It is then natu
to ask how can thisscaling behaviorpossibly arise? One
possible explanation is the recently proposed exponenti
truncated Le´vy distribution @10,50,51#. However, the trun-
cated Lévy process is constructed out of i.i.d. random va
ables, and hence is not consistent with the empirically
served long persistence in the autocorrelation function of
volatility of returns@33,54–62#. Moreover, our data suppor
the possibility that the asymptotic nature of the distribution
a power law with an exponent outside the Le´vy regime.
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FIG. 4. ~a! Log-log plot of the cumulative distribution of the normalized 1-min returns for the S&P 500 index. Power-law regressi
in the region 3<g<50 yielda52.9560.07~positive tail!, anda52.7560.13~negative tail!. For the region 0.5<g<3, regression fits give
a51.660.1 ~positive tail!, anda51.760.1 ~negative tail!. ~b! Log-log and~c! linear-log plots of the probability density function for th
normalized S&P 500 returns. The solid lines are power-law fits with exponents 11a'4. Power-law regression fits in the region 3<g
<50 yield estimatesa53.0160.11 ~positive tail! anda53.0260.08 ~negative tail!.
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Also, we will argue that the scaling behavior observed in
distribution of returns may be connected to the slow deca
the volatility correlations.

The organization of the paper is as follows. Section
describes the data analyzed. Sections IV and V study
distribution of returns of the S&P 500 index on time sca
Dt<1 d and Dt.1 d, respectively. Section VI discusse
how time correlations in volatility are related to the tim
scaling of the distributions, and Sec. VII presents conclud
remarks.

III. DATA ANALYZED

We analyze the S&P 500 index, which comprises 5
companies chosen for market size, liquidity, and indus
group representation in the US. The S&P 500 is a mark
value weighted index~stock price times number of share
outstanding!, with each stock’s weight proportional to it
market value. The S&P 500 index is one of the most wid
used benchmarks of U.S. equity performance. In our stu
we first analyze database~i! which contains ‘‘high-
frequency’’ data that covers the 13 years period 1984–19
with a recording frequency of less than 1 min. The to
number of records in this database exceeds 4.53106. To
investigate longer time scales, we study two other databa
Database~ii ! contains daily records of the S&P 500 index f
the 35-year period 1962–1996, and database~iii ! contains
monthly records for the 71-year period 1926–1996.

In order to test if our results are limited to the S&P 5
e
f
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s

g

0
y
t-

y
y,

6,
l

es.

index, we perform a parallel analysis on two other mar
indices. Database~iv! contains 3560 daily records of th
NIKKEI index of the Tokyo stock exchange for the 14-ye
period 1984–1997, and database~v! contains 4649 daily
records of the Hang-Seng index of the Hong Kong sto
exchange for the 18-year period 1980–1997.

IV. DISTRIBUTION OF RETURNS FOR Dt<1 DAY

A. Distribution of returns for Dt51 min

We first analyze the values of the S&P 500 index from t
high-frequency data for the 13-year period 1984–19
which extends the database studied in Ref.@10# by an addi-
tional seven years. The data are typically recorded at 1
intervals. We first sample the data at 1-min intervals a
generate a time seriesS(t) with approximately 1.200 000
data points. From the time seriesS(t), we compute the re-
turn G[GDt(t) which is the relative change in the inde
defined in Eq.~1!.

In order to compare the behavior of the distribution f
different time scalesDt, we define a normalized returng
[gDt(t),

g[
G2^G&T

v
. ~3!

Here the time averaged volatilityv[v(Dt) is defined
throughv2[^G2&T2^G&T

2 , and ^•••&T denotes an averag
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PRE 60 5309SCALING OF THE DISTRIBUTION OF FLUCTUATIONS . . .
over the entire length of the time series. Figure 4~a! shows
the cumulative distribution of returns forDt51 min. For
both positive and negative tails, we find a power-la
asymptotic behavior

P~g.x!;
1

xa
, ~4!

similar to what was found for individual stocks@34#. For the
region 3<g<50, regression fits yield

a5H 2.9560.07 ~positive tail!

2.7560.13 ~negative tail!,
~5!

well outside the Le´vy stable range, 0<a,2 . Consistent
values fora are also obtained from the density function. F
a more accurate estimation of the asymptotic behavior,
use the modified Hill estimator@Figs. 5~a! and 5~b!; see also
Appendix B#. We obtain estimates for the asymptotic slo
in the region 3<g<50:

a5H 3.4560.07 ~positive tail!

3.2960.07 ~negative tail!.
~6!

For the regiong<3, regression fits yield smaller est
mates ofa, consistent with the possibility of a Le´vy distri-
bution in the central region. The values ofa obtained in this
range are quite sensitive to the bounds of the region used
fitting. Our estimates range froma'1.35 up toa'1.8 for
different fitting regions in the interval 0.1<g<6. For ex-
ample, in the region 0.5<g<3, we obtain

FIG. 5. Inverse local slopes of the cumulative distributions
normalized returns forDt51 min for the~a! positive and~b! nega-
tive tails. Each point is an average over 100 different inverse lo
slopes. Extrapolation of the regression lines provides estimate
the asymptotic slopesa53.4560.07 ~positive tail! and a53.29
60.07 ~negative tail!.
r
e

for

a'H 1.6 ~positive tail!

1.7 ~negative tail!,
~7!

which are consistent with the resulta'1.4 found for small
values ofg in Ref. @10#. Note that in Ref.@10# the estimates
of a were calculated using the scaling form of the retu
probability to the originP(0). It is possible that for the
financial data analyzed here,P(0) is not the optimal statistic
because of the discreteness of the individual-company di
butions that comprise it@64#. It is also possible that our val
ues ofa for small values ofg could be due to the discrete
ness in the returns of the individual companies compris
the S&P 500.

B. Scaling of the distribution of returns for Dt up to 1 d

Next, we study the distribution of normalized returns f
longer time scales. Figure 6~a! shows the cumulative distri
bution of normalized S&P 500 returns for time scales up
512 min ~approximately 1.5 d!. The distribution appears to
retain its power-law functional form for these time scale
We verify this scaling behavior by analyzing the moments
the distribution of normalized returnsg,

f

al
or

FIG. 6. ~a! Log-log plot of the cumulative distribution of nor
malized returns of the positive tails forDt516, 32, 128, and 512
min. Power-law regression fits yield estimates of the asympt
power-law exponentsa52.6960.04, a52.5360.06, a52.83
60.18, anda53.3960.03 for Dt516, 32, 128, and 512 min, re
spectively.~b! The moments of the distribution forDt51, 32, 128,
and 512 min. The change in the behavior of the moments from
1-min scale is probably the effect of the gradual disappearanc
the Lévy slope for small values ofg. For Dt.30 min there is no
region with slopes in the Le´vy range, and we observe good agre
ment between all time scales.
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FIG. 7. ~a! Cumulative distribution of the normalized S&P 500 daily returns from two different databases: database~i!, which contains
1-min records for 13 years; and database~ii !, which contains daily records for 35 years. Power-law regression fits in the regiong>1 lead
to the estimatesa53.7560.30 for database~i! anda53.6660.11 for database~ii !. ~b! The cumulative distribution from database~ii ! for
Dt51, 2, and 4 d. The apparent scaling behavior of these distributions is confirmed by the estimatesa53.7560.41 (Dt52 d! and
a53.7760.29 (Dt54 d!. ~c! The behavior of the moments for these time scales is in agreement with the apparent scaling behavi
e
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es
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ex
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mk[^uguk&T , ~8!

where ^•••&T denotes an average over all the normaliz
returns for all the bins. Sincea'3, we expectmk to diverge
for k>3, and hence we computemk for k,3.

Figure 6~b! shows the moments of the normalized retur
g for different time scales from 5 min up to 1 d. The m
ments do not vary significantly for the above time scal
confirming the scaling behavior of the distribution observ
in Fig. 6~a!.
d

s

,
d

V. DISTRIBUTION OF RETURNS FOR Dt>1 DAY

A. S&P 500 index

For time scales beyond 1 d@66#, we use database~ii !
which contains daily sampled records of the S&P 500 ind
for the 35-year period 1962–1996. Figure 7~a! shows the
agreement between distributions of normalized S&P 5
daily returns from database~i!, which contains 1-min
sampled data, and database~ii !, which contains daily
sampled data. Regression fits for the region 1<g<10 give
estimates ofa'3. Figure
e
h

FIG. 8. ~a! Cumulative distribution for the positive tail of S&P 500 returns for time scalesDt54, 8, and 16 d. The bold curve shows th
cumulative distribution of a Gaussian with zero mean and unit variance.~b! The moments for time scalesDt58 and 16 d are consistent wit
a slow convergence to Gaussian behavior. Note that the curves forDt51 and 4 d coincide.



s
h
ib

es
t

ns
th
e
on
tri
ss

-

rre-
in.
a-

or-

re-
e

-
ions

two

bil-
ries
en-
he

si
he
g-
&
ra

PRE 60 5311SCALING OF THE DISTRIBUTION OF FLUCTUATIONS . . .
7~b! shows the scaling behavior of the distribution forDt
51, 2, and 4 d. For these choices ofDt, the scaling behavior
is also visible for the moments@Fig. 7~c!#.

Figure 8~a! shows the distribution of the S&P 500 return
for Dt54, 8, and 16 d. The data are now consistent wit
slow convergence to Gaussian behavior. This is also vis
for the moments@Fig. 8~b!#.

B. NIKKEI and Hang-Seng indices

The S&P 500 is but one of many stock market indic
Hence we investigate whether the above results regarding
power-law asymptotic behavior of the distribution of retur
hold for other market indices as well. Figure 9 compares
distributions of daily returns for the NIKKEI index of th
Tokyo stock exchange and the Hang-Seng index of the H
Kong stock exchange with that of the S&P 500. The dis
butions have similar functional forms, suggesting the po

FIG. 9. Comparison of the cumulative distributions for the po
tive tails of the normalized returns for the daily records of t
NIKKEI index from 1984 to 1997, the daily records of the Han
Seng index from 1980 to 1997, and the daily records of the S
500 index. The apparent power-law behavior in the tails is cha
terized by the exponentsa53.0560.16 ~NIKKEI !, a53.0360.16
~Hang-Seng!, anda53.3460.12~S&P 500!. The fits are performed
in the region g>1.
a
le

.
he

e

g
-
i-

bility of ‘‘universal’’ behavior of these distributions. In ad
dition, the estimates ofa from regression fits,

a5H 3.0560.16 ~NIKKEI !

3.0360.16 ~Hang-Seng!,
~9!

are in good agreement for the three cases.

VI. DEPENDENCE OF AVERAGE VOLATILITY
ON TIME SCALE

The behavior of the time-averaged volatilityv(Dt) as a
function of the time scaleDt is shown in Fig. 3~c!. We find
a power-law dependence

v~Dt !}~Dt !d. ~10!

We estimated'0.7 for time scalesDt,20 min. This value is
larger than 1/2 due to the exponentially damped time co
lations, which are significant up to approximately 20 m
Beyond 20 min,d'0.5, indicating the absence of correl
tions in the returns, in agreement with Fig. 3~a!. The time-
averaged volatility is also consistent with essentially unc
related behavior for the daily and monthly returns.

VII. VOLATILITY CORRELATIONS AND TIME SCALING

We have presented evidence that the distributions of
turns retain the same functional form for a range of tim
scales~see Fig. 10 and Table I!. Here, we investigate pos
sible causes of this scaling behavior. Previous explanat
of scaling relied on Le´vy stable@4# and exponentially trun-
cated Lévy processes@6,10#. However, the empirical data
that we analyze are not consistent with either of these
processes.

A. Rate of convergence

We first compare the rate of convergence of the proba
ity of the returns to that of a computer-generated time se
which has the same distribution but is statistically indep
dent by construction. This way, we will be able to study t

-

P
c-
on of
e
.
nd
FIG. 10. The values of the exponenta characterizing the asymptotic power-law behavior of the distribution of returns as a functi
the time scaleDt obtained using~a! a power-law fit, and~b! the Hill estimator. The values ofa for Dt,1 d are calculated from databas
~i! which contains 13 years of 1-min records, while forDt>1 d they are calculated from database~ii !, which has 35 years of daily records
The unshaded region, corresponding to time scales larger than (Dt)3'4 d ~1560 min!, indicates the range of time scales where we fi
results consistent with slow convergence to Gaussian behavior~see the text and the preceding figures!.
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convergence to Gaussian behavior of independent ran
variables distributed as a power law, with an exponena
'3.

Next we generate a time seriesX[Xk , k51, . . . ,40
3106 distributed asP(X.x);1/x3. We next calculate the
new random variablesI n[( i 51

n Xk , and compute the cumu
lative distributions ofI n for increasing values ofn. These
distributions show faster convergence with increasingn than
the distributions of returns@Fig. 11~a!#. This convergence is
also visible in the moments. Figures 11~a! and 11~b! show
that for n5256, both the moments and the cumulative d
tribution show Gaussian behavior. In contrast, for the dis
bution of returns, we observe significantly slower conv
gence to Gaussian behavior: In the case of the S&P
index, one observes a possible onset of convergence foDt
' 4 d ~1560 min!, starting from 1-min returns.

These results confirm the existence of time dependen
in the returns@33,53–61#. Next, we show that the scalin
behavior observed for the S&P 500 index no longer ho
when we destroy the dependencies between the return
different times.

B. Randomizing the time series of returns

We start with the 1-min returns and then destroy all
time dependencies that might be present by shuffling
time series ofGDt51(t), thereby creating a new time serie
G1

sh(t) which containsstatistically independentreturns. By
adding upn consecutive returns of the shuffled seriesG1

sh(t),
we construct then-min returnsGn

sh(t).

TABLE I. The values of the exponenta, for different time
scalesDt, for the S&P 500 index:~a! power-law regression fit to
the cumulative distribution, and~b! Hill estimator. The daggered
values are computed using database~ii !, which contains daily-
sampled records, while the values without the dagger are comp
using database~i!, which contains records with a 1-min samplin
Note that we use the conversion 1 d5390 min @65#.

Dt ~min! Power-law fit Hill estimator

Positive Negative Positive Negative

1 2.9560.07 2.7560.13 3.2960.07 3.4560.07
2 3.3960.05 3.3760.07 3.3860.08 3.7160.09
4 3.4160.14 3.3660.11 3.1860.09 3.2260.10
8 3.1860.14 3.3460.15 3.1460.13 3.0060.12

16 2.6960.04 2.7460.10 3.0760.26 2.7560.16
32 2.5360.06 2.6660.09 2.7760.16 2.5360.07
64 2.7860.05 2.5260.05 2.9760.14 2.7160.09

128 2.8360.18 2.4460.08 3.7460.23 2.8760.17
256 2.5360.23 2.3260.09 3.3360.30 2.6360.23

390† 3.6660.11 3.6160.11 3.1960.17 3.3360.16
512 3.3960.03 2.8660.07 3.760.5 3.1260.23

780† 3.7560.41 3.5860.22 3.0660.26 4.6760.38
1560† 3.7760.29 3.5860.14 3.5860.29 2.9960.32
3120† 3.3160.30 3.5260.04 4.960.6 3.8560.45
6240† 3.4960.31 2.8960.05 4.961.1 3.9760.48

12480† 4.361.0 2.4560.32 8.762.0 4.562.2
24960† 3.0060.23 2.2160.21 4.161.1 7.762.4
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Figure 12~a! shows the cumulative distribution ofGn
sh(t)

for increasing values ofn. We find a progressive conver
gence to Gaussian behavior with increasingn. This conver-
gence to Gaussian behavior is also clear in the moment
Gn

sh(t), which rapidly approach the Gaussian values with
creasingn @Fig. 12~b!#. This rapid convergence confirms th
the time dependencies cause the observed scaling beha

VIII. DISCUSSION

We have presented a detailed analysis of the distribu
of returns for market indices, for time intervalsDt ranging
over roughly four orders of magnitude, from 1 min up to o
month ('16 000 min!. We find that the distribution of re-
turns is consistent with a power-law asymptotic behavi
characterized by an exponenta'3, well outside the stable
Lévy regime 0,a,2. For time scalesDt@(Dt)3 , where
(Dt)3'4 d, our results are consistent with slow conve
gence to Gaussian behavior.

We have also demonstrated that the scaling behavior d
not hold if we destroy all the time dependencies by shufflin
The breakdown of the scaling behavior of the distribution
returns upon shuffling the time series suggests that the lo
range volatility correlations, which persist up to seve

ed

FIG. 11. Convergence of distribution for independent variabl
We first generate a time seriesXk distributed asP(X>x);1/x3.
We then generate the variablesI n[( i 51

n Xk for n51, 16, and 256.
~a! Cumulative distributions ofI n . Note that the curve forn5256
is indistinguishable from the Gaussian curve revealing converge
to Gaussian behavior.~b! The moments forn51, 16, and 256.
These results can be compared with Fig. 8. Note that for the S
500 even for time scalesDt516 d~corresponding ton56,240), we
still do not observe a good degree of convergence.
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FIG. 12. We randomize the time series of returns for the S&P 500 forDt51 min, and create a time series with the same distribution
with independent random variables. We then sum upn consecutive shuffled returns to create a shuffledn-min return. ~a! Cumulative
distributions of the positive tails of the shuffled returns are shown for increasingn. We find slow convergence to Gaussian behavior
increasingn. ~b! The slow convergence to a Gaussian behavior is shown by the moments. The results in~b! can be compared with Fig. 11~b!
if we note thatn5512 corresponds toDt'1.5 d. The data are normalized to have the same second moment.
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months@33,53–63#, may be one possible reason for the o
served scaling behavior.

Recent studies@59# show that the distribution of volatility
is consistent with an asymptotic power-law behavior w
exponent 3, just as observed for the distribution of retur
This finding suggests that the process of returns may be w
ten as

g~ t !5e~ t ! v~ t !, ~11!

where g(t) denotes the return at timet, v(t) denotes the
volatility, and e(t) is an i.i.d. random variableindependent
of v(t) @14,20,30,66#. Since the asymptotic behavior of th
distributions ofv(t) and g(t) is consistent with power-law
behavior, e(t) should have an asymptotic behavior wi
faster decay than eitherg(t) or v(t). In fact, Eq. ~11! is
central to all the ARCH models@30,66#, with e(t) assumed
to be Gaussian distributed.

Different ARCH processes assume different recursion
lations for v(t). In the standard ARCH model,v(t)5a
1b g2(t21), leading to a power-law distribution of return
with exponent depending on the parametersa andb. How-
ever, the standard ARCH process predicts volatility corre
tions that decay exponentially, sincev(t) depends only on
the previous event. Thus the ARCH model cannot acco
for the observed long-range persistence inv(t). To try to
remedy this, one can requirev(t) to depend not only on the
previous value ofg(t) but on a finite number of past event
This generalization is called the GARCH model. Depe
dence ofv(t) on the finite past leads not to a power-la
decay~as is observed empirically!, but to volatility correla-
tions that decay exponentially —with larger decay times
the number of events ‘‘remembered’’ is increased.

In order to explain the long-range persistence of the au
correlation function of the volatility, one must assume th
v(t) depends on all the past rather than a finite numbe
past events. Such a description@67# would be consistent with
the empirical finding of long-range correlations in the vo
tility, and the observation that the distributions ofg(t) and
v(t) have similar asymptotic forms. Another approach p
posed in Ref.@14# is a hierarchical model wherein the vola
tility correlations decay logarithmically, which is also com
-
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-

-

nt

-

s

-
t
f

-

-

patible with the power-law decay of volatility correlation
with a small exponent. A microscopic model that is cons
tent with the asymptotic behavior of the distribution of pri
fluctuations and the long-range correlations in volatility w
developed in Refs.@16,17#. If the process of returns wer
governed by the volatility, as in Eq.~11!, then the volatility
would seem to be the more fundamental process. In f
since the volatility is related to the amount of informatio
arriving into the market, the statistical properties of the
turns may be ‘‘driven’’ by this information.
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APPENDIX A: LÉ VY STABLE DISTRIBUTIONS

Lévy stable distributions arise from the generalization
the central limit theorem to a wider class of distribution
Consider the partial sumPn[( i 51

n xi of independent identi-
cally distributed~i.i.d.! random variablesxi . If the xi ’s have
finite second moments, the central limit theorem holds a
Pn is distributed as a Gaussian in the limitn→`.

If the random variablesxi are characterized by a distribu
tion having asymptotic power-law behavior

P~x!;x2(11a), ~A1!

wherea,2, thenPn will converge to a Le´vy stable stochas-
tic process of indexa in the limit n→`.

Except for special cases, such as the Cauchy distribut
Lévy stable distributions cannot be expressed in closed fo
They are often expressed in terms of their Fourier transfo
or characteristic functions, which we denotew(q), whereq
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FIG. 13. ~a! Schematic representation of the evaluation of the local slope from the cumulative distribution. First, the normalized
g are sorted in descending order,gk.gk11. The dotted line indicates the local slope.~b! Hill estimator for a sequence of i.i.d. random
variables with asymptotic behavior:P(g.x)5(11x)23. ~c! Hill estimator for a sequence of i.i.d. random variables with asympto
behavior:P(g.x)5exp(2x). Note that the asymptotic estimates 1/a50.33 and 1/a50 recover for both cases the correct values ofa, a
53 anda5`, respectively.
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denotes the Fourier transformed variable. The general f
of a characteristic function of a Le´vy stable distribution is

ln w~q!5H imq2guquaF11 ib
q

uqu
tgS p

2
a D G @aÞ1#

imq2guquF11 ib
q

uqu
2

p
lnuquG @a51#,

~A2!

where 0,a<2, g is a positive number,m is the mean, and
b is an asymmetry parameter. For symmetric Le´vy distribu-
tions (b50), one has the functional form

P~x!5
1

2pE2`

`

exp~2guqua! e2 iqx dq. ~A3!

For a51, one obtains the Cauchy distribution, and, for t
limiting casea52, one obtains the Gaussian distribution

By construction, Le´vy distributions are stable, that is, th
sum of two independent random variablesx1 and x2, char-
acterized by the same Le´vy distribution of indexa, is itself
characterized by a Le´vy distribution of the same index. Th
functional form of the distribution is maintained, if we su
up independent, identically distributed Le´vy stable random
variables.

For Lévy distributions, the asymptotic behavior ofP(x)
for x@1 is a power law,
m P~x!;x2(11a). ~A4!

Hence the second moment diverges. Specifically,E$uxun% di-
verges forn>a when a,2. In particular, all Le´vy stable
processes witha,2 have infinite variance. Thus non-
Gaussian stable stochastic processes do not have a char
istic scale. Although well defined mathematically, these d
tributions are difficult to use and raise fundamental proble
when applied to real systems where the second momen
often related to the properties of the system. In finance,
infinite variance would make risk estimation and derivati
pricing impossible.

APPENDIX B: HILL ESTIMATOR „‘‘LOCAL SLOPES’’ …

A common problem when studying a distribution that d
cays as a power law is how to obtain an accurate estimat
the exponent characterizing the asymptotic behavior. H
we review the methods of Hill@68#. The basic idea is to
calculate theinverseof the local logarithmic slopez of the
cumulative distributionP(g.x),

z[2S d ln P

d ln x D 21

. ~B1!

We then estimate the inverse asymptotic slope 1/a by ex-
trapolatingz as 1/x→0. We start with the normalized re
turnsg and proceed in the following steps:
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Step I: We sort the normalized returnsg in descending
order. The sorted returns are denotedgk , k51, . . . ,N, where
gk.gk11 andN is the total number of events.

Step II: The cumulative distribution is then expressed
terms of the sorted returns as

P~g.gk!5
k

N
. ~B2!

Figure 13 is a schematic of the cumulative distribution th
obtained. Theinverselocal slopesz(g) can be written as

z~gk!52
ln~gk11 /gk!

ln„P~gk11!/P~gk!…
. ~B3!

Using Eq.~B2!, the above expression can be well appro
mated for largek as

z~gk!.k„ln~gk11!2 ln~gk!…, ~B4!

yielding estimates of the local inverse slopes.
Step III: We obtain the inverse local slopes through E

~B4!. We can then compute an average of the inverse slo
over m points,
-

ic
l

f

Y

s

-

.
es

^z&[
1

m (
k51

m

z~gk!, ~B5!

where the choice of the averaging window lengthm varies
depending on the number of eventsN available.

Step IV:We plot the locally averaged inverse slopes^z&
obtained in step III as a function of the inverse normaliz
returns 1/g ~see, e.g., Fig. 5!. We can then define two meth
ods of estimatinga. In the first method, we extrapolatez as
a function of 1/g to 0, similarly to the method of successiv
slopes @69#; this procedure yields the inverse asympto
slope 1/a. In the second method, we average over all eve
for 1/g smaller than a given threshold@68#, with the average
yielding the inverse slope 1/a.

To test the Hill estimator, we analyze two surrogate d
sets with known asymptotic behavior:~a! an independent
random variable withP(g.x)5(11x)23, and~b! an inde-
pendent random variable withP(g.x)5exp(2x). As shown
in Figs. 13~b! and 13~c!, the method yields the correct resul
a53 anda5`, respectively.
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