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Abstract. The interconnectedness of gene regulation, protein interaction, and metabolic 
networks is responsible for the remarkable efficiency and adaptability of biological systems, as 
well as the extraordinary challenges facing researchers trying to understand them. The torrents 
of new biological data generated daily should lead to overcoming the challenges to 
understanding biological processes. However, our understanding of these systems has not grown 
proportionally to the amount of data generated. This disparity arises from the fact that the 
behavior of a biological system is not a linear superposition of the behaviors of its components. 
Higher-level structures within organisms can be maintained precisely because of the complex 
network of nonlinear interactions among lower-level components. As a result, scientists 
increasingly recognize that in order to advance our ability to understand and purposefully 
manipulate biomedical systems, we must take a systems level approach. However, it is not yet 
clear what systems level approach is optimal. I contend that we will only be able to make sense 
of systems-level information if we can develop methods that enable us to extract the small set of 
information that is relevant at the scale of interest. 
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How Will Big Pictures Emerge from A Sea of Biological Data? 

This question, posed in this form in a recent issue of Science [1 ], is arguably one of the 
most important and challenging questions we now face as biomedical scientists. Torrents of 
new biological data are being generated daily, but our understanding of biological systems has 
not grown proportionally. Consider the protein-protein interaction networks of fruit flies [2] 
and humans [3]displayed in the respective articles. Two facts become immediately apparent 
when looking at these figures. First, the networks look quite different. In [2], the network 
looks quite planar while in it appears organized in bands. Moreover, there is not standard set 
of symbols. Second, one would be hard-pressed to identify the proteins of system-wide 
importance or even different pathways/modules. 

It is not surprising that our understanding is playing catch-up to the data. Our brains have 
evolved to handle in a meaningful manner only a handful of different pieces of information. 
Indeed, the reductionist approaches that have dominated science for the last several centuries 
relied precisely on reducing the number of dependent variables, with the idea that 
understanding would be gained by studying one component at a time. Unfortunately, it has 
become clear that reductionist approaches are not going to enable us to solve many of the most 
important biomedical questions. Understanding a single neuron is not going to enable us to 
understand the emergence of consciousness. The behavior of the entire system is not a linear 
combination of the behaviors of its components. In fact, the system has emergent properties 
that result precisely from the complex nonlinear interactions among the components. 
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Contrast these networks with the maps one can find at any gas station and their ability to 
convey complex geopolitical information. In the continental US, there are approximately 
20,000 localities (villages, towns, and cities) connected by millions of roadways. Most of us 
have never heard about the vast majority of those localities. However, we can easily locate 
even rather unremarkable towns. The reason is that maps have a remarkable property. They 
present information in a scalable manner. That is, even as the amount of information 
increases, the representation is able to extract the information that is relevant at a given scale 
of observation. 

If we are to study biomedical systems at the system level, and still be able to make sense 
of the information we have, we must develop appropriate "cartographic" methods. The 
ultimate goal of my research is to make deciphering complex biological networks as easy as it 
is to find the best route between Evanston and Boston. 

Cellular Processes as Networks 

Cellular processes are typically comprised of a large number of potentially heterogeneous 
components. These components are connected through a web of interactions that defines a 
graph or network. The study and representation of networks has a long history, dating back to 
the 1700s and Euler's work of the Koenigsberg bridges' problem. 

More recently, special attention was given to random networks [4]. Random networks 
form the "maximally disordered" end of a spectrum of possible network topologies. At the 
opposite of the spectrum of possible network topologies, one has fully ordered, finite 
dimension lattices. 

Whereas the analysis and representation of random and ordered networks is 
straightforward, significant challenges exist when considering other types of networks. 
Significantly, the networks we find in cellular processes and in other real-world systems are 
neither random nor ordered [5]. The significance of these more general classes of networks 
was first demonstrated for social systems by Stanley Milgram [6,7], but much important work 
has since been conducted by other social scientists such as Granovetter, White, Freeman et al 
[8]. 

Recently, the characterization and modeling of complex real-world networks has gained 
incredible impetus. This interest has result in significant advances spearheaded by, among 
others, Watts [9], Amaral [10,11,12], Barabasi [13,14], Newman [15], Vespignani [15,17] and 
Alon[18]. 

Presently, complex networks are analyzed from two main perspectives. A popular 
perspective, which has been advocated by Barabasi [14], focus on obtaining a global, but 
averaged, picture of a complex network. Reference quantities include the distribution of 
number of connections (i.e., the degree) of each node, the average minimum path length, and 
the average degree of cliquishness of the nodes. Unfortunately, these average global quantities 
are only informative and adequate when one of two strict conditions is fulfilled: (i) the 
network lacks a modular structure, or (ii) the network has a modular structure but (ii.a) all 
modules were formed according to the same mechanisms, (ii.b) all modules have similar 
properties, and (ii.c) the interface between modules is statistically similar to the bulk of the 
modules, except for the density of links. If neither of these two conditions is fulfilled, then any 
theory proposed to explain, for example, a scale-free degree distribution must take into 
account the modular structure of the network. To my knowledge, no real-world network 
fulfills either of the two conditions above, implying that global properties are unlikely to 
provide insight into the mechanisms responsible for the formation, growth, and function of 
these networks. 

An alternative perspective, suggested by Alon [18], approaches the characterization of 
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complex networks from the bottom-up. Specifically, when following this approach one 
attempts to identify local patterns, i.e., small subgraphs, that are present significantly more (or 
less) than one would expect from chance alone. This approach, which requires techniques 
rather more sophisticated than the global approach, has the great advantage of not requiring 
any unrealistic assumptions about the homogeneity of the network. Unfortunately, one 
shortcoming of this approach is that it cannot be used to accurately identify large-scale 
patterns, and thus it cannot provide a true understanding of the global organization of the 
network. 

The Cartographic Approach 

My research group has introduced and is following a third perspective that aims to do for 
the representation of complex networks what cartography did for the representation of 
geopolitical information. Specifically, we developed new algorithms [19,20] that accurately 
extract the most significant information, at a given scale, from complex networks. These 
algorithms wed concepts and techniques—such as optimization by simulated annealing, 
energy landscapes, scaling and universality, and structural equivalence—that originated in 
several different disciplines, including chemistry, computer science, statistical physics, and 
social network analysis. 

The cartographic approach is based upon two assumptions. The first assumption is that the 
nodes in a network can be grouped into modules. The modules are analogous, in the 
geographic picture, to regions or neighborhoods and enable a coarse-grained and, thus 
simplified, description of the network. Guimera and Amaral's algorithm, which builds directly 
on Newman's [15] algorithm for grouping nodes into modules, rests on the expectation that 
nodes are more tightly connected to other nodes in the same module than to nodes outside of 
their module, just as one would expect two researchers from the same department to have a 
greater likelihood of collaborating than researchers from different departments. 

The second assumption at the core of the cartographic approach is that one can classify the 
nodes comprising a network into a small number of system-independent "universal roles." Our 
algorithm for classifying nodes into roles rests on the expectation that the nodes in a network 
are connected according to the role they fulfill. For example, most large universities have a 
president who is in direct contact with high-level administrators, the members of the board of 
trustees, and a few high-profile faculty members, but not with the typical assistant professor or 
the typical student. Importantly, this fact holds irrespective of the particular university one 
considers. We thus define the role of a node according to (i) how many connections it has 
within its module and (ii) what fraction of its connections are with nodes in outside modules. 
We defined four main types of roles: hub connectors, which have many connections to both 
other nodes in their module and to nodes in other modules; provincial hubs, which have many 
connections but only to nodes inside their module; satellite connectors, which have few 
connections but act as bridges between modules; and peripheral nodes, which have few 
connections and mostly to nodes inside their module. 

To demonstrate the power of this novel cartographic perspective, we studied the overall 
organization of the cellular metabolisms of twelve organisms—four archae, four bacteria and 
four eukaryotes [19]. We found that the metabolic networks of each of these organisms 
comprised about 20 modules that correlate very strongly with previously identified metabolic 
pathways [21,22]. Additionally, we found that about 90% of the metabolites in these 
organisms are classified as peripheral nodes, i.e., metabolites that participate in a few reactions, 
mostly within a single pathway. This result indicates a very weak signal-to-noise ratio—the 
important metabolites are a small fraction of all metabolites, and thus very difficult to identify 
using standard representations. 
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The most striking result revealed by our analysis, however, is that metabolites classified as 
satellite connectors, those which participate in a small number of reactions (i.e., have few 
connections) but have a significant fraction of their connections to metabolites outside their 
module, are significantly more conserved across species than provincial hub metabolites 
(which participate in a much larger number of reactions). This is a remarkable result, 
comparable to finding a needle in a haystack: Out of the hundreds of metabolites with a small 
number of connections, our cartographic representation identifies the 5-10 metabolites that 
were conserved (and thus are presumably critically important) in the metabolic networks of 
organisms that diverged more than one billion years ago. 

Probing the Hierarchical Structure of Biological Processes 

Biological systems have a hierarchical organization (entire organisms are comprised of 
organs, which are comprised of tissues, which are comprised of cells, and so on...). At 
present there are no methods for the identification of the hierarchical organization of nodes in 
a network that fulfills two necessary requirements: (i) accuracy for many types of networks, 
and (ii) ability to identify the different levels in the hierarchy as well as the number of 
modules and their composition at each level. The first condition may appear as trivial, but we 
make it explicit to exclude algorithms that only work for a particular network or family of 
networks. 

The second condition is more restrictive, as it excludes methods whose output is subject to 
interpretation. Specifically, a method does not fulfill the second condition if it organizes nodes 
into a tree structure, but it is up to the researcher to find a "sensible" criterion to establish 
which are the different levels in that tree. An implication of the previous two requirements is 
that any method for the identification of node organization must have a null output for 
networks, such as random graphs, which do not have an internal structure. 

FIGURE 1: Illustration of method for extracting hierarchical organization of large complex networks. 

To my knowledge, there is no procedure that enables one to simultaneously assess whether 
a network is organized in a hierarchical fashion and to identify the different levels in the 
hierarchy in an unsupervised way. Indeed, many methods, such as hierarchical clustering, 
yield a tree even for networks with no internal structure. My research group has developed a 
new method that is able to determine the hierarchical structure of complex networks of 
arbitrary type (see figure below). The first step in our method is to measure the affinity 
between two nodes in the network. We define the affinity between two nodes as the 
probability that these nodes are placed in the same module when locally maximizing a 
"modularity function" (Sales-Pardo et al 2007). The affinity matrix thus obtained enables us 
to determine if the network has a statistically significant modular structure. 

If the network is modular, our method then proceeds to step 2, which consists in ordering 
the affinity matrix so as to obtain the most block diagonal structure possible. The matrix has a 
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block diagonal structure if there are square boxes with high-values of affinity along the 
diagonal of the matrix. Finally, we fit a block diagonal model to the ordered matrix. The 
boxes yield the top-scale modules in the network. We then iterate the above procedure for the 
sub-networks defined by the nodes in each module. 

FIGURE 2: Hierarchical organization of worldwide air transportation network. (A) The block-
diagonal organization of the affinity matrix clearly reveals the modular structure of the network. Note 
the box- within-box structure of the second from left large block, hinting at the hierarchical structure. 
The color bars on the right represent the different modules and sub-modules. (B) Airports in the 
network. Different color indicated different top-level modules. The "Old World" module is shown in 
orange. (C) Second-level organization of the "Old World" module. Different colors indicate different 
sub-modules. (D) Third-level organization of the "Middle East" sub-module. Different colors indicate 
different sub-sub-modules. 

We have applied our method to both model networks and real world networks. In figure 2, 
I show the results obtained for the worldwide air transportation network. Panel A shows the 
affinity matrix for the entire network. It is clear that the matrix has a block diagonal structure 
(red-yellow squares along diagonal). Each box corresponds to a top-level module. On panel 
B, the circles indicate the location of the airports, and colors indicate module membership at 
the top level. Note how the system is broken down into "sensible" modules. Panels C and D 
show the partitions of modules at the second and third level of the hierarchy, respectively. 

Future Directions and Concluding Remarks 

The problem of developing optimal cartographic methods for the study and representation 
of complex networks is far from solved. Indeed, our methods currently have a number of 
limitations that need to be addressed before they can be applied more widely. In the following, 
I will briefly discuss some of the challenges ahead. 
Multipartite networks —Complex systems are, by nature, heterogeneous. For example, 
enzymes catalyze reactions among metabolites. Current network analysis methods, including 
our own algorithms, were not designed to deal in a natural manner with networks comprising 
different types of nodes (i.e., multipartite networks). 
Computational load — The algorithms we have developed for the identification of modules 
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are computationally very demanding. For example, our algorithm for the identification of 
modules requires a computation time that increases with the square of the number of nodes in 
the network. Thus, going from a network with 1000 nodes to one with 5000 nodes results in a 
twenty-five fold increase of the computation time. 
Network representation — At present there are no standard, universally-accepted, software 
packages and no standard, universally-accepted, methods for representing biological 
information in a scalable way. This is clearly essential if we want researchers work on 
different problems to be able to communicate their results to a broader audience. 

I believe that in order to move forward our understanding of biomedical systems, we must 
take a systems level approach. However, we can only make sense, and make use of, systems 
level information if we are able to develop methods that enable us to extract the small set of 
information that is significant at a given scale of observation. A scalable cartographic 
representation of a complex biological reality will enable us to purposefully design or re-
engineer biological systems for therapeutic purposes. I imagine a time in which designing a 
molecular-level therapeutic approach will be similar to planning a driving route between two 
distant cities. 
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