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Analytical solution of a model for complex food webs
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We investigate numerically and analytically a recently proposed model for food webs@Nature 404, 180
~2000!# in the limit of large web sizes and sparse interaction matrices. We obtain analytical expressions for
several quantities with ecological interest, in particular, the probability distributions for the number of prey and
the number of predators. We find that these distributions have fast-decaying exponential and Gaussian tails,
respectively. We also find that our analytical expressions are robust to changes in the details of the model.
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In ecosystems, species are connected through intri
trophic relationships@1,2# defining complex networks@3–5#,
the so-called food webs. Understanding the structure
mechanisms underlying the formation of these complex w
is of great importance in ecology@6–9#. In particular, the
food web structure provides insights into the behavior
ecosystems under perturbations such as the introductio
new species or the extinction of existing species. The n
linear response of the elements composing the network le
to possibly catastrophic effects for even small perturbati
@10#.

Recently, Williams and Martinez have proposed an
egant model of food webs—the ‘‘niche’’ model—that ju
with a few ingredients successfully predicts key structu
properties of the most comprehensive food webs in the
erature@1#. Numerical simulations of the niche model pred
values for many quantities typically used to characterize e
pirical food webs that are in agreement with measured va
for seven webs in a variety of environments, including fre
water habitats, marine-freshwater interfaces, and terres
environments.

Here, we investigate the niche model from a theoreti
perspective. We study analytically and numerically the
havior of key quantities for sparse food webs, i.e., webs w
L!S2, where L is the number of trophic interactions be
tween species andS is the number of species in the web. Th
is the limit of interest in ecology because~i! for most food
webs reported in the literature the directed connectance,
fined asC5L/S2, takes small values and~ii ! it corresponds
to the limit of large web sizesS @8,9#. We calculate the prob
ability distributions of the number of prey and predators a
find that forC!1 they depend only on one parameter of t
model—the average numberz of trophic links in the net-
work. These distributions give valuable information abo
the structure of the network and enable us to calculate o
important quantities such as the fraction of ‘‘top,’’ ‘‘interme
diate,’’ and ‘‘basal’’ species, and the standard deviation of
‘‘vulnerability’’ and ‘‘generality’’ of the species in the food
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web @1#. Our results provide compact patterns that descr
the structure of the food webs generated by the niche mo
These patterns could not have been predicted from the
merical simulations reported in Ref.@1# and may be of prac-
tical and fundamental importance for the study of empiri
food webs. Moreover, we test our analytical predictions w
empirical food webs and find agreement.

We first define the niche model. Consider an ecosys
with S species andL trophic interactions between these sp
cies. These species and interactions define a network wiS
nodes andL directed links. Initially, one randomly assignsS
species to ‘‘trophic niches’’ni mapped with uniform prob-
ability into the interval@0,1#. For convenience, we will as
sume that the species are ordered according to their n
number, i.e.,n1,n2,¯,nS .

A speciesi is characterized by its niche parameterni and
by its list of prey. Prey are chosen for all species according
the following rule: a speciesi preys on all speciesj with
niche parametersnj inside a segment of lengthr i centered in
a position chosen randomly inside the interval@r i /2,ni # with
r i5xni and 0<x<1, a random variable with probability
density function

px~x!5b~12x!~b21!. ~1!

The values of parametersb andSdetermine the average con
nectivity z[2L/S of the food web and the directed con
nectanceC5L/S2 @1,11#. One can also express the avera
number of prey per species asSr̄, where the bar indicates a
average over an ensemble of food webs. It then follows t
the connectivity isz52Sr̄, the number of directed links is
L5S2r̄ , and the connectance isC5 r̄ . One can also obtain
these expressions in terms ofb using the equalityr̄ 5 x̄/2
51/@2(11b)#.

In the niche model, isolated species—that is, species w
no prey or predators—are eliminated and species with
same list of prey and predators—that is, trophically identi
species—are ‘‘merged’’@12#.

Next, we address the statistics of the number of prey.
largeS, the number of prey of a speciesi is ki5Sri , so that
the probability distributionpprey is given directly by the dis-
tribution of r. Specifically,pprey(k)5p(r )/S.
©2002 The American Physical Society01-1
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The cumulative probabilityP(r 8.r )5* r
1dr8p(r 8) is the

area of the regionR of the n2x diagram bounded by line
x51, n51 and the hyperboler 5nx,

P~r 8.r !5E
r

1

dxE
r /x

1

dnpn~n!px~x!, ~2!

wherepn(n)51 is the probability density function ofn. The
integration of Eq.~2! gives rise to a function involving hy
pergeometric functions@13#. To obtain a more ‘‘physical’’
solution, one can differentiate Eq.~2! twice to obtain

FIG. 1. ~a! Linear and~b! log-linear plots of the distribution of
the number of prey for 1000 simulations of food webs withS
51000. We show results forz510, 20 and the corresponding the
oretical predictions. As expected, we find an exponential deca
the distributions.~c! Linear and~d! log-linear plots of the distribu-
tion of the number of predators for the same food webs as in~a! and
~b!. As predicted, we find a regime where the distribution is unifo
followed by a Gaussian decay. We test our analytical predicti
with empirical data@1# for ~e! pprey(k) and ~f! ppred(m) for Bridge
Brook ~solid line! and St. Martin~broken line!.
03090
dp~r !

dr
52

px~r !

r
. ~3!

In the limit C!1, one hasb@1 ~see @12#!, so thatpx(x)
.be2bx, and the term in the right-hand side vanishes ex
nentially, indicating thatp(r ) and P(r 8.r ) have exponen-
tially decaying tails@14#.

To obtain a simpler analytical solution forp(r ) than given
by the hypergeometric functions, we approximatepx in the
entirex range by an exponential. We expect the results to
the same forx̄!1 @12# becausepx takes nonvanishing value
only for smallx. Under this approximation, the integration o
Eq. ~3! yields

p~r !5bE1~br !, ~4!

where E1(x)5*x
`dtt21 exp(2t) is the exponential-integra

function @13#. The probability distributionpprey(k) is ob-
tained from Eq.~4! making the substitutionsr 5k/S and b
5S/z, yielding

pprey~k!5~1/z!E1~k/z!. ~5!

We compare in Figs. 1~a! and 1~b! the predictions of Eq.~4!
with numerical simulations. We find close agreement b
tween our analytical expression and the numerical results
particular, they show an exponential decay for largek. The
deviations observed for small values ofk are due to the fact
that kj5Srj is an average value implying that it is a goo
approximation only when the fluctuations ofkj are small,
which is no longer true for smallk.

Next, we address the statistics of the number of predat
Note that forr̄ !1 @12#, the predators of speciesi have, to
first approximation, niche valuesnj.ni and that the segmen
r j is placed with equal probability in the interval@0,nj #.
Therefore, the probability for a speciesj to prey on i is
r j /nj5xjnj /nj5xj , implying that the average probabilit
for the species withnj.ni to prey on speciesi is x̄.

If we assume thatS@1, the number of predators ofi is the
result ofS2 i independent ‘‘coin throws’’ with probabilityx̄
of being a predator and probability 12 x̄ of not being a
predator, implying that the probability of speciesi havingm
predators is given by the binomial distribution. It then fo
lows that the distribution of the number of predators for
general species is the average over the different binomia

ppred~m!5
1

S (
i 51

S2m S S2 i
m D x̄m~12 x̄!S2m2 i . ~6!

In the limit of interest,S@1, x̄!1, andSx̄5z, one can ap-
proximate the binomial distribution as Poisson, and the s
by an integral

ppred~m!5
1

z E0

z

dt
tme2t

m!
5

1

z
g~m11,z!, ~7!

whereg is the ‘‘incomplete gamma function’’@13,15#. For
m,z/2, the functiong is approximately constant, while i
decays with a Gaussian tail form'z. In Figs. 1~c! and 1~d!,
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we compare the predictions of Eq.~7! with numerical solu-
tions and find good agreement.

In Figs. 1~e!and 1~f!, we compare our analytical predic
tions, Eqs.~5!–~7!, with data from two food webs: Bridge
Brook (S525,z58.6) and St. Martin Island (S542,z
59.8). We find that the distributions of the number of pre
is well approximated by the data and that the distributions
the number of predators are ‘‘noisy’’ but still show the e
pected cutoff form'z and it is approximately constant fo
m,z as predicted by Eq.~7!. This agreement is remarkab
since the webs analyzed are quite small, so one might
expect the theoretical expressions to hold.

Next, we evaluate the fraction of topT, intermediateI,
and basalB species. As the names indicate, top species h
no predators and basal species have no prey, while inte
diate species are those with both prey and predators.
fraction of intermediate species is justI 512(T1B). The
fraction T of top species is, by definition,

T[ppred~0!5
12exp~2z!

z
. ~8!

Note that a similar result is obtained if one calculates
sum ~6! for m50. Since typically 5,z,20, Eq.~8! can be
approximated simply asT51/z.

To calculate the fractionB of basal species, we note that
species has no prey only if its ranger falls in a region with
no species@16#. In the limit of largeS, the probability density
for finding an empty interval of lengthd is Se2Sd, as pre-
dicted by the canonical distribution@17#. Thus, the probabil-
ity of finding a species-free segment of length larger thanr is
e2Sr, which gives the probability for a species of ranger not
to prey on other species. Using Eq.~4!, it follows that the
average probability is

FIG. 2. Fraction of top and basal species as a function of
average connectivityz. The shaded region corresponds to the int
val of z typically observed in empirical food webs.~a! Comparison
of the results of 100 simulations of food webs withS51000—for
which isolated species werenot removed—with our theoretical pre
dictions, Eqs.~8! and ~9!. Note the good agreement between t
analytical expressions and the numerical results.~b! Comparison of
the results of 100 simulations of food webs withS51000—for
which isolated species were removed—with our theoretical pre
tions, Eqs.~8!–~10!. Note that the theoretical predictions provid
narrow bounds for the numerical results.
03090
f

ot

ve
e-

he

e

B5E
0

1

dre2Srp~r !5
ln~11z!

z
. ~9!

In the model@1#, isolated species are eliminated, so th
are not counted towards top or basal species. To correc
estimates~8! and ~9! for this effect, we remove the isolate
species. We estimate the number of isolated species to
order by assuming that having no prey is statistically ind
pendent of having no predators, implying that the fraction
isolated species is just the product of the fractions of top
basal species. This assumption does not take into accoun
possibility that a species with no prey is likely to have a lo
niche valuen and hence it has a high probability to hav
predators. Nonetheless, this simple approximation provi
an upper bound for the number of isolated species, wh
leads to a lower bound onT andB,

T85
T2TB

12TB
, B85

B2TB

12TB
. ~10!

In Fig. 2, we compare our analytical predictions for the fra
tion of top and basal species with numerical simulations
the model. As expected, Eqs.~8!–~10! provide bounds for
the numerical results.

Finally, we calculate the standard deviations of the v
nerability and generality of the species in food webs gen
ated according to the model. The vulnerability of a prey
defined as its numberm of predators, and the generality of
predator as its numberk of preys. Following Ref.@1#, we
define the normalized standard deviations of the vulnerab

e
-

c-

FIG. 3. Normalized standard deviations of generality and v
nerability as a function of the average connectivityz. The shaded
region corresponds to the interval ofz typically observed in empiri-
cal food webs.~a! Comparison of the results of 100 simulations
food webs with S51000—for which isolated species werenot
removed—with our theoretical predictions, Eqs.~11! and ~12!. ~b!
Comparison of the results of 100 simulations of food webs withS
51000—for which isolated species were removed—with our th
retical predictions, Eqs.~11! and ~12!. Note that as for Fig. 2, re-
moving isolated species leads to slightly less good agreement
the simulation results forsV . However, the removal of isolated
species does not appear to be a factor in the deviations found
sG . The reason whysG underestimates the simulation results
small z values relates to the fact thatkj5Srj is a good approxima-
tion only when the fluctuations ofkj are small, which is no longer
true for smallk.
1-3
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as sV
25m2/m̄221 and of the generality assG

2 5k2/ k̄221.

By definition, one hasm̄5 k̄5z/2 for both cases.
To evaluatesV , we first calculatem2. Equation~7! yields

m25z2/31z/2, so that

sV5A1

3
1

2

z
. ~11!

We next calculatesG , for any value ofC, by direct evalua-
tion of k2. If S@1, the number of preys of a species havi
a ranger is k5Sr, and we find thatk2/ k̄25r 2/ r̄ 258(b
11)/@3(b12)#, implying that

sG5A8

3

1

112C
21. ~12!

For C!1, sG becomes a constant with valueA5/3, a result
that can also be obtained from Eq.~5!. We show in Fig. 3 the
results for our analytical expressions~11! and~12! and com-
pare them with results from numerical simulations of t
niche model.

We have also studied the robustness of our prediction
changes in the particular formulation of thedetails of the
model. The nature of approximations used in the derivati
of the expressions for the distributions of the number
preys and predators, Eqs.~5!–~7!, allow us to conclude the
following.

~i! The distribution of the number of predators does n
depend on the specific form ofp(x). The only requirement is
.

n,

.

03090
to

s
f

t

that the connectanceC5 x̄/2 tends to zero under some limi
so thatz5SC remains finite whenS tends to infinity

~ii ! The distribution of the number of preys depends
the functional form ofp(x), but Eq.~7! will still be obtained
for all p(x) decaying exponentially asC tends to zero.

Thus, it appears that our findings are robust under q
general conditions, a result that is not possible to obt
without an analytic treatment of the problem.

Our results are also of interest for a number of other r
sons. First, we demonstrate for the first time that the dis
butions of the number of preys and predators have differ
functional forms. Second, we show that both distributio
have characteristic scales, i.e., both distributions have w
defined means and standard deviations asS increases to in-
finity. Third, we find that the functional forms of the distr
butions of the number of preys and predators depend only
the average connectivityz and agree with empirical data
This result is rather surprising in the face of the complex
of the empirical and model food webs. Finally, we show th
other quantities of biological interest also depend exclusiv
on z.
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