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Sergey V. Buldyrev (1), Lúıs A. Nunes Amaral (1,2), Shlomo Havlin (1,3),
Heiko Leschhorn (1,∗), Philipp Maass (1,∗∗), Michael A. Salinger (4),
H. Eugene Stanley (1,∗∗∗) and Michael H.R. Stanley (1,∗∗∗∗)

(1) Center of Polymer Studies and Department of Physics, Boston University,

Boston, MA 02215, USA

(2) Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany
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Abstract. — In the preceding paper [1] we presented empirical results describing the growth
of publicly-traded United States manufacturing firms within the years 1974-1993. Our results
suggest that the data can be described by a scaling approach. Here, we propose models that
may lead to some insight into these phenomena. First, we study a model in which the growth
rate of a company is affected by a tendency to retain an “optimal” size. That model leads to
an exponential distribution of the logarithm of the growth rate in agreement with the empirical
results. Then, we study a hierarchical tree-like model of a company that enables us to relate the
two parameters of the model to the exponent β, which describes the dependence of the standard
deviation of the distribution of growth rates on size. We find that β = − ln Π/ ln z, where z
defines the mean branching ratio of the hierarchical tree and Π is the probability that the lower
levels follow the policy of higher levels in the hierarchy. We also study the distribution of growth
rates of this hierarchical model. We find that the distribution is consistent with the exponential
form found empirically.

1. Introduction

The concept of scaling supports much of our current conceptualization on the general subject
of how complex systems formed of interacting subunits behave. This concept was developed a
quarter century ago by physicists interested in the behavior of a system near its critical point.
Progress was made possible by a remarkable combination of experiment and phenomenological
theory. In the preceding paper [1] we presented empirical results suggesting that the scaling
concept can be useful in describing economic systems [2, 3]. In this paper we present models
which may lead to an understanding of the underlying mechanism behind the scaling laws.

(∗) Present address: Theor. Physik III, Heinrich-Heine-Univ., 40225 Düsseldorf, Germany
(∗∗) Present address: Fakultät für Physik, Universität Konstanz, 78434 Konstanz, Germany

(∗∗∗) Author for correspondence (e-mail: HES@buphy.bu.edu)
(∗∗∗∗) Present address: Department of Physics, MIT, Cambridge, MA 02139, USA
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In the preceding paper [1], we used the Compustat database to study all United States (US)
manufacturing publicly-traded firms from 1974 to 1993. The Compustat database contains
20 years of data on all publicly-traded companies in the US. We found that the distribution of
firm sizes remains stable for the 20 years we study, i.e., the mean value and standard deviation
remain approximately constant. We studied the distribution of sizes of the “new” companies
in each year and found it to be well approximated by a log-normal. However, we find (i) the
distribution of the logarithm of the growth rates, for a growth period of one year, and for
companies with approximately the same size S0, displays an exponential form [1,4]

p(r1|S0) =
1

√
2σ1(S0)

exp

(
−

√
2 |r1 − r̄1|

σ1(S0)

)
, (1)

and (ii) the fluctuations in the growth rates — measured by the width of this distribution σ1

— scale as a power law [1],

σ1(S0) ∼ S−β0 . (2)

Here r1 = ln(S1/S0), where S1 is the size of the company in the next year, and σ1(S0) is the
standard deviation (width) of the distribution (1). We found that the exponent β takes the
same value, within the error bars, for several measures of the size of a company. In particular,
we obtained β = 0.20± 0.03 for “sales”.

In this paper, we present and discuss models that, although very simple, give some insight
into these empirical results. The paper is organized as follows. In Section 2, we discuss a model
that predicts an exponential distribution of growth rates. In Section 3, we study a hierarchical
tree model that predicts the power law dependence of σ1 on size. In Section 4, we discuss how
the two models can be combined so that a single model predicts both of our central empirical
findings. In Section 5, we summarize our findings and suggest avenues for future research. The
paper contains three appendices. Appendix A discusses the relationship between the standard
deviations of the growth rate and the logarithmic growth rate. Appendices B and C give more
details of the analytical solution of the hierarchical tree model.

2. The Exponential Distribution of Growth Rates

As described above, one of our central findings is that the distribution of growth rates for
companies of a given initial size has an exponential form. The result is surprising because the
sales of organizations as large as publicly traded corporations reflect a large number of factors.
While those factors are not necessarily independent and while the growth of any one company
might be dominated by a single factor, one might nonetheless expect a Gaussian distribution
for growth rates.

In this section, we show how a plausible modification of Gibrat’s assumptions [5] could lead
to equation (1). We relax the assumption of uncorrelated growth rates and assume that the
successive growth rates are correlated in such a way that the size of a company is “attracted”
to an optimal size S∗. This value is reminiscent of the minimum point of a “U-shaped” average
cost curve in conventional economic theory and should evolve only slowly in time (on the scale
of years) [6].

Let us then consider a set of companies all having initial sales S0. As time passes, the sales
of each of the firms vary from day to day (or over another time interval much less than 1 year),
but tend to stay in the neighborhood of S∗. In the simplest case, the growth process has a
constant “back-drift,” i.e.

St+∆t

St
=

{
k(1 + εt), St < S∗,
(1 + εt)/k, St > S∗,

(3)
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where k is a constant larger than one and εt is an uncorrelated Gaussian random number with
zero mean and variance σ2

ε � 1. These dynamics are similar to what is known in economics
as regression towards the mean [7, 8], although this formulation is not standard in economics.
Written in terms of the logarithmic growth rate rt ≡ ln(St/S0), equation (3) reads

rt+∆t − rt = − ln k sgn(rt − r
∗) + ln(1 + εt), (4)

where r∗ ≡ ln(S∗/S0) and sgn x = −1 for x < 0 and sgn x = 1 for x > 0. Since σε � 1, we
can write ln(1 + εt) ' εt.
For large times t� ∆t, we can replace equation (4) by its continuum limit and obtain

∆t
dr(t)

dt
= − ln k

d

dr
|r(t)− r∗|+

√
∆t ε(t) , (5)

where now ε(t) is a Gaussian random field with 〈ε(t)〉 = 0 and 〈ε(t)ε(t′)〉 = σ2
ε δ(t − t

′) [9].
Here, 〈· · ·〉 means an average over realizations of the disorder and δ is the Dirac delta function.
Equation (4) describes a strongly overdamped Brownian motion of a classical particle with
mass one in a potential

V (r) = ln k |r − r∗|, (6)

where the friction constant is ∆t and the thermal energy is σ2
ε/2 [10]. For large times t� ∆t

(e.g., after one year), the “particle coordinate” r is distributed according to the equilibrium
Boltzmann distribution,

p(r1|s0) =
lnk

σ2
ε

exp

(
−

2 ln k |r1 − r∗|

σ2
ε

)
. (7)

Hence, we recover equation (1) with r̄(s0) = r∗ and

σ1(s0) =
σ2
ε√

2 ln k
. (8)

3. The Scaling Exponent β

While the model in the previous section explains equation (1), it does not predict our finding
about the power law dependence of the standard deviation of growth rates on firm size. In
this section, we show how a model of management hierarchies can predict equation (2). In
economics, it is generally presumed that the growth of firms is determined by changes in
demand and production costs. Since these features are specific to individual markets, it is
surprising that a law as simple as equation (2) governs the growth rate of firms operating in
much different markets. While demand and technology vary across markets, virtually all firms
have a hierarchical decision structure. One possible explanation for why there is a simple law
that governs the growth rate of all manufacturing firms is that the growth process is dominated
by properties of management hierarchies [11]. This focus on the technology of management
rather than technology of production as a basis for understanding firm growth is reminiscent
of Lucas’ model of the size distribution of firms [12].

At the outset let us acknowledge a tension between our empirical results and the theoretical
model in this section. In our companion paper [1] and in the preceding section, we analyze
the scaling properties of the distribution of the logarithmic growth rate r1 and its standard
deviation σ1. In this section we view companies as consisting of many business units. Since
the sales of a company are the sum of the sales of individual units rather than their product,



638 JOURNAL DE PHYSIQUE I N◦4

it is more convenient to analyze the standard deviation of the annual firm size change rather
than the logarithmic growth rate. Let Σ1(S0) be the standard deviation of end-of-period size

for initial size S0. Since σ1 ∼ S−β0 and since S1 ≡ S0 exp(r1) ≈ S0 + S0r1, it follows that

Σ1(S0) ≈ S0σ1 ∼ S
1−β
0 . As discussed in Appendix A, σ1 must be small for this approximation

to hold.

3.1. Definition of the Model. — Let us start by assuming that every company, regardless
of its size, is made up of similarly sized units. Thus, a company of size S0 is on average made
up of N = S0/ξ̄ units, where

ξ̄ =
1

N

N∑
i=1

ξi, (9)

and ξi is the size of unit i. We further assume that the annual size change δi of each unit
follows a bounded distribution with zero mean and variance ∆, which is independent of S0. It
is important to notice that throughout this section and the following we consider ∆� ξ̄2, to
insure that sizes of units remain positive. Since some divisions after several cycles of growth may
shrink almost to zero, while others grow several times, we assume that companies dynamically
reorganize themselves so that they begin each period with approximately equal-sized divisions
and the inequality ∆� ξ̄2 holds.

If the annual size changes of the different units are independent, then the model is trivial.
Using the fact that 〈δi〉 = 0, we have

〈S1〉 = S0 +
N∑
i=1

〈δi〉 = S0. (10)

The second moment of the distribution is given by

〈
S2

1

〉
=

〈(
S0 +

N∑
i=1

δi

)2〉
= S2

0 +
N∑
i=1

N∑
j=1

〈δiδj〉 (11)

= S2
0 +N∆,

where we used again the fact that the δi’s are centered and independent.
Thus, the variance in the size of the company is

Σ2
1(S0) = N∆ = S0

∆

ξ̄
∼ S0. (12)

Using the fact that Σ(S0) ∼ S1−β
0 (see Appendix A), it follows that β = 1/2.

The much smaller value of β that we find indicates the presence of strong positive corre-
lations among a company’s units. We can understand this result by considering the tree-like
hierarchical organization of a typical company [11]. The head of the tree represents the head
of the company, whose policy is passed to the level beneath, and so on, until finally the units
in the lowest level take action. These units have again a mean size of ξ̄ = S0/N and annual
size changes with zero mean and variance of ∆. Here we assume for simplicity that at every
level other than the lowest one, each node is connected to exactly z units in the next lowest
level. Then the number of units N is equal to zn, where n is the number of levels (see Fig. 1).

What are the consequences of this simple model? Let us first assume that the head of the
company suggests a policy that could result in changing the size of each unit in the lowest level
by an amount δ0. If this policy is propagated through the hierarchy without any modifications,
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δ0 δ0 δ0δ1 δ3δ0 δ2δ1

δ0 δ0

δ0 δ1 δ0 δ0

δ0

Fig. 1. — The hierarchical-tree model of a company. We represent a company as a branching tree.
Here, the head of the company makes a decision about the change δ0 in the size of the lowest level
units. That decision is propagated through the tree. However, the decision is only followed with a
probability Π. This is pictured in the figure as a full link. With probability (1 − Π) a new growth
rate is defined. This is pictured as a slashed link. We see that at the lowest level there are clusters of
values δi for the changes in size.

then it is the same as assuming in equation (12) that all the δi’s are identical. This implies
that 〈

S2
1

〉
= S2

0 +N2∆, (13)

from which follows

Σ2
1(S0) = N2∆ = S2

0

∆

ξ̄2
, (14)

and we conclude that β = 0.
Of course, it is not realistic to expect that all decisions in an organization would be perfectly

coordinated as if they were all dictated by a single “boss”. Hierarchies might be specifically
designed to take advantage of information at different levels; and mid-level managers might
even be instructed to deviate from decisions made at a higher level if they have information
that strongly suggests that an alternative decision would be superior. Another possible expla-
nation for some independence in decision-making is organizational failure, due either to poor
communication or disobedience.

3.2. Analytical Calculations. — To model the intermediate case between β = 0 and
β = 1/2, let us assume that the head of a company makes a decision to change the size of the
units of a company by an amount δ0. We also assume that δ0, for the set of all companies,
has zero mean and variance ∆. Furthermore, we consider that each manager at the nodes of
the hierarchical tree follows his supervisor’s policy with a probability Π, while with probability
(1−Π) imposes a new independent policy. The latter case corresponds to the manager acting
as the head of a smaller company made up of the units under his supervision. Hence the size
of the company becomes a random variable with a standard deviation that can be computed
either with numerical simulations or using recursion relations among the levels of the tree.

Since the calculations are somewhat involved, we include them in Appendix B for the inter-
ested reader (see also Refs. [13, 14]). The main result is that the variance of the fluctuations
in a n-level hierarchical tree is given by

Σ2
1(n) = ∆

(
zn

1−Π2

1− zΠ2
− (zΠ)2n (z − 1)Π2

1− zΠ2

)
. (15)
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Fig. 2. — Phase diagram of the hierarchical-tree model. To each pair of values of (Π, z) corresponds
a value of β. We plot the iso-curves corresponding to several values of β. In the shaded area, marked
“Uncorrelated,” the model predicts that β = 1/2, i.e., that the units of the company are uncorrelated.
Our empirical data suggests that most companies have values of Π and z in close to the curve for
β = 0.2.

If zΠ2 > 1, then (zΠ)2n dominates the growth, and we get

Σ2
1(n) ∼ (zΠ)2n ∼ N2 Π2 lnN/ ln z ∼ N2 N2 ln Π/ ln z ∼ S2+2 ln Π/ ln z

0 , (16)

which implies β = − ln Π/ ln z. On the other hand, if zΠ2 < 1, then zn = N is the dominant
term, and we obtain

Σ2
1(n) ∼ zn ∼ N ∼ S0, (17)

which implies β = 1/2.

Finally, we can write, for n� 1, that the hierarchical model leads to

β =

{
− ln Π/ ln z if Π > z−1/2

1/2 if Π < z−1/2 . (18)

Even for small n, we find that equation (18) is a good approximation — e.g., while for z = 2
and Π = 0.87 we predict β = 0.20, when we take n = 3 the deviation from the predicted value
is only 0.03, i.e., about 15%.

Equation (18) is confirmed in the two limiting cases: when Π = 1 (absolute control) β = 0,
while for all Π < 1/z1/2, decisions at the upper levels of management have no statistical effect
on decisions made at lower levels, and β = 1/2. Moreover, for a given value of β < 1/2
the control level Π will be a decreasing function of z: Π = z−β , cf. Figure 2. For example,
if we choose the empirical value β ≈ 0.15, then equation (18) predicts the plausible result
0.9 ≥ Π ≥ 0.7 for a range of z in the interval 2 ≤ z ≤ 10.
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4. Combining the Two Models

We started with two central empirical findings about firm growth rates. The model in Section 2
predicts one of those findings (the shape of the distribution) and the model in Section 3 predicts
the other (the power law dependence of the standard deviation of output on firm size). This
section addresses the relationship between the two models. First, we address concerns that the
models might be contradictory and show that they are not. Then, we show how the models
can be combined into a single model that predicts both of our empirical findings.

In the tree model, firm growth rates are potentially the result of many independent deci-
sions. As a result, one might expect that the Central Limit Theorem would imply a Gaussian
distribution of firm output. In fact, however, the distribution of outputs is not necessarily
Gaussian.

To address the distribution of firm output in the tree model, it is necessary to make an
assumption about the distribution from which each independent growth decision is drawn. No
such assumption is needed to analyze the standard deviation of firm growth rates, but is needed
to analyze the shape of the distribution.

In Figure 3, we show the distribution of the inputs (i.e., of each independent decision)
and the outputs for a tree with z = 2, Π = 0.87, and n = 10. We find that for Gaussian
distributed inputs, the output is not Gaussian in the tails. This finding is remarkable. First
of all, with z = 2 and n = 10, the firm consists of 1 024 units. With a probability to disobey
of 1 − 0.87 = 0.13, one would expect 0.13 × 1 024 ≈ 133 of the units to, on average, make
independent decisions about their growth rates. Thus, even for non-Gaussian inputs, one can
hypothesize that the output is close to Gaussian. Moreover, for Gaussian inputs, the sum
of independent Gaussians is itself Gaussian. Thus, for every particular configuration of the
disobeying links, the output distribution is Gaussian with variance m∆, which is a function of
this random configuration. However, there are 2(zn+1−z)/(z−1) possible configurations of links,
each of which produces a Gaussian distribution with different integer m. Figure 4 shows the
probability pnm to get a tree with given m computed for all trees with a given number of levels
n, Π = 0.87, and z = 2. As is visually apparent in Figure 4, this probability density is a
non-trivial function, which is discussed in more detail in Appendix C. The final distribution
of the firm output S1 will be thus given by the convolution of two densities: pnm and Gaussian
with variance m∆

pn(S1) =
∑
m

pnm
1

√
2πm∆

e−(S1−S0)2/2m∆, (19)

which is no longer Gaussian for the observed form of pnm.

In the general case, it can be shown by martingale theory [15] that for any input distribution
f(x) with zero mean and finite variance ∆, the output distribution converges for n→∞ to a
distribution

1∑
1(n)

gf

(
x∑
1(n)

)
, (20)

where gf is a function that does not depend on n but does depend on f . Thus, we cannot
expect to obtain a result that the output distribution must be exponential regardless of the
input distribution. It would, however, be desirable to find some simple input distribution
that yields the output distribution that we actually observe. Figure 3 also shows the output
distribution when the input distribution is exponential in terms of S1−S0. For small σ1, it prac-
tically coincides with equation (7). In this case, the output distribution is nearly exponential,
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and the slightly fatter wings that we observe are arguably consistent with our empirical results.
Thus, in the limit of small σ1, we can combine the models of the two sections by assuming that
the dynamic process described in Section 2 provides the input distribution for the tree model
in Section 3. This additional assumption in the tree model then predicts both of our empirical
findings. For large σ1, the direct combination of two models needs additional fine-tuning.
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Fig. 3. — Probability density for the output and input variables in the tree model. Here we have
z = 2, Π = 0.87, and n = 10. a) Gaussian distribution of the input. b) Exponential distribution of
the input. c) Data collapse of the output distribution for trees with different number of levels n. The
other parameters remain unchanged and the input is exponentially distributed. It is visually apparent
the similarity of the numerical results with the empirical data of Figure 4b [1].
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Fig. 3. — Continued
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Fig. 4. — Numerical estimation from exact enumeration of the coefficients pmn of the generating
function pn(s). It is visually apparent that the coefficients scale according to equation (B.20) even for
n as small as 6.

5. Conclusions

The two central results of our previous paper are that the distribution of company growth
rates is exponential and the standard deviation of growth rates scales as a power law of firm
size with scaling exponent β ≈ −0.2. Any realistic theory of the firm in economics must
be consistent with these empirical findings. In this paper, we have presented simple models
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that are consistent with our empirical findings. Indeed, the models have only two key as-
sumptions. One is that each company has a natural size and the other is that decisions in
hierarchical organizations are positively but imperfectly correlated. These models suggest that
very simple mechanisms may provide insight into our empirical findings.

One limitation of the model in this paper is that it only predicts our results about one year
growth rates. A complete model of the firm would also predict the distribution of growth rates
over longer horizons. We believe that extending this model to additional periods would not
provide a complete description of firm dynamics. In reality, the standard deviation of growth
rates goes up as the time horizon increases. The attraction in our model to a stable company
size prevents the distribution from spreading over time as much as we actually observe.
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Appendix A

Width of the Distribution of Final Sizes

The theory in Section 3 establishes results about the standard deviation of the growth rate.
Our empirical results in the earlier paper concerned the standard deviation of the logarithmic
growth rate defined as ln(S1/S0). This appendix establishes the exact relationship between the
standard deviation of the growth rate and the standard deviation of the logarithmic growth
rate. Thus we will compute the width of the distribution of final sizes S1 ≡ S0 exp r1, that we
designate by Σ1(S0). We can express Σ1 as

Σ1(S0)2 =
〈
S2

1

〉
− 〈S1〉

2
. (A.1)

Taking r̄1(s0) ≈ 0, and assuming that the standard deviation of the distribution is small
(σ1 < 1/

√
2 which holds for companies with sales larger than 106 dollars), simple integrations

lead to

〈S1〉 =

∫ +∞

−∞
S1 p(r1|S0) dr1 =

S0

1− σ2
1/2

, (A.2)

and 〈
S2

1

〉
=

∫ +∞

−∞
S2

1 p(r1|S0) dr1 =
S2

0

1− 2σ2
1

. (A.3)

Replacing these results onto (A.1) and expanding in Taylor series, we obtain

Σ1(S0)2 = S2
0

(
1 + 2σ2

1 + 4σ4
1 + · · · − 1− σ2

1 − 3σ4
1/4 + · · ·

)
≈ (S0σ1)2(1 + 13σ2

1/4). (A.4)

Thus, to first order, we obtain

Σ1(S0) ∼ S1−β
0 . (A.5)
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Appendix B

Analytical Calculation of the Variance of the Growth Rate for the Hierarchical-
Tree Model

This appendix provides a rigorous derivation of equation (15) Let, as before, S1 represent the
final size of a company with initial size S0, and assume that the company has n levels in its
hierarchical tree. According to the rules of the model, the decision of the head of the company
will only be followed by those units in the bottom level which are connected to the top by a
chain of managers with “obeying links”. Thus, the number of units of the company that follow
the policy of the head of the company Tn can be related to the well known problem of the
number of male descendents of a family after n generations [13]. The solution is that for a
n-level tree with z branches the average number of units at the end is given by

〈Tn〉 = (zΠ)n. (B.1)

Now, let us look at the problem of calculating Σ1(S0). Our problem is slightly more complicated
since it includes double averaging over all realizations of growth rates of independent units and
over all possible configurations of the tree. Let us look at the nth level of a tree with a certain
configuration of obeying and disobeying links. We can define clusters of units connected to one
another through obeying links. Let us suppose that there are Mn distinct clusters of size νi.
According to the rules of the model, all units in cluster i share the same value of the annual
change δi. Thus, the final size of the company will be

S1 = S0 +

Mn∑
i=1

νiδi, (B.2)

where δi are independent random variables with zero mean and variance ∆.
The variance in S1, for a given tree with n levels, can be obtained by averaging over all
realizations of δi,

∆n = ∆
Mn∑
i=1

ν2
i ≡mn∆, (B.3)

where mn is a random variable depending solely on the structure of the tree

mn =

Mn∑
i=1

ν2
i . (B.4)

To obtain Σ2
1 we need now to average over all possible configurations of the hierarchical tree

Σ2
1(n) = ∆〈mn〉. (B.5)

In order to calculate 〈mn〉, we will start by computing the conditional average value 〈mn〉|mn−1
,

where mn−1 refers to the previous level on the tree. A cluster of size νi in the (n− 1) level is
connected to zνi units in the n-level; ν ′i of the links are obeying, while (zνi−ν ′i) are disobeying.
The obeying links will give rise to a cluster of size ν ′i in level n, while the disobeying links give
rise to (zνi − ν ′i) clusters of size one. Thus, we have

mn =

Mn−1∑
i=1

(
ν ′2i + (zνi − ν

′
i)
)

=

Mn−1∑
i=1

(ν ′2i − ν
′
i) + z

Mn−1∑
i=1

νi

=

Mn−1∑
i=1

(ν ′2i − ν
′
i) + zn. (B.6)
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The probability of a configuration with a ν ′i obeying links is(
zνi
ν ′i

)
Πν′i(1− Π)zνi−ν

′
i . (B.7)

By averaging over all possible configurations of links, we obtain

〈mn〉|mn−1 =

Mn−1∑
i=1


zνi∑
ν′
i
=0

(
zνi
ν ′i

)
Πν′i(1−Π)zνi−ν

′
i(ν ′2i − ν

′
i)

 + zn. (B.8)

The series in (B.8) can be calculated with one of the traditional “tricks”. Defining q = 1− Π,
k = zν, and j = ν ′i, we have

k∑
j=0

(
k

j

)
(j2 − j)Πj(1− Π)k−j = Π2 ∂2

∂Π2
(Π + q)s|Π+q=1

= k(k − 1)Π2. (B.9)

Replacing this result into (B.8), we obtain

〈mk〉|mn−1 = (zΠ)2

Mn−1∑
i=1

ν2
i −Π2z

Mn−1∑
i=1

νi + zn

= (zΠ)2mn−1 + (1 −Π2)zn. (B.10)

Hence 〈mn〉 satisfies the recursion relation

〈mn〉 = (zΠ)2〈mn−1〉+ (1 −Π2)zn, 〈m0〉 = 1. (B.11)

Writing the first few terms in the succession and induction show that

〈mn〉 = (zΠ)2 + (1− Π2)zn
n−1∑
i=0

(zΠ2)i. (B.12)

Replacing the geometric series by its value and simple calculations leads to

〈mn〉 =

(
zn

1−Π2

1− zΠ2
− (zΠ)2n (z − 1)Π2

1− zΠ2

)
. (B.13)

Replacing this result into equation (B.5), we get

Σ1(n)2 = ∆

(
zn

1−Π2

1− zΠ2
− (zΠ)2n (z − 1)Π2

1− zΠ2

)
. (B.14)

Appendix C

Distribution of the Output Variable for the Hierarchical-Tree Model

In this appendix we will derive the dependence of the variance of the distribution of growth
rates for the hierarchical-tree model in a more formal way. At the same time we will get some
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insight onto the distribution of the number of end units that are connected by obeying links
to the head of the tree. We will concentrate on the case in which the distribution of inputs is
Gaussian.
Let us look at the nth level of the tree: we can define clusters of units which are connected to
one another, in the tree, through obeying links. Thus, they share the same value of the annual
size change. Supposing there are Mn distinct clusters with sizes νi, we have

N = zn =

Mn∑
i=1

νi. (C.1)

Since there is a set of possible tree structures for any given value of Π (and n and z), we should
consider the set of all possible values of Mn (1 ≤ Mn ≤ N). Let us then denote the set of all
partitions of N into different clusters as Φ, and each of these partitions as φi. Naturally, the
sum of the probabilities of each partition P (φi) verifies

1 =
∑
φi∈Φ

P (φi). (C.2)

It is known that for large values of N , the number of different partitions behaves as
1/(
√

48N) exp (π
√
N/3) [16].

Let us denote the probability density of the input variable δ as f(δ). The probability density
for the output of a cluster of s units connected by obeying links is

f(x = sδ) =
1

s
f
(x
s

)
. (C.3)

Thus, the distribution of the output variable S =
∑Mi

j xj is given by

pn(S) =
∑
φi∈Φ

1

s1
f

(
x1

s1

)
∗

1

s2
f

(
x2

s2

)
∗ ... ∗

1

sMi

f

(
xMi

sMi

)
P (φi) (C.4)

where g(y = x1 + x2) = f(x1) ∗ f(x2) =
∫
f(x1)f(y − x1)dx1.

If δ is assumed to be Gaussian distributed with zero mean and unit variance:

f(δ) =
1
√

2π
exp

(
−
δ2

2

)
, (C.5)

then the convolution leads to

g(x1 + x2) = f(x1) ∗ f(x2)

=
1√

2π(s2
1 + s2

2)
exp

(
−

y2

2(s2
1 + s2

2)

)

=
1√

s2
1 + s2

2

f

(
y√

s2
1 + s2

2

)
. (C.6)

Replacing this result onto (C.4), we obtain

pn(S) =
∑
φi∈Φ

1√∑Mi

j=1 s
2
i

f

 S2√∑Mi

j=1 s
2
i

 . (C.7)
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A simple analysis of equation (C.7) shows that any two partitions, φi and φk, are equivalent
in terms of their output distributions if they verify

Mi∑
j=1

s2
j =

Mk∑
j=1

s2
j = m. (C.8)

On the other hand, the triangular (or Schwarz) inequality allows us to determine the possible
number of partitions that are not equivalent because of the constraints on the value of s

N =
N∑
j=1

12 ≤
Mi∑
j=1

s2
i ≤

Mi∑
j=1

si

2

= N2. (C.9)

Equations (C.8, C.9) imply that the sum in (C.7) over different partitions can be replaced by
a sum over m. Thus, we can write asymptotically

pn(S) =
N2∑
m=N

pnm√
m

f

(
S
√
m

)
, (C.10)

and, finally,

pn(S) =
N2∑
m=N

pnm√
2πm

e−S
2/2m, (C.11)

where pnm is the total probability of all equivalent partitions with given n and m.
The standard way to calculate the coefficients pm is to introduce a generating function [13]

pn(S) =
N2∑
m=N

pnmS
m, (C.12)

which is a polynomial of order N2. To obtain the recursion relations for pn(S), we need to
distinguish the cluster of units which is connected to the top of the tree from those clusters that
are not. For each level n we have a matrix of coefficients p`,k that characterizes the probability
of the partition with the cluster of ` elements connected to the head of the tree and the sum
of squares of the rest of the cluster sizes equal to k. Thus, we can look at the tree as made of
two parts, the one connected to the top, with size `, and the remaining of size (N − `). Here
we introduce the full generating function

pn(y, S) =
N∑
`=0

(N−`)2∑
k=N−`

pn`,k y
` Sk, (C.13)

where m = `2 + k.
The reduced generating function pn(S) can be obtained from the full generating function

pn(y, S) if one formally puts y` = S`
2

in equation (C.13). In order to obtain the recursion
relation for the full generating function, let us consider a tree with n + 1 levels as z trees
connected by another level of branches to the top. If a n-level tree is connected to the top by
a disobeying link, which happens with probability (1−Π), its clusters are totally independent
of the other branches and we can use the reduced generating function pn(S). If, however,
a n-level tree is connected to the top by an obeying link, which happens with probability Π,
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its clusters merge with the clusters of other such trees, and the full generating function pn(y, S)
must be used. Thus, the generating function of level n+1 is related to the generating function
of level n through the recursion relation

pn+1(y, S) = (Πpn(y, S) + (1 −Π)pn(S))z . (C.14)

Unfortunately, to our knowledge, this recursion relation is too complex to allow any simplifi-
cation or solution. Thus, we cannot obtain the distributions of cluster sizes for the different
values of n. On the other hand, the problem of obtaining the average value of ` (which was
earlier designated 〈Tn〉) and the variance Σ1(n)2 of the output variable is relatively simple [13].
Indeed

〈Tn〉 =
∂

∂y
pn(y, S)|y=1,S=1. (C.15)

Combining (C.14) and (C.15), we obtain

〈Tn+1〉 =
∂

∂y
pn+1(y, S)|y=1,S=1

= zΠ
∂

∂y
pn(y, S)|y=1,S=1

= zΠ 〈Tn〉. (C.16)

And we recover equation (B.1). The variance can also be easily obtained as [13]

〈mn〉 =
∂

∂S
pn(S)|S=1

=
∂

∂y
y
∂

∂y
pn(y, S)|y=1,S=1 +

∂

∂S
pn(y, S)|y=1,S=1, (C.17)

which, after some algebra, leads to

〈mn+1〉 = z〈mn〉 + z(z − 1)Π2〈Tn〉
2, (C.18)

which is equivalent to equation (B.11).
Although, as discussed earlier, the coefficients pnm cannot be calculated analytically, we can
use equation (C.14) to find their values numerically (see Fig. 4). Moreover, for zΠ2 > 1 the
coefficients pnm of the reduced generating function pn(S) scale as

pnm =
1

(zΠ)2n
g

(
m

(zΠ)2n

)
(C.19)

for large n. This can be proven applying the martingale theory [15]. Indeed, the sequence

m̃n =
mn

(zΠ)2n
+

1− Π2

1− zΠ2

(
1−

1

(zΠ2)n

)
(C.20)

obeys the martingale conditions: from equation (B.10) it follows that 〈m̃n〉|mn−1 = m̃n−1. It
also can be shown that m̃n has limited variance for any n, and hence it follows that for large
n the scaling relation (C.19) is valid.
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