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Brazil
4 Unidad Profesional Interdisciplinaria en Ingenieŕıa y Tecnoloǵıas Avanzadas,
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Abstract. Complex fluctuations with correlations involving multiple scales
appear in many physical, social and biological systems. In particular, in
physiological systems the degree of complexity, measured in terms of the exponent
of the time correlations of the fluctuations, is altered with disease and ageing.
Here, we show that correlated fluctuations characterized by 1/f scaling of their
power spectra can emerge from networks of simple signalling units. We analyse
networks of simple signalling units where the type of scaling of the fluctuations
is associated with (i) a complex topology with a discrete and sparse number
of random links between units, (ii) a restricted set of nonlinear interaction
rules, and (iii) the presence of noise. Furthermore, we find that changes in one
or more of these properties leads to degradation of the correlation properties.
Moreover, changes in the microscopic construction of the model do not produce
qualitative changes in the dynamical behaviour, showing hence the robustness of
our findings.
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1. Introduction

A feature of complex physical systems is that they comprise interacting units that
communicate among themselves and process external environmental stimuli. The
dynamical analysis of these systems is often performed in terms of the time series of
some relevant property of the system. Numerous studies have demonstrated that the
spectrum of the fluctuations in such time series, i.e. the Fourier transform of the correlation
function of the fluctuations, gives a measure of the degree of complexity of the system.
Specifically, in complex systems, the behaviour of the system is not a simple superposition
of the behaviour of the units but the result of a complicated interrelation between the
different units that form it, and the different degrees of complexity are associated with a
power-law dependence of the spectrum, which means that correlations span across multiple
timescales [1, 2].

Complex systems whose fluctuations have correlation holding across multiple
timescales are ubiquitous in the social [3] and biological realms [4]. Physiological systems,
in particular, generate complex output signals that are scale independent. The complexity
of these signals is quantified in terms of the value of the exponent of the power law of
the power spectrum of the fluctuations. The range of values of this exponent is related to
the physiological conditions, thus in healthy young individuals some observations show a
power spectrum such that it scales as the inverse of the frequency, that is, the so-called
‘1/f ’ noise; variations in the exponent appear with some pathologies as well as with
ageing [5]–[11]. In spite of its practical and fundamental interest [8, 12], the origin of such
scale-invariant dynamics remains an unsolved problem [13, 14].

Until recently, attention has been focused primarily on the complexity of the specific
physiological sub-systems or on the nature of the nonlinear interactions between them [15]–
[17], and very little attention has been given to the topology of the network of interactions.
However, a number of recent studies has shown clearly that the network of interactions
in certain living organisms develops a complex structure [18, 19].

doi:10.1088/1742-5468/2007/01/P01013 2

http://dx.doi.org/10.1088/1742-5468/2007/01/P01013


J.S
tat.M

ech.
(2007)

P
01013

Complex fluctuations and robustness in stylized signalling networks

Boolean algebra has been extensively used to model the state and dynamics of complex
systems (see [17] for an introduction). The reason such a ‘simplistic’ description may be
appropriate arises from the fact that Boolean variables provide good approximations to
the nonlinear functions encountered in many control systems [20]–[24]. Indeed, random
Boolean networks (RBNs) were proposed by Kauffman [20] as models of genetic regulatory
networks, and have also been studied in a number of other contexts [21]–[23], [25]–[28].

In sharp contrast to the inherent stochasticity of RBNs, Wolfram [24] proposed that
all real-world complexity might be explained by a class of ordered Boolean networks
with identical units, the cellular automaton (CA) models. Interestingly, neither of these
two classes of models has been shown to generate the types of complex dynamics with
1/f fluctuations observed, for example, in physiological systems [11, 29]. Indeed, in low
connectivity RBNs perturbations quickly die out and the system evolves toward an ordered
phase, whereas in large connectivity RBNs perturbations propagate to the entire network
and the state of the system becomes unpredictable. Similarly, the CA models can only
generate periodic or unpredictable/uncorrelated outputs depending on the particular sets
of Boolean functions considered [24]. Hence, the construction of a model that could
generate complex dynamics with long-range correlations and its alteration with pathology
is still very much an open problem [14].

We have recently proposed a new model for the emergence of scale-invariant dynamics
in signalling networks [30]. Our modelling approach departs from prior approaches in that
we pay especial attention to the topology of the network of interactions. The justification
for this focus is that a number of recent studies have shown that the network of interactions
in certain living organisms evolves toward a complex structure [18, 19]. Our model is
rooted in three considerations frequently confirmed in real-world systems:

(i) the units are connected according to a complex topology [19, 31, 32],

(ii) the interactions among the units comprising the system are nonlinear [17],

(iii) the interaction between the units is affected by noisy communication and/or by
external ‘environmental’ stimuli [33].

Of note, we found that combinations of just two of these ingredients are not sufficient
to generate 1/f -type signals. In this paper we focus on the robustness of the results
reported earlier.

First, we investigate different topological configurations to analyse the relevant
ingredients in the construction of the network. Next, we allow some modifications of
the way the Boolean functions are implemented and we also let a subset of nodes behave
in a different way to the rest of the network. The results reported here enable us to say
that all findings in our previous paper are robust in the sense that the appearance of a
broad range of responses in terms of the correlation function of the fluctuations is firmly
rooted in the considerations exposed above.

The outline of the paper is the following. In the first two sections we introduce the
details of the model and its dynamics, respectively. In section 4 we present the way in
which we compute the spectrum of the fluctuations in a systematic way, showing in the
next section that our results previously obtained are robust under either some changes in
the topology or in the implementation of the rules. We end with a section devoted to the
discussion of our results.
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Figure 1. The units forming the system are placed on the nodes of a one-
dimensional lattice and establish bi-directional nearest-neighbour connections.
With some probability we add long-range unidirectional connections until there
are keN such excess links, ke being the average excess connectivity and N the
number of units. Each unit processes a set of input signals in the way that is
described in the text. The signal received from one of its neighbours is replaced
with a random value with probability η.

2. The model

In order to study the role of the three factors mentioned above (complex topology,
nonlinear dynamics, and noise) in a systematic way we first formalize them
mathematically: concerning the system’s topology, we assume the units are placed on
the nodes of a one-dimensional lattice and that each unit is bidirectionally connected to
its two nearest neighbours. We then increase the topological complexity of the system by
adding, with probability ke, an incoming connection to each node [34] (figure 1). The basic
topology we consider is having the units in our system sit on a circle with connections to
the nearest neighbours. This is a very regular, ordered (and artificial) network structure.
To consider a more general topology we first allow for ‘connection errors’, which we
implement through long-range connections to randomly selected units on the circle. This
is the so-called ‘small-world’ topology proposed by Watts and Strogatz [18, 31]. Although
quite stylized, this topology captures some aspects of real-world networks such as (i) the
small number of ‘degrees of separation’ between the units and (ii) the local order. Other
topological structures will be considered later in the paper.

Concerning the unit’s dynamics, we assume that the state of the units comprising
the system is a Boolean variable—Boolean algebra provides a simple way to introduce
nonlinearities in the dynamical evolution of the units since it is associated, for example,
with threshold input–output relationships. We also assume that the state σi(t+1) of unit
i at time t + 1 depends on the state of the set of its neighbours—including itself—at time
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t as

σi(t + 1) = Fi

[
σi1(t), σi2(t), . . . , σiki

(t)
]
, (1)

where ki is the connectivity of unit i—i.e. the number of inputs that unit i receives—and
Fi is a Boolean function (or rule). Note that for a number K of inputs there are 22K

different functions: for example, for K = 3 there are 256 different Boolean functions.
The truth table of Boolean functions (or rules) of three-inputs {σi, σi1 , σi2 } is of the

following form [16]:

σi1(t) 1 0 1 0 1 0 1 0
σi(t) 1 1 0 0 1 1 0 0
σi2(t) 1 1 1 1 0 0 0 0

σi(t + 1) b7 b6 b5 b4 b3 b2 b1 b0

(2)

where bj is the output for each of the eight possible combination of inputs, and can take
values of zero or unity. The rules are designated by the decimal number that corresponds
to the binary number b7b6b5b4b3b2b1b0; for example, the Boolean function 11101000 is rule
232 [16, 17]. This rule returns as an output the value in the majority among the inputs,
and hence it is also named the ‘majority’ rule.

In the following, we will focus our attention on rules that can be generalized to an
arbitrary number of inputs. In general, a three-input rule cannot be generalized to any
number of inputs. An important class of Boolean rules that is mostly excluded by the
generalizable Boolean rules considered above is the class of canalizing functions [16]. In
a canalizing rule, the output value of the rule is solely determined by one input, the
canalizing variable. Three of the rules we study here are canalizing: 1, 19, and 50. As we
shall see, two of these rules lead to a broad range of dynamical behaviour. However, as
we will show here, the majority rule, which is not canalizing, also displays a broad range
of dynamical behaviours, suggesting that canalizing variables are not necessary to obtain
such diverse dynamics.

In order to define the generalizable Boolean functions, we replace the inputs of the
neighbours in a three-input rule by an average input σn(t)

σn(t) =
1 + sgn(σi1 + σi2 − 1)

2
(3)

where we define sgn(0) ≡ 0; a value of 1/2 for the state σn is what we will call a tie. The
average input σn(t) can be generalized to include an arbitrary number of inputs:

σn(t) =
1 + sgn

(
2
∑j=ki

j=1 σij − ki

)

2
. (4)

The Boolean rules of three inputs that are generalizable are symmetric rules that have
b1 = b4 and b3 = b6:

5

σn(t) 1 T 1 T T 0 T 0
σi(t) 1 1 0 0 1 1 0 0

σi(t + 1) b7 b6 b5 b4 b3 b2 b1 b0

(5)

5 In this case only it does not matter where the tie comes from, a one on the right and a zero on the left or the
other way around.
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We will keep using the eight-bit decimal representation used for Boolean rules with
three inputs to label the corresponding generalizable rule with arbitrary number of
inputs [16]. The truth table of a generalizable rule can be simplified as follows:

σn(t) 1 T 0 1 T 0
σi(t) 1 1 1 0 0 0

σi(t + 1) b′5 b′4 b′3 b′2 b′1 b′0

(6)

where b′i is the output of the function in each of the six different input conditions.
This representation, in terms of six possible input combinations, enables a better visual
identification of the rules. In the top of figures 4–6 we show the truth tables in this
representation of some of the generalizable Boolean functions.

Because of symmetries, there are 26 = 64 independent generalizable rules. However,
some of these rules are conjugate rules and we do not need to investigate the whole set of
rules. Two conjugate rules will have identical dynamics if the zeros and ones are switched
for one of them [16]. Additionally, some rules are self-conjugates. These are rules 23, 51,
77, 105, 150, 178, 204, and 232. Self-conjugate rules have an inverse rule. Two rules are
said to be inverse if, when both starting with the same initial condition, they will be in
exactly the same state every other time step and in the inverse state for the other time
steps. An example of inverse rules is given by rules 204 (the ‘identity’ rule) and 51 (the
‘negation’ rule). The identity rule will keep the initial state, whereas the negation rule
will switch between the initial state and its inverse. Other pairs of inverse rules are {23,
232}, {77, 178}, and {105, 150}.

The final ingredient of our model is the existence of noise. We introduce noise in
the dynamics by assuming that a unit has a probability η of ‘reading’ a random Boolean
variable instead of the ‘true’ state of the neighbour. This noise is intended to mimic two
effects that are always present in living processes: (i) communication errors due to the
intrinsic noise from in vivo conditions, and (ii) external stimuli affecting the transmission
of signals to a unit [33].

It is important to note that in our model the noise acts only on the inputs of the
neighbours of a unit. This implies that the state of a unit is not changed because of
noise only. Moreover, because a unit processes the average state of all neighbours, the
disturbance caused by the noise is not as large as one would estimate based on the fact
that the noise can produce a change in an input from zero to one or vice versa.

3. System dynamics

In our analysis of the dynamics of the model, we define the state S(t) of the system as
the sum of the states of all the units

S(t) =
∑

i

σi(t). (7)

Other definitions of the state of the system, such as taking a random subset of elements
or a contiguous subset, have been considered in [30] and no substantial changes were
observed. We start all of our numerical simulations with a random initial configuration
and let the system evolve according to the rules defined above. We record the state of
the system at each time step according to (7) and quantify the complexity of the series
generated in terms of the auto-correlation function of S(t) [11].
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Figure 2. Convergence to a fixed state. For some Boolean rules, whenever a unit
is in the inactive (0) (or active (1)) state it will remain in this state for the next
time step. Because in the model we do not allow for noise on the value a unit
reads from itself, networks of units evolving in accordance with these rules will
always converge to a fixed state with all units in the 0 state. (Note that for the
conjugate rules the ‘absorbing’ state would be all units in the 1 state.) The time
needed to reach this fixed state depends on the particular rule; while for rule 76
it takes several thousand steps to converge to the fixed state, rule 128 (data not
shown) requires fewer than ten time steps and rule 0 (data not shown) requires
two time steps.

Even in the presence of noise, not all of the 64 generalizable rules that we consider
will display fluctuating time series. For example, rules 0, 4, 72, 76, 128, 132, and 200
converge to a fixed state, in which all units are in state zero (see figure 2). Additionally,
the output of rules 51 and 204 depends only on the state of σi, so it will not be affected
by noise either and, as such, will not display fluctuations either.

Because of these facts and because conjugate rules have identical dynamics, we need
to investigate only 24 of the 64 generalizable rules. These rules are 1, 5, 18, 19, 22, 32,
33, 36, 37, 50, 54, 73, 77, 90, 94, 104, 105, 108, 122, 126, 146, 160, 164, and 232. This
process of elimination of irrelevant rules is schematized in [30].

To analyse the character of the fluctuations we apply the detrended fluctuation
analysis (DFA) method to the time series generated by the model [7, 35]. In this method,
the first step is to integrate the original time series. Then, the integrated time series is
divided into ‘boxes’ of size n and, for each box, a least-square linear fit is performed.
Next, the root-mean-square deviation of the integrated time series from the fit, F (n), is
calculated. This process is repeated over different box sizes or timescales.

For self-similar signals one finds that F (n) satisfies a power law relation with the size
of the box n, that is F (n) ∼ nα, with α the scaling correlation exponent. This method
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quantifies long-range time correlations in the dynamical output of a system by means of
a single scaling exponent α.

Brownian noise yields α = 1.5, while uncorrelated white noise yields α = 0.5. For a
number of physiological signals from free-running, healthy, mature systems, the scaling
exponent α takes values close to one, so-called 1/f -behaviour, which can be seen as a
‘trade-off’ between the two previous limits [11]. The exponent α is related to the exponent
β of the power spectrum of the fluctuations, S(f) ∼ 1/fβ, through the relation β = 2α−1.

In many physiological signals, the scaling properties represented by means of the
value of one scale-invariant quantity suffer changes along with the dynamical evolution
of the system. For instance, heart interbeat dynamics under healthy conditions display
long-range correlations with fractal scaling expressed through a single scaling exponent
(α ≈ 1) [11]. In contrast, a breakdown in the scaling properties is observed for situations
such as heart failure and ageing [7, 11, 36].

This change from one to two or more scale-invariant exponents in the description of
the system has been described as the loss of fractal organization during the evolution.
In our simulations (with all units operating with Boolean rule 232), we observe that
three distinct values of ke lead to quite different dynamics of the system (figure 3). For a
small value of ke, the time correlations are similar to those of Brownian noise with a single
scaling exponent in the interval 4 < n < 105. Of interest, for intermediate values of ke two
main exponents are observed which lead to two scaling regions; for small and intermediate
scales the scaling exponent is close to unity, indicating long-range correlations as in the
1/f -noise; for large scales the scaling exponent is close to α ≈ 0.5, which resembles white
noise dynamics. For large values of ke, the dynamics is also similar to white noise, that
is, almost uncorrelated, and a weak crossover behaviour is observed.

As we can see in figure 3 the crossover of the exponent α to a lower value happens
at relatively large scales. We have exhaustively checked the time series for the generated
data and we have verified that there exists a range of time box sizes (40 < n < 4000)
in which the scaling of the fluctuations with n follows a straight line, thus defining a
unique value of the exponent. For this reason, we are going to systematically estimate
the exponent α within this region.

4. Results

Prior to presenting our results it is worthwhile to note that both the RBN and CA models
can be seen as limiting cases of the present model in the absence of noise: an RBN model
corresponds to a completely random network with different Boolean rules for the units,
while a CA model corresponds to ke = 0 and all units evolving according to the same
rule.

In principle, we consider systems whose units all evolve according to the same rule, as
in CA models. We systematically study the 24 different Boolean functions of three inputs
which do display fluctuations, for different pairs of values of ke and η. In figures 4–6 we
show the phase space of each of these rules. We have classified them in three different
sets depending on the diversity of ranges of dynamics. Thus, in the first set, shown in
figure 4, three different types of dynamical behaviour are displayed, depending on both
the intensity of the noise and on the excess connectivity. In the second set, displayed in
figure 5, complex fluctuations are only obtained for small intensities of the noise without
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Figure 3. Plot of F (n) versus n for sequences of the state of Boolean signalling
networks. We show the detrended fluctuation analysis for three cases with
N = 4096 units; Fi = 232; η = 0.15; and ke = 0.15, ke = 0.45, and ke = 0.9
(from top to bottom curves). The three values of ke lead to different dynamics
of the system as is observed in the plots. For a small value of ke the system
displays short-range correlations as in Brownian noise; furthermore, we observe
a single scaling exponent in the range 10 < n < 104. For intermediate values of
ke, long-range correlations are observed in the range 10 < n < 103 with a scaling
exponent α ≈ 1 as in the 1/f -noise. In this particular case we observe a crossover
behaviour in the scaling exponent; for short scales (10 < n < 103) the exponent
is close to unity whereas for large scales (103 < n) the scaling exponent is close to
the white noise value. For a large value of ke the evolution is almost uncorrelated
but with a weak crossover in the scaling exponent.

dependence on the excess connectivity. Finally, see figure 6, there is a collection of rules
for which fluctuations are always uncorrelated.

Some of the described rules have a clear physiological meaning. As a representative of
the first set, rule 232 is a majority rule, that is, a unit will be active in the next time step
only if the majority of its neighbours, including itself, is active currently, and vice versa.
On the other hand, rule 50, representative of the second class, is a threshold rule with
refractory time period; that is, whenever the inputs of the neighbours surpass a certain
value a unit becomes active in the next time step and then will be inactive for at least
one time step.

Particularly interesting are the results for rule 232, the majority rule (see [23] for
applications of this rule to other contexts). Interestingly, we find three distinct types of
behaviour (figure 3): for small ke, we find mostly Brownian-like scaling. For large ke, we
find mostly white-noise dynamics. Of greatest interest, for intermediate values of ke and
for a broad range of values of the noise η, we find 1/f fluctuations.
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Figure 4. Truth table and phase space for signalling networks with units obeying
rules 232, 19, and 1. In the truth tables, black represents one, grey represents
tie and white represents zero. In the phase spaces, we use the colour scheme
shown in the bar to indicate the value of the scaling exponent α characterizing
the auto-correlations in the dynamics of the system by means of the detrended
fluctuation analysis method [7]. The exponent is systematically estimated for
timescales 40 < n < 4000. We show α for 61 × 61 pairs of values of ke and the
noise η in the communication between the units comprising the network. For all
simulations, we follow the time evolution of systems comprising 4096 units for a
transient period lasting 8192 time steps, and then record the time evolution of
the system for an additional 10 000 time steps. In order to avoid artifacts due
to the fact that for some of the rules the units switch states with period 2, we
consider in our analysis the state of the systems at every other time step. The
rules shown in this figure display different types of noisy fluctuations depending
on the values of η and ke. For all three rules, the system generates 1/f -noise for
a broad range of noise intensities.

One interesting question raised by these results is how a single rule can generate such
a broad range of behaviours.

First, we focus on the Brownian noise behaviour observed for small excess
connectivity. In the limiting case of a regular ring and η = 0 the system evolves toward a
stable configuration with fixed width bands—or clusters—of units in the same state. As
η increases, the boundaries between the clusters fluctuate in time. For small ke, the effect
of the random links is merely to increase the effective value of η. In such a situation, the
state of the system changes by small amounts because only the units at the boundaries
between clusters can change value. Hence, the changes in S(t) are uncorrelated random
variables and the dynamics are Brownian (see [30] for more details).

Next, we focus on the white noise behaviour observed for large ke. If ke is large,
then most units have a long-distance random connection; this implies that information
propagates almost instantaneously across the system and that clusters are unable to form.
In such a state, essentially all units comprising the system can switch value at each time
step and S(t) is just given by the sum of N random variables. Hence S(t) is a random
variable itself and the dynamics are simply white noise.
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Figure 5. Truth table and phase space for networks with units obeying rules 5,
36, 37, 50, 73, 77, 94, 108, and 164. These rules can generate complex fluctuations
only for small intensities of the noise. Curiously, for these rules, the dynamics
show a very weak dependence on ke.

Finally, we focus on the 1/f behaviour observed for intermediate values of ke. Our
finding of long-range correlations under this conditions is surprising in light of earlier
studies suggesting that it is difficult to generate long-range correlations for systems with
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Figure 6. Truth table and phase space for networks with units obeying rules 18,
22, 32, 33, 54, 90, 104, 105, 122, 126, 146, and 160. These rules are only able to
generate white noise fluctuations.

a large number of interacting units [37]. However, these results were based on a situation
similar to the case of large excess connectivity. For intermediate values of ke, the number
of random connections remains small enough that order is not destroyed—i.e., clusters
can still form—but large enough that information can be transmitted to distant parts of
the system quite rapidly. The fact that local information from one part of the system
is ‘broadcast’ to all scales is the mechanism by which long-range correlations and 1/f
behaviour are generated.

Earlier in this section we remarked that RBNs and CA models correspond to limiting
cases in our procedure, although these two limits are completely opposed. CA models
would correspond to the lower left corner in our phase space for all the rules, and
hence no ‘physiologically’ interesting behaviour should be observed. In contrast, RBN
corresponds to a random mixture of rules, although connectivity could be compatible with
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Figure 7. Phase space for signalling networks. Here we consider that initially each
unit is connected to its two nearest neighbours (±1) and to its two next nearest
neighbours (±2), before adding the extra connections. The systems consist of
units operating according to the majority rule. We used the same parameters as
in figures 4–6 and each value is an average over five independent runs.

our approach, making the system response completely unpredictable and the fluctuations
have a white-noise character (see [30]). This can also be inferred from figure 10 in the
next section, when increasing the fraction of random rules with respect to a fixed one.

5. Robustness

In order to determine the generality of the results presented above, one needs to address the
question of how these findings are affected by (i) changes in the topology of the network,
and (ii) changes in the units’ implementation of the rules. Since from both a physiological
and a physical point of view the majority rule has a meaningful interpretation, we take
it as a starting point, but it is worth noting that it could be performed for any of the
‘complex’ rules represented in figure 4 (rules 19 and 1).

Concerning (i) we note that the topology considered so far takes as initial set-
up, before adding the extra long-range connections, a one-dimensional ring of nearest-
neighbour links. One of the first questions one asks is whether this particular set-up is
relevant in the development of the complexity of the signals discussed in the previous
section. We have tackled this problem from two different viewpoints: (a) considering
next-nearest-neighbour connections and (b) connectivity distributions other that the
homogeneous ones considered so far.
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Figure 8. Phase space ((a), (b), (e), (f)) for signalling networks with units
operating according to rule 232 and their corresponding distributions of number
ki of connections of the units ((c), (d), (g), (h)). Top: case of networks in which
the units have connections with their ki > 2 nearest neighbours, where ki follows
an exponential distribution with (a) mean 2.5 and (b) mean 3. We then add ke

unidirectional links per unit between pairs of randomly selected units. Bottom:
the keN additional unidirectional links are not between pairs of randomly selected
units, but instead between units selected according to preferential attachment—
which is known to generate power-law decaying distributions of ki [19]. We
consider two distinct situations: (e), (g) the preferential attachment rule is used in
selecting the unit sending the outgoing link while the unit receiving the incoming
link is selected at random, and (f), (h) the preferential attachment rule is used in
selecting the unit receiving the incoming link while the unit sending the outgoing
link is selected at random.

In the first case, we consider as initial set-up a one-dimensional array in which each
unit i has bidirectional connections to its nearest neighbours (±1) and to its next-nearest
neighbours (±2). In figure 7 we see that the inclusion of two additional neighbours before
we add the extra connections leads to a similar structure of the phase space and the three
different regimes are still observed. It is clear, however, that more noise intensity is needed
to obtain the regimes observed in the original system with only nearest neighbours (see
figure 4 (left)).

Finally, we note that the network topologies considered so far span the cases of ordered
one-dimensional lattices, small-world networks, and random graphs [38]. However, all
networks considered are comprised of units with approximately the same degree, i.e. the
same number of connections. To investigate the role of the distribution of number
of connections, we also study networks which span the range of empirically observed
degree distribution: a delta-distribution, an exponential distribution, and a power law
distribution. The latter case corresponds to the so-called scale-free networks [19].

In figure 8 we show different distributions of incoming and outgoing links together
with the corresponding exponents for the scaling of the fluctuations. In the top row
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Figure 9. Phase space with mixing of simple majority and clear majority rule.
We calculate the correlation exponent α for systems composed of units operating
according to rule 232 but with one-quarter of the units operating according to a
clear majority rule. We observe that the phase space displays mostly Brownian
and 1/f noise.

we consider distributions of number of incoming and outgoing connections for networks
with exponential distribution of local links with different means. Allowing the number
of incoming connections to fluctuate also changes the distribution of number of outgoing
connections, which becomes a Poisson distribution. The figures demonstrate that the
change in the increased number of local connections considered in panels (a) and (b)
leads to no significant change in the results. The reason is that the complex dynamics
are generated at the boundary between domains: when one allows some units to have
more local connections, these units still have the same number of units to the left and to
the right, so the existence of a single long-range connection is enough to destabilize the
boundary.

In the bottom row we consider networks with power-law distributions either of
incoming or outgoing links. Taking the one-dimensional ring of figure 1 again as initial
set-up, we add the additional connections according to the preferential attachment rule
(g) for outgoing units and (h) incoming units. The former case gives rise to a network
with a broad distribution of outgoing links while the latter gives rise to a network with
broad distribution of incoming links. As one might expect, a power law distribution of
outgoing links leads to no significant change in the phase space describing the dynamic
behaviours since it only makes the network a small world more efficiently than random
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 10. Phase space for signalling networks with mixing of Boolean rules.
We systematically calculate the exponent α, characterizing the correlations in
the dynamics, for systems composed of units operating according to rule 232
but with some fixed fraction of units operating according to a randomly selected
symmetric Boolean rule. Each value is an average over five independent runs. (a)
1/16 of the units operating according to a randomly selected rule. (b) One-eighth
of the units operating according to a randomly selected rule. (c) One-quarter of
the units operating according to a randomly selected rule. (d) One-half of the
units operating according to a randomly selected rule.

long-range connections [39]. In contrast, a power law distribution of incoming links does
lead to a change in the phase space of dynamical behaviours. The reason may be that,
since information travels only one way on the connections, the fact that some units are
receiving so many of the long-distance connections will make it harder for the system to
reach the small-world regime.

The second class of change we have considered is the way in which the units implement
the rules. We look at this from two different perspectives: one consists in restricting the
majority rule to need more than the simple majority and the second in allowing a subset
of units to operate according to another rule, which accounts for the effect of ‘errors’ in
the units’ implementation.

The first attempt is to construct a more restrictive majority rule. To do this we
consider a clear majority rule by demanding the majority (half plus one) plus one to adopt
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Figure 11. The same as figure 10 but a fraction of nodes operate according to
rule 50 instead of a random rule. (a) 1/16 of the units operating according to
rule 50 and 15/16 operating according to rule 232. (b) One-eighth of the units
operating according to rule 50 and seven-eighths operating according to rule 232.
(c) One-quarter of the units operating according to rule 50 and three-quarters
operating according to rule 232. (d) One-half of the units operating according to
rule 50 and one-half operating according to rule 232.

the state. In this way we have a more restrictive majority rule, that is, a unit would remain
in its initial state unless a clear majority operates. We perform simulations to evaluate
the correlation exponent for systems with a fraction of units operating according either
to a clear majority or simple majority rule. The use of a clear majority rule forces the
units to remain in their state for more extended periods before switching to the opposite
state. The phase space shows the same regimes as in figure 4 (left) but a more extended
region corresponding to Brownian dynamics is observed (figure 9).

We also investigate the effect of allowing the co-existence in the system of distinct
Boolean rules. To this end, we first explore systematically the existing dynamical
behaviours in the phase space defined by (ke, η) for systems composed of units operating
according either to rule 232 or according to a randomly selected rule. The inclusion of
such randomness leads to a decrease in the richness of the phase space of the system.
Notably, we find that with as many as one-quarter of all units operating according to
random Boolean functions the model still displays a rich phase space, including white,
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1/f , and Brownian noise (figure 10). Specifically, if more than one-quarter of all the units
operate according to randomly selected Boolean functions, then the phase space displays
mostly white noise dynamics.

Additionally, we explore systematically the existing dynamical behaviours in the phase
space defined by (ke, η) for systems composed of units operating according to either rule
232 or rule 50. When both rules are present in the system (and at least 50% of the units
operate according to rule 232) we still find several distinct classes of dynamical behaviours,
including a wide range of parameter values that generate 1/f noise (figure 11).

6. Discussion

Our results are significant for a number of reasons. First, we propose a new model for
signalling systems that generates a broad range of behaviours reminiscent of those observed
in physiological systems. Second, we demonstrate that such a broad range of behaviours
can only emerge under a number of restrictive, but realistic, assumptions. Namely, the
system must have a complex topology, its components must interact in a nonlinear fashion
and according to a very specific type of interaction, and must be robust in the presence of
noise. Third, our findings suggest that two classes of models that have received much
attention for over three decades—random Boolean networks and cellular automata—
cannot generate the types of complex dynamics observed in physiological systems [11, 29].

We find that the character of the phase space does not depend on the distribution
of the number of connections. Moreover, different distributions of incoming or outgoing
links do change the shape and location of the region with specific time correlations but
do not change the fact that distinct classes of dynamical behaviours are observed. This
is suggestive of universal behaviour.

Another interesting question raised by our results relates to the natural selection
of a few interaction rules out of all possible such rules. One may speculate that in an
evolutionary process in which connections are created and destroyed units not interacting
through the rules that generate other most complex adaptive behaviours would eventually
become disconnected from the system, leading to a situation in which just a few rules are
observed.
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