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Analytical solution of a model for complex food webs
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We investigate numerically and analytically a recently proposed model for food [isre 404, 180
(2000] in the limit of large web sizes and sparse interaction matrices. We obtain analytical expressions for
several quantities with ecological interest, in particular, the probability distributions for the number of prey and
the number of predators. We find that these distributions have fast-decaying exponential and Gaussian tails,
respectively. We also find that our analytical expressions are robust to changes in the details of the model.
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In ecosystems, species are connected through intricatgeb[1]. Our results provide compact patterns that describe
trophic relationship$1,2] defining complex networkf3—-5],  the structure of the food webs generated by the niche model.
the so-called food webs. Understanding the structure andihese patterns could not have been predicted from the nu-
mechanisms underlying the formation of these complex webgerical simulations reported in Refl] and may be of prac-
is of great importance in ecology6—9]. In particular, the tical and fundamental importance for the study of empirical
food web structure provides insights into the behavior offood webs. Moreover, we test our analytical predictions with
ecosystems under perturbations such as the introduction &mpirical food webs and find agreement.
new species or the extinction of existing species. The non- We first define the niche model. Consider an ecosystem
linear response of the elements composing the network lead¥th Sspecies and. trophic interactions between these spe-
to possibly catastrophic effects for even small perturbationsies. These species and interactions define a networkSvith
[10]. nodes and. directed links. Initially, one randomly assigBs

Recently, Wiliams and Martinez have proposed an el-species to “trophic nichesh; mapped with uniform prob-
egant model of food webs—the “niche” model—that just ability into the interval[0,1]. For convenience, we will as-
with a few ingredients successfully predicts key structuralsume that the species are ordered according to their niche
properties of the most comprehensive food webs in the lithumber, i.e.n;<n,<---<ng.
eraturd 1]. Numerical simulations of the niche model predict A species is characterized by its niche parametgrand
values for many quantities typically used to characterize emby its list of prey. Prey are chosen for all species according to
pirical food webs that are in agreement with measured valuethe following rule: a species preys on all specieg with
for seven webs in a variety of environments, including fresh-niche parametens; inside a segment of length centered in
water habitats, marine-freshwater interfaces, and terrestri@ position chosen randomly inside the interMal2,n;] with
environments. ri=xn; and Osx<1, a random variable with probability

Here, we investigate the niche model from a theoreticabensity function
perspective. We study analytically and numerically the be-
havior of key quantities for sparse food webs, i.e., webs with 0,(X) =b(1—x)®~D 1)
L<S?, wherel is the number of trophic interactions be- X '
tween species anflis the number of species in the web. This
is the limit of interest in ecology becaug@ for most food The values of parametebsandS determine the average con-
webs reported in the literature the directed connectance, deectivity z=2L/S of the food web and the directed con-
fined asC=L/S?, takes small values an@) it corresponds nectanceC= L/S? [1,11]. One can also express the average
to the limit of large web sizeS[8,9]. We calculate the prob- number of prey per species 8s, where the bar indicates an
ability distributions of the number of prey and predators andaverage over an ensemble of food webs. It then follows that
find that forC<1 they depend only on one parameter of thethe connectivity isz=2Sr, the number of directed links is
model—the average numberof trophic links in the net- L=S?r, and the connectance @=T. One can also obtain
work. These distributions give valuable information aboutthese expressions in terms bfusing the equalityr =x/2
the structure of the network and enable us to calculate other 1[2(1+b)].
important quantities such as the fraction of “top,” “interme- In the niche model, isolated species—that is, species with
diate,” and “basal” species, and the standard deviation of theno prey or predators—are eliminated and species with the
“vulnerability” and “generality” of the species in the food same list of prey and predators—that is, trophically identical

species—are “mergedf12].
Next, we address the statistics of the number of prey. For

“Email address: juan.camacho@uab.es large S, the number of prey of a speciess kj=Sr;, so that
"Email address:rguimera@etseq.urv.es the probability distributiorpyey is given directly by the dis-
*Email address: amaral@buphy.bu.edu tribution of r. Specifically,ppe(K) =p(r)/S.
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In the limit C<1, one hash>1 (see[12]), so thatp,(x)
=be PX and the term in the right-hand side vanishes expo-
nentially, indicating thap(r) and P(r’'>r) have exponen-
tially decaying tailg 14].

To obtain a simpler analytical solution fp(r) than given
by the hypergeometric functions, we approximaiein the
entirex range by an exponential. We expect the results to be
the same fox<1 [12] becaus®, takes nonvanishing values
only for smallx. Under this approximation, the integration of
Eq. (3) yields

p(r)=bE,(br), (4)

where E,(x)= [ dtt"texp(-t) is the exponential-integral
function [13]. The probability distributionpe,(K) is ob-
tained from Eq.(4) making the substitutions=k/S andb
=S/z, yielding

0 2030 3d° Porey(K) = (1/2) E1(k/Z). (5)
Number of predators, m We compare in Figs.(& and Xb) the predictions of Eq4)

0.2 —T—T— 7102 with numerical simulations. We find close agreement be-

(e)

tween our analytical expression and the numerical results. In
= Bridge Brook particular, they show an exponential decay for lakgdhe
z %e'\g%”@:&e) deviations observed for small valuesloére due to the fact
-- Theory (z=9.8) thatk;=Sr; is an average value implying that it is a good

approximation only when the fluctuations &f are small,
which is no longer true for smak.

Next, we address the statistics of the number of predators.
Note that forr<1 [12], the predators of specigeshave, to
first approximation, niche valueg>n; and that the segment
rj is placed with equal probability in the intervi0,n;].

FIG. 1. (a) Linear and(b) log-linear plots of the distribution of ~Therefore, the probability for a specig¢sto prey oni is
the number of prey for 1000 simulations of food webs w8h rj/nj=x;n;/n;=x;, implying that the average probability
=1000. We show results far=10, 20 and the corresponding the- for the species witt;>n; to prey on speciesis x.
oretical predictions. As expected, we find an exponential decay of If we assume tha®>1, the number of predators bfs the
the distributions(c) Linear and(d) log-linear plots of the distribu- result ofS—i independent “coin throws” with probabilitx”
tion of the number of predators for the same food webs &as)iand  of being a predator and probability—Ix of not being a
(b). As predicted, we find a regime where the distribution is uniformpredator, implying that the probability of speciekavingm
followed by a Gaussian decay. We test our analytical predictiongyredators is given by the binomial distribution. It then fol-
with empirical datg 1] for (€) ppe/(k) and (f) ppedm) for Bridge  |ows that the distribution of the number of predators for a
Brook (solid line) and St. Martin(broken ling. general species is the average over the different binomials
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The cumulative probability?(r’>r)= [ dr'p(r') is the _Z3
area of the regioR of the n—x diagram bounded by lines Ppred M) = =
x=1,n=1 and the hyperbole=nx,

m' XM(1—x)S™m=i, (6)

In the limit of interest,S>1, x<1, andSx=z, one can ap-
proximate the binomial distribution as Poisson, and the sum

1 1 H
P(r'>r>=fr dxfr, dnpy(n)py(x), (2 byanintegral
X

2 Mgt

1
ppreo(m): Ef dt

0 m!

= Ey(m-i— 1,2), (7)

wherep,(n) =1 is the probability density function af. The

integration of Eq.(2) gives rise to a function involving hy- where y is the “incomplete gamma function[13,15. For
pergeometric function$13]. To obtain a more “physical” m<z/2, the functiony is approximately constant, while it
solution, one can differentiate E(R) twice to obtain decays with a Gaussian tail far~z. In Figs. Xc) and 1d),
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FIG. 2. Fraction of top and basal species as a function of the FIG. 3. Normalized standard deviations of generality and vul-
average connectivitg. The shaded region corresponds to the inter-nerability as a function of the average connectivatyThe shaded
val of z typically observed in empirical food web&) Comparison  region corresponds to the interval ofypically observed in empiri-
of the results of 100 simulations of food webs wik 1000—for  cal food webs(a) Comparison of the results of 100 simulations of
which isolated species wermtremoved—uwith our theoretical pre- food webs with S=1000—for which isolated species weret
dictions, Eqgs.(8) and (9). Note the good agreement between the removed—uwith our theoretical predictions, Eg$l) and(12). (b)
analytical expressions and the numerical res(ffsComparison of  Comparison of the results of 100 simulations of food webs \8ith
the results of 100 simulations of food webs wii+ 1000—for =1000—for which isolated species were removed—uwith our theo-
which isolated species were removed—with our theoretical predicretical predictions, Eq9.11) and (12). Note that as for Fig. 2, re-
tions, Egs.(8)—(10). Note that the theoretical predictions provide moving isolated species leads to slightly less good agreement with
narrow bounds for the numerical results. the simulation results forr,. However, the removal of isolated

species does not appear to be a factor in the deviations found for
we compare the predictions of E(f) with numerical solu- 9c- The reason whyrg underestimates the simulation results at
tions and find good agreement. s_mallzvalues relates to tht_e fact thiat=Sr; is a gqod _approxima-

In Figs. Xe)and 1f), we compare our analytical predic- tion only when the fluctuations df; are small, which is no longer
tions, Egs.(5)—(7), with data from two food webs: Bridge tue for smallk.
Brook (S=25z=8.6) and St. Martin Island S=42z
=9.8). We find that the distributions of the number of preys
is well approximated by the data and that the distributions of
the number of predators are “noisy” but still show the ex-
pected cutoff form~z and it is approximately constant for ~ In the model[1], isolated species are eliminated, so they
m<z as predicted by Eq(7). This agreement is remarkable are not counted towards top or basal species. To correct the
since the webs analyzed are quite small, so one might nastimates8) and(9) for this effect, we remove the isolated
expect the theoretical expressions to hold. species. We estimate the number of isolated species to first

Next, we evaluate the fraction of top, intermediatel, order by assuming that having no prey is statistically inde-
and basaB species. As the names indicate, top species haveendent of having no predators, implying that the fraction of
no predators and basal species have no prey, while intermésolated species is just the product of the fractions of top and
diate species are those with both prey and predators. ThHeasal species. This assumption does not take into account the
fraction of intermediate species is just 1—(T+B). The  possibility that a species with no prey is likely to have a low

In(1+2)
—

B=fldre‘s'p(r)= 9
0

fraction T of top species is, by definition, niche valuen and hence it has a high probability to have
predators. Nonetheless, this simple approximation provides
1—exp(—2) an upper bound for the number of isolated species, which
T=Ppred0) = z . (8) leads to a lower bound oh andB,
, T-TB , B-TB
Note that a similar result is obtained if one calculates the “1-TB’ “1-TB" (10
sum(6) for m=0. Since typically 5<z<20, Eq.(8) can be
approximated simply a§=1/z. In Fig. 2, we compare our analytical predictions for the frac-

To calculate the fractioB of basal species, we note that a tion of top and basal species with numerical simulations of
species has no prey only if its rangdalls in a region with  the model. As expected, Eq&)—(10) provide bounds for
no specie$16]. In the limit of largeS, the probability density the numerical results.
for finding an empty interval of lengtld is Se °, as pre- Finally, we calculate the standard deviations of the vul-
dicted by the canonical distributidii7]. Thus, the probabil- nerability and generality of the species in food webs gener-
ity of finding a species-free segment of length larger them  ated according to the model. The vulnerability of a prey is
e~ S", which gives the probability for a species of rangeot  defined as its numben of predators, and the generality of a
to prey on other species. Using E@), it follows that the  predator as its numbet of preys. Following Ref[1], we
average probability is define the normalized standard deviations of the vulnerability
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as o2=m?/m>—1 and of the generality asézﬁlfz—l. that the connectand@=Xx/2 tends to zero under some limit,
- so thatz= SC remains finite whers tends to infinity
(ii) The distribution of the number of preys depends on
the functional form ofp(x), but Eq.(7) will still be obtained

By definition, one hasn=k=z/2 for both cases.
To evaluater,, we first calculaten®. Equation(7) yields

m?=2%/3+2/2, so that for all p(x) decaying exponentially a8 tends to zero.
Thus, it appears that our findings are robust under quite
- 1+E (11) general conditions, a result that is not possible to obtain
v 3 ' without an analytic treatment of the problem.

_ Our results are also of interest for a number of other rea-
We next calculaterg, for any value ofC, by direct evalua-  sons. First, we demonstrate for the first time that the distri-
tion of k2. If S>1, the number of preys of a species havingbutions of the number of preys and predators have different
a ranger is k=Sr, and we find thak?/k?=r2/r2=8(b functional forms. Second, we show that both distributions

; ; have characteristic scales, i.e., both distributions have well-
+1)/[3(b+2)], | that ' ' . .
)3( )], implying tha defined means and standard deviation$Sascreases to in-
s 1 finity. Third, we find that the functional forms of the distri-
9= \3152C " 1. (12 butions of the number of preys and predators depend only on

the average connectivity and agree with empirical data.

This result is rather surprising in the face of the complexity

of the empirical and model food webs. Finally, we show that

other quantities of biological interest also depend exclusively
nz

For C<1, o becomes a constant with valy/3, a result
that can also be obtained from E§). We show in Fig. 3 the
results for our analytical expressioftkl) and(12) and com-
pare them with results from numerical simulations of the
niche model. We thank A. Arenas, J. Bafaluy, M. Barieey, A. Diaz-
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