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Abstract. We briefly describe the toolkit used for studying complex systems: nonlinear dynamics, statistical
physics, and network theory. We place particular emphasis on network theory—the topic of this special
issue—and its importance in augmenting the framework for the quantitative study of complex systems.
In order to illustrate the main issues, we briefly review several areas where network theory has led to
significant developments in our understanding of complex systems. Specifically, we discuss changes, arising
from network theory, in our understanding of (i) the Internet and other communication networks, (ii) the
structure of natural ecosystems, (iii) the spread of diseases and information, (iv) the structure of cellular
signalling networks, and (v) infrastructure robustness. Finally, we discuss how complexity requires both
new tools and an augmentation of the conceptual framework—including an expanded definition of what is
meant by a “quantitative prediction.”

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Da Systems obeying scaling laws

1 Introduction

What do metabolic pathways and ecosystems, the Inter-
net, and propagation of HIV infection have in common?
Until a few years ago, the answer would have been very
little. The first two examples are biological and shaped by
evolution, the third is a human creation, and the fourth
is an unwieldy mixture of biology and sociological com-
ponents. However, in the last few years the answer that
has emerged is that they all share similar network archi-
tectures. Seemingly out of nowhere, in the span of a few
years, network theory has become one of the most visi-
ble pieces of the body of knowledge that can be applied
to the description, analysis, and understanding of com-
plex systems. New applications are developed at an ever-
increasing rate and the promise for future growth is high:
Network theory is now an essential ingredient in the study
of complex systems.

However, before delving into networks themselves it is
important to put the overall subject in context, attempt a
definition of complexity itself, and present a brief review
of the other tools that are used in the analysis of complex
systems.

The discussion has to start with two important distinc-
tions: First a differentiation between what is complex and
what is merely complicated. Second a differentiation be-
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tween the complexity of the dynamics generated by simple
systems and that of complex systems [1].

Simple systems have a small number of components which
act according to well understood laws—Consider what is
perhaps the prototypical simple system; the pendulum.
The number of parts is small, in fact, one. The system can
be described in terms of well-known laws—Newton’s equa-
tions. The example of the pendulum raises an important
point: The need to distinguish between complex systems
and complex dynamics: It takes little for a simple system
such as the pendulum to generate “complex” dynamics.
A forced pendulum—with gravity being a periodic func-
tion of time—is chaotic. In fact one can argue that the
driven pendulum contains everything that one needs to
know about chaos; the entire dynamical systems textbook
by Baker and Gollub [2] is built around this theme. And
a pendulum hanging from another pendulum—a double
pendulum—is also chaotic (Fig. 1a).

Complicated systems have a large number of components
which have well-defined roles and are governed by well-
understood rules—A Boeing 747-400 has, excluding fas-
teners, 3 × 106 parts (Fig. 1b). In complicated systems,
such as the Boeing, parts have to work in unison to ac-
complish a function. One key defect (in one of the many
critical parts) brings the entire system to a halt. This
is why redundancy is built into the design when system
failure is not an option. More importantly, complicated
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Fig. 1. Simple, complicated and complex systems. (a) The
double pendulum—a pendulum hanging from another
pendulum—is an example of a simple system. All parts can be
well characterized and the equations describing their motion
are also well known. (b) The Boeing 747-400 has on excess
of 3 × 106 parts. (c) A flock of migrating geese. The Boeing
747-400 is not a complex system because all its parts have
strictly defined roles and prescribed interactions. This is typ-
ical of complicated systems, in which robustness is achieved
through redundancy, i.e., including several copies of the same
part in parallel. In contrast, for complex systems, robustness
is achieved by enabling the parts to adapt and adopt differ-
ent roles. The migrating geese provide a good example of such
strategy, the ubiquitous “V” formations of the migrating geese
are not static structures with a leader at the head, instead the
structures are fluid with a number of birds occupying the head
position at different times.

systems have a limited range of responses to environ-
mental changes. Even the most advanced mechanical
chronometers can only adjust to a small range of changes
in temperature, pressure and humidity before they loose
accuracy. And a Boeing without its crew is not able to do
much of anything to adjust to something extraordinary.

Complex systems typically have a large number of com-
ponents which may act according to rules that may change
over time and that may not be well understood; the con-
nectivity of the components may be quite plastic and roles
may be fluid—Contrast the Boeing 747-400 with a flock of
migrating geese (Figs. 1b–c). Superficially, the geese are
all similar and the flock has far fewer members than the
Boeing has parts, so one might be tempted to think that
the Boeing is more complex than the flock of geese. How-
ever, the flock of migrating geese is an adaptable system,

which the Boeing is not. The flock responds to changes in
the environment—that is indeed why it migrates—more-
over, and unlike what one may naively guess, the migrat-
ing geese self-organize without the need for a leader or
maestro to tell the rest of the flock what to do. This is
clearly revealed by observing the dynamic unrepeated pat-
terns generated by the geese as they adjust their flying for-
mations. Roles in the flock are fluid and one goose at the
head of the formation will quickly be replaced by another.
This feature of the flock gives it a great deal of robustness
as no single goose is essential for the flock’s success during
the migration.

The stock market, a termite colony, cities, or the hu-
man brain, are also complex. As for the flock of geese, the
number of parts is not the critical issue. The key charac-
teristic is adaptability—the systems respond to external
conditions.

Complex systems: Self-organization and emergence—It is
far from trivial to come up with an all-encompassing def-
inition of complex systems. Nevertheless let us attempt
one: A complex system is a system with a large number of
elements, building blocks or agents, capable of interacting
with each other and with their environment. The inter-
action between elements may occur only with immediate
neighbors or with distant ones; the agents can be all iden-
tical or different; they may move in space or occupy fixed
positions, and can be in one of two states or of multiple
states. The common characteristic of all complex systems
is that they display organization without any external or-
ganizing principle being applied. The whole is much more
that the sum of its parts.

Examples of complex systems are among some of the
most elusive and fascinating questions investigated by sci-
entists nowadays: how consciousness arises out of the in-
teractions of the neurons in the brain and between the
brain and its environment, how humans create and learn
societal rules, or how DNA orchestrates processes in our
cells.

Organization of the manuscript—In Section 2 we describe
the challenges faced when studying complex systems and
describe how scientists from many different areas have re-
sponded to these challenges. We then, in Section 3, de-
scribe the toolkit used for studying complex systems: non-
linear dynamics, statistical physics, and network theory.

Nonlinear interactions, one of the greatest challenges in
the study of complex systems, are at the core of the emer-
gence of qualitatively different states, new states that are
not mere combinations of the states of the individual units
comprising the system. Indeed, the role of nonlinear dy-
namics in the understanding of complex systems has been
important for more than two decades. Statistical physics
provides the study of complex systems with, on one hand,
techniques particularly suited for study of systems with a
large number of units and, on the other hand, with two
fundamental concepts for the quantitative characteriza-
tion of complex systems—scaling and universality.

Notwithstanding the importance of nonlinear dynam-
ics and statistical physics, we place particular emphasis
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on network theory due to it being the central topic of this
special issue and to the explosive rate of advance that the
field has experienced in the last five years. In Section 4 we
review some of the most significant advances in our under-
standing of the mechanisms responsible for the emergence
of real-world networks.

In Section 5, we briefly review several cases where
research on networks has lead to new insights into the
emergence, organization and behavior of complex systems.
Specifically, we summarize a selection of results on four
topics: (i) the Internet and other communication networks,
(ii) the structure of natural ecosystems, (iii) the spread of
diseases and information, (iv) the structure of cellular sig-
nalling networks, and (v) infrasrtucture robustness.

Finally, in Section 6, we discuss the need for a “new”,
or at very least, expanded definition of the meaning of
prediction in the context of the study of complex systems.
We end with a short discussion on the challenges ahead
for researchers from different areas in contributing to the
creation of a theory of complex systems.

2 Challenges in the study of complex systems

The challenges one faces when studying a complex system
occur at various levels:

The nature of the units—Complex systems typically com-
prise a large number of units, however, unlike the situation
in many physical and chemical problems, the units need
not to be neither structureless nor identical.

Challenges at the unit level:
– Units have complex internal structures;
– Units are not identical;
– Units do not have strictly defined roles.

The nature of the interactions— Complex systems typi-
cally have units that interact strongly, often in a nonlinear
fashion. Moreover, there are frequently stochastic compo-
nents to the interaction and external noise acting on the
system. An additional and crucial challenge is posed by
the fact that the units are connected in a complex web of
interactions that may be mostly unknown.

Challenges at the interaction level:
– Nonlinear interactions;
– Noise;
– Complex network of interactions.

The nature of the forcing or energy input—Complex sys-
tems are typically out-of-equilibrium. For example, living
organisms are in a constant struggle with their environ-
ment to remain in a particular out-of-equilibrium state,
namely alive. Social and economic systems are also driven
out-of-equilibrium systems; a new technology changes the
balance of power between companies, a terrorist attack
changes economic expectations, etc.

Challenges at the forcing level:
– Poorly characterized distribution of external perturba-

tions;

– Poorly characterized temporal and spatial correlations
of external perturbations;

– Non-stationarity of external perturbations.

3 Tools for the study of complex systems

In a rough sense, the current toolbox used in tackling com-
plex systems involves three main areas: (i) nonlinear dy-
namics, (ii) statistical physics, including discrete models,
and (iii) network theory. Elements of nonlinear dynamics
should be familiar to most of the readers of this journal.
The one with perhaps the greatest degree of novelty—
because of the recent nature (and the speed) of most of
the significant advances—is network theory. First, how-
ever, we will quickly comment on (i) and (ii).

3.1 Nonlinear dynamics and chaos

Nonlinear dynamics and chaos in deterministic systems
are now an integral part of science and engineering. The
theoretical foundations are on firm mathematical footing
and there are well agreed upon mathematical definitions
of chaos, many of them formally equivalent. However, be-
cause of its relative novelty and, in many case, counter-
intuitive nature, there are still many misconceptions about
chaos and its implications. Extreme sensitivity to initial
conditions does not mean that prediction is impossible.
Memory of initial conditions is lost within attractors but
the attractor itself may be extremely robust. In particular
chaotic does not mean unstable.

Chaos means that simple systems are capable of pro-
ducing complex outputs. Simple 1D mappings can do
this—the logistic equation being the most celebrated ex-
ample. The flip side is that complex looking outputs
need not have complex or even complicated origins; seem-
ingly random-looking outputs can be due to deterministic
causes. Many techniques have been developed to analyze
signals and to determine if fluctuations stem from deter-
ministic components.

Nonlinear dynamics is now firmly embedded through-
out research; applications arise in virtually all branches of
engineering and physics—from quantum physics to celes-
tial mechanics. There are numerous applications in geo-
physics, physiology and neurophysiology [3]. Even sub-
applications have developed into full-fledged areas. For
example, mixing is one of the most successful areas of
applications of nonlinear dynamics [4].

It is clear that nonlinear dynamics does not exist in
isolation but it is now a platform competency in science
and engineering. This does not mean that all theoretical
questions have been answered and that all ideas are un-
controversial. For example there is significant discussion
about the presence of chaos in physics and the role it may
play in determining the universe’s “arrow of time”, the
irreversible flow from the past to the future.
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3.2 Statistical physics: Universality and scaling

Of the three revolutionary new areas of physics born at
the turn of the 20th century—statistical physics, relativ-
ity, and quantum mechanics—it is fair to say that statisti-
cal physics has been the one that has least caught people’s
imagination. The reason may be that, on the surface, sta-
tistical physics most resembles pre-20th century physics.
However, statistical physics brought three very important
conceptual and technical advances:

1. It lead to a new conception of prediction (we shall have
more to say about this later in the paper).

2. It circumvented classical mechanics and the impossi-
bility to solve the three-body problem by tackling the
many-body problem. In doing so, it casted solutions in
terms of ensembles.

3. It introduced the concept of discrete models—ranging
from the Ising model to cellular automata [5] and
agent-based models [6].

In the 1960s and 1970s, fundamental advances oc-
curred in our understanding of phase transitions and crit-
ical phenomena leading to the development of two im-
portant new concepts: universality and scaling [7,8]. The
finding, in physical systems, of universal properties that
are independent of the specific form of the interactions
gives rise to the intriguing hypothesis that universal laws
or results may also be present in complex social, economic
and biological systems (see Fig. 2).

Indeed, it has recently come to be appreciated that
many complex systems obey universal laws that are inde-
pendent of the microscopic details: Findings in one sys-
tem translate into understanding of the behavior of many
others. For example, fluctuations in physiologic outputs
of healthy individuals display universal degree of correla-
tions [9–12], as do fluctuations of financial assets [13–16].
Similarly, it has been recently shown that scaling and
universality hold for a broad range of human organiza-
tions [17–23].

3.2.1 Scaling

The scaling hypothesis which arose in the context of the
study of critical phenomena led to two categories of pre-
dictions, both of which have been remarkably well verified
by a wealth of experimental data on diverse systems. The
first category is a set of relations, called scaling laws, that
serve to relate the various critical-point exponents char-
acterizing the singular behavior of the order parameter
and of response functions. The second category is data
collapsing.

The predictions of the scaling hypothesis are supported
by a wide range of experimental work, and also by numer-
ous calculations on model systems. Moreover, the general
principles of scale invariance have proved useful in inter-
preting a number of other phenomena, ranging from ele-
mentary particle physics [24] and galaxy structure [25] to
finance and sociology [11,23,26].

Fig. 2. Visualizing universality. (a) Lascaux cave paint-
ings, beginning of Magdalenian Age (approximately 15,000 to
13,000 B.C.); (b) Apis bull, Egypt (3,000–500 B.C.); (c) Bull-
fight: Suerte de vara (detail), Francisco de Goya y Lucientes
(1824); oil on canvas (50 × 61 cm), The J. Paul Getty Mu-
seum, Los Angeles. Despite the difference in details, styles, and
medium, all images are easily identified as depictions of bulls.
Clearly, all images capture the essential characteristics of the
animal. However, for a computer program, the task of classi-
fying the subject matter of all pictures as being identical is far
from trivial. The concept of universality in statistical physics
and complex systems may aspires to the same goal as such a
computer program would: to capture the essence of different
systems and to classify them into distinct classes.

3.2.2 Universality

Another fundamental concept arising from the study of
critical phenomena is universality. For systems in the same
universality class, exponents and scaling functions are the
same in the vicinity of the critical point. This fact sug-
gests than when studying a given problem, one may pick
the most tractable system to study and the results one
obtains will hold for all other systems in the same univer-
sality class [7,8]. The problem, clearly, is to identify which
systems belong to a given universality class.

The universality of critical behavior motivated the
search for the features of the microscopic inter-particle
force which are important for determining critical-point
exponents and scaling functions, and which ones are unim-
portant. These questions were answered by numerous
works on the renormalization group [27]. These studies
led to the idea that when the scale changes, the equa-
tions which describe the system also change accordingly
and that in the macroscopic limit only a few “relevant”
features remain. When one uncovers universality in a
given system, it means that some profound, usually sim-
ple, mechanisms are at work. This conceptual framework
has guided many physicists into forays in interdisciplinary
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research yielding insights across seemingly dissimilar dis-
ciplines.

3.2.3 Discrete models

Discrete-space and discrete-time modeling is based on the
assumption that some phenomena can and should be mod-
eled directly in terms of computer programs (algorithms)
rather than in terms of equations. Cellular automata—
which can be traced to John von Neumann [28] and Stanis-
law Ulam [29] and were further developed and popularized
in Conway’s “game of life” [30] and, more recently, Wol-
fram [5]—are the simplest example of discrete time and
space models that were developed with the computer in
mind.

Examples of the application of cellular automata ex-
ist in physical, chemical, biological and social sciences;
they can be as simple as propagation of fire and simple
predator-prey models between a handful of species and as
complex as the evolution of artificial societies. The cen-
tral idea is to have agents that live on the cells of reg-
ular d-dimensional lattices and interact with each other
according to prescribed rules. The basic building blocks
may be identical or may differ in important characteris-
tics; moreover these characteristics may change over time,
as the agents adapt to their environment and learn from
their experiences—see e.g. Epstein and Axtell [6] in the
context of the social sciences.

Discrete, or agent-based, modeling has been extremely
successful because of the intuition-building capabilities it
provides and the speed with which it permits the investi-
gation of multiple scenarios. For this reason discrete mod-
eling has led in some cases to a replacement of equation-
based approaches in disciplines such as ecology, traffic
optimization, supply networks, and behavior-based eco-
nomics.

4 Networks

The third element in the toolbox is networks. A network is
a system of nodes with connecting links. Once one adopts
this viewpoint, networks appear everywhere [31–35]. Con-
sider the following examples from the biological science:

– food webs, a network of species connected by trophic
interactions [49–53],

– autonomous nervous systems of complex organisms, a
network of neurons connected by synapses [54,55],

– gene regulation networks, a network of genes connected
by cross-regulation interactions [56–58],

– protein networks, a network of protein connected by
participation in the same protein complexes [59–61],

– metabolic networks, a network of metabolites con-
nected by chemical reactions [62–64].

Social networks are also ubiquitous [36–43]: Individu-
als exchanging e-mails is one example [44,45]. Person A
sends and e-mail to B; if B replies A and B are connected.

Other clear-cut examples are the Internet, a network of
servers, and the World Wide Web, a network of web pages
connected by hyperlinks [46–48].

The two limiting network topologies typically con-
sidered are: (i) d-dimensional graphs—a lattice, for
example—where every node connects with a well-defined
set of closest neighbors, and (ii) random graphs, where ev-
ery node has the same probability of being connected to
any other node. Quantities used to quantitatively describe
networks include [69]:

– The minimum number of links that must be traversed
to travel from node i to node j is called the shortest
path length or distance between i and j. A graph is
connected if any node can be reached from any other
node; otherwise the graph is disconnected. The aver-
age path length is the average of the minimum number
of steps necessary to connect any two nodes in a con-
nected network.

– The local clustering is (roughly) the number of actual
links in a local sub-network divided by the number of
possible links. It quantifies the fact that if Person A is
good friend with both B and C, then there is a good
chance B and C are also friends [70].

– The degree distribution, p(k), which is the probability
of finding a node with k links. In a lattice p(k) is a
delta-Kronecker function while in a random graph it is
a Poisson distribution.

Real networks, however, are not well described by ei-
ther model [31–35,66]. Real networks are both clustered
(high degree of local connectivity) and small-worlds (it
takes only a small number of steps to connect any two
nodes).

4.1 Network theory: A short history

The surge of interest in networks is recent, however, the
history of network has a distinguished past: The birth
of network (or graph) theory links together two famous
mathematicians: Euler and Erdös. The “conception” of
the theory is universally attributed to Euler [65] and his
solution of the celebrated Königsberg bridge puzzle. As
stated in Euler’s manuscript: “In the town of Königsberg
in Prussia there is an island A, called “Kneiphoff”, with
the two branches of the river (Pregel) flowing around it.
There are seven bridges, a, b, c, d, e, f, and g, crossing
the two branches. The question is whether a person can
plan a walk in such a way that he will cross each of these
bridges once but not more than once. [...] On the basis of
the above I formulated the following very general problem
for myself: Given any configuration of the river and the
branches into which it may divide, as well as any number
of bridges, to determine whether or not it is possible to
cross each bridge exactly once.”

Euler’s solution of the Königsberg bridge puzzle devel-
oped naturally from his formulation of the problem, once
again showing that formulation of a problem is as impor-
tant, if not more than, the solution itself. Euler noticed
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Fig. 3. The Königsberg bridge puzzle [65]. (a) The town of
Königsberg, now Kaliningrad, Russia, had at the time seven
bridges connecting the island of Kneiphoff to the margins of
the river Pregel. (b) Schematic representation of the area with
the bridges. (c) Euler’s representation of the problem. Euler
realized that physical distance was of no importance in this
problem, only topology matters. For this reason the bridges
can be represented as links in a graph connecting nodes repre-
senting the different margins and islands.

that physical distance is of no importance in this problem
and represented the topological constraints of the prob-
lem in the form of a graph—a set of nodes and the set
of links connecting pairs of nodes (Fig. 3). Euler divided
the nodes into odd and even based on the parity of the
degree of the node, that is, the number of links directly
connected to the node. He then demonstrated that:

1. The sum of degrees of the nodes of a graph is even;
2. Every graph must have an even number of odd nodes.

These results enabled Euler to show that:

1. If the number of odd nodes is greater than 2 no Eu-
ler walk exists—a Euler walk being a walk between
two arbitrary nodes for which every link in the graph
appears exactly once;

2. If the number of odd nodes is 2, Euler walks exist start-
ing at either of the odd nodes;

3. With no odd nodes, Euler walks can start at an arbi-
trary node.

Therefore, since all four nodes in the Königsberg bridge
problem are odd, Euler demonstrated that there was no
solution to the puzzle, that is, there was no path transvers-
ing each bridge only once. Euler’s work was of seminal im-
portance because it identified topology as the key issue of
the problem, thus enabling his later work on topology and
the establishment of, e.g. relations among the numbers of
edges, vertices and faces of polyhedrons.

If the conception of network theory is due to Euler,
its “delivery” is due in great part to Erdös. As in Eu-
ler’s case, Erdös interest on network theory was initially
linked to a social puzzle: What is the structure of social
networks? This problem was formalized by Kochen and
Pool in the 50’s, leading them to the definition of ran-
dom graphs [66]—graphs in which the existence of a link
between any pair of nodes has probability p. Erdös, in col-
laboration with Rényi, pursued the theoretical analysis of
the properties of random graphs obtaining a number of

Fig. 4. A minimal model for generating small-world networks.
Watts and Strogatz construct networks that exhibit the small-
world phenomenon by randomizing a fraction p of the links
connecting nodes in an ordered lattice. In the case displayed,
the ordered lattice is one-dimensional with 4 connections per
node. After [70].

important results, including the identification of the per-
colation threshold—that is, the average number of links
per node necessary in order for a random graph to be fully
connected—or the typical number of intermediate links in
the shortest path between any two nodes in the graph.

4.2 Small-world networks

Kochen and Pool’s work, which was widely circulated in
preprint form before it finally was published in 1981 [66],
was a precursor to experimental work that lead to the
discovery of the so-called six-degrees of separation phe-
nomenon, later popularized in a homonym play by John
Guare. The six-degree of separation phenomenon is typ-
ically referred to in the scientific literature as the small-
world phenomenon [67,68].

A recurrent characteristic of networks in complex sys-
tems is the small-world phenomenon, which is defined by
the co-existence of two apparently incompatible condi-
tions, (i) the number of intermediaries between any pair of
nodes in the network is quite small—typically referred to
as the six-degrees of separation phenomenon—and (ii) the
large local “cliquishness” or redundancy of the network—
i.e., the large overlap of the circles of neighbors of two net-
work neighbors. The latter property is typical of ordered
lattices, while the former is typical of random graphs [69].

Recently, Watts and Strogatz [70] proposed a minimal
model for the emergence of the small-world phenomenon
in simple networks. In their model, small-world networks
emerge as the result of randomly rewiring a fraction p of
the links in a d-dimensional lattice (Fig. 4). The parame-
ter p enables one to continuously interpolate between the
two limiting cases of a regular lattice (p = 0) and a ran-
dom graph (p = 1).

Watts and Strogatz probed the structure of their small-
world network model and of real networks via two quanti-
ties: (i) the mean shortest distance L between all pairs of
nodes in the network, and (ii) the mean clustering coeffi-
cient C of the nodes in the network. For a d-dimensional
lattice one has L ∼ N1/d and C = O(1), where N is the
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Fig. 5. Ubiquity of small-world networks. (a) Dependence of
L and C on p for the small-world model of Watts and Strogatz.
The emergence of the small-world regime is clear for p > 0.01,
as L(p) quickly converges to the random graph value, while
C(p) remains in the ordered graph range. After [70]. (b) De-
pendence of L on p for different network sizes. The numerical
results show that the emergence of the small-world regime oc-
curs for a value of p that approaches zero as N diverges [71,72].
After [72].

number of nodes in the network. In contrast, for a ran-
dom graph one has L ∼ ln N and C ∼ 1/N . Figure 5a
shows the dependence of L and C on p for the for the
small-world model of Watts and Strogatz. The emergence
of the small-world regime is clear for p > 0.01, as L quickly
converges to the random graph value, while C remains in
the ordered graph range, this two characteristics defin-
ing a small-world network. Watts and Strogatz [70] found
clear evidence of the small-world phenomenon in (a) the
electric-power grid for Southern California, (b) the net-
work of movie-actor collaborations, and (c) the neuronal
network of the worm C. elegans.

A question is prompted by the results of Figure 5a:
“Under which conditions does the small-world regime
emerge?” Specifically, does the small-world behavior
emerge for a finite value of p when N approaches the ther-
modynamic limit? [71]. Numerical results and theoretical
arguments show that the emergence of the small-world
regime occurs for a value of p that approaches zero as N
diverges [71,72]; cf. Figure 5b. The implications of this
finding are quite important: Consider a system for which
there is a finite probability p of random connections. It
then follows that independently of the value of p, the net-
work will be in the small-world regime for systems with
size N ∼ 1/p, the reason being that to have a finite num-
ber of random links, i.e., that Np must be of O(1). This
implies that most large networks are small-worlds. Impor-
tantly, the nodes will be “un-aware” of this fact as the
vast majority of them has no long-range connections [71].

4.3 Scale-free networks

An important characteristic of a graph that is not taken
into consideration in the small-world model of Watts and
Strogatz is the degree distribution, i.e., the distribution
of number of connections of the nodes in the network.
The Erdös-Rényi class of random graphs has a Poisson
degree distribution [69], while lattice-like networks have
even more strongly peaked distributions—a perfectly or-
dered lattice has a delta-Dirac degree distribution. Sim-
ilarly, the small-world networks generated by the Watts
and Strogatz model also have peaked, single-scale, degree

Fig. 6. Ubiquity of scale-free networks. Double logarithm plot
of (a) the degree distribution of the network of movie-actor
collaborations (each node corresponds to an actor and links
between actors indicated that they collaborated on at least
one movie); (b) the degree distribution of the webpages in the
nd.edu domain (each node is a webpage and links between
webpages indicate hyperlinks pointing to the other webpage).
After [73]. (c) Degree distribution of the WWW. Note the trun-
cation of the power law regime. After [78]. (d) Distribution of
number of sexual partners for Swedish females and males. Note
the power law decay in the tails of the distributions. After [39].

distributions, i.e., one can clearly identify a typical degree
of the nodes comprising the network.

Against this theoretical background, Barabási and co-
workers found that a number of real-world networks have
a scale-free degree distribution with tails that decay as
a power law [47,73]. As shown in Figures 6a–c, the net-
work of movie-actor collaborations, the webpages in the
nd.edu domain, and the power grid of Southern Califor-
nia, all appear to obey distributions that decay in the tail
as a power law [73]. Moreover, other networks such as the
network of citations of scientific papers also are reported
to be scale-free [74,75].

Barabási and Albert [73] suggested that scale-free net-
works emerge in the context of growing network in which
new nodes connect preferentially to the most connected
nodes already in the network. Specifically,

pi(n + 1) =
ki(n)∑n

i=−n0+1 ki(n)
, (1)

where n is the time and number of nodes added to the
network, n0 is the number of initial nodes in the network
at time zero, ki is the degree of node i and pi(n + 1) is
the probability of a new node, added at time n+1 linking
to node i. As illustrated in Figure 7, as time ticks by the
degree distribution of the nodes becomes more and more
heterogeneous since the nodes with higher degree are the
most likely to be the ones new nodes link to.

Significantly, scale-free networks provide extremely ef-
ficient communication and navigability as one can easily
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Fig. 7. Three stages in the time evolution of a minimal model
for generating scale-free networks [73]. (a) We start with a
network comprising two nodes linked by a bi-directional con-
nection (black full line). Then, we add a new node which can
link to either of the existing nodes (green dashed line). Because
both existing nodes have degree one, there is an equal prob-
ability of linked to each of them (which is represented by the
thickness of the dashed line). (b) At the following time step, we
add a new node to the network. As before, this node can link
to any of the existing nodes. However, now the probability of
linking to each of the existing nodes is no longer identical be-
cause one of the nodes has higher degree than the others. (c) As
times goes by, a heterogeneous degree distribution emerges be-
cause nodes with higher degree have a higher probability of
being linked to new nodes.

reach any other node in the network by sending infor-
mation through the “hubs”, the highly-connected nodes.
The efficiency of the scale-free topology and the existence
of a simple mechanism leading to the emergence of this
topology led many researchers to believe in the complete
ubiquity of scale-free network. As it often happens, one
finds what one is looking for (Figs. 8a–c).

Note that scale-free networks are a subset of all small-
world networks because (i) the mean distance between the
nodes in the network increases extremely slowly with the
size of the network [73,76], and (ii) the clustering coeffi-
cient is larger than for random networks.

4.4 Classes of small-world networks

An important aspect question prompted by the work of
Barabási and Albert is how to connect the findings of
Watts and Strogatz on small-world networks with the
the new finding of scale-free structures. Specifically, one
may ask “Under what conditions will growing networks
be scale-free?” or, more to the point, “Under what condi-
tions will the action of the preferential attachment mech-
anism be hindered?” Recall that preferential attachment
gives rise to a scale-free degree distribution in growing
networks [73], hence if preferential attachment is not the
only factor determining the linking of incoming nodes one
may observe other topologies. Amaral and co-workers have
demonstrated that preferential attachment can be hin-
dered by at least three classes of factors:

Aging—This effect can be illustrated with the network of
actors. In time, every actress or actor stops acting. For the
network, this implies that even a very highly connected
node will eventually stop receiving new links. The node
may still be part of the network and contributing to net-
work statistics, but it no longer receives links. The aging of
the nodes thus limits the preferential attachment prevent-
ing a scale-free distribution of degrees from emerging [77].

Fig. 8. Evidence for existence of single scale networks. (a) De-
gree distribution of the nematode C. elegans. Each of the
302 neurons of C. elegans and their connections has been
mapped. Note that the plot is semi-logarithmic, so a straight
line indicates an exponential dependence. After [77]. (b) Semi-
logarithmic plot of the cumulative degree distribution of the
power grid of Southern California (each node is a transmission
station and links are power lines connecting the stations). Af-
ter [77]. (c) Double-logarithmic the degree distribution of the
power grid of Southern California. After [73]. Note that the
power law fit provides a poor description of the data while the
exponential fit matches the data remarkably well for all de-
gree values. (d) Truncation of scale-free degree of the nodes
by adding constraints to the model of reference [73]. Effect of
cost of adding links on the degree distribution. These results
indicate that the cost of adding links also leads to a cut-off
of the power-law regime in the degree distribution, and that
for a sufficiently large cost the power-law regime disappears
altogether. After [77].

Cost of adding links and limited capacity—This effect can
be illustrated with the network of world airports. For rea-
sons of efficiency, commercial airlines prefer to have a
small number of hubs through which many routes con-
nect. To first approximation, this is indeed what happens
for individual airlines, but when we consider all airlines
together, it becomes physically impossible for an airport
to become a hub to all airlines. Due to space and time
constraints, each airport will limit the number of land-
ings/departures per hour, and the number of passengers
in transit. Hence, physical costs of adding links and lim-
ited capacity of a node will limit the number of possible
links attaching to a given node [77].

Limits on information and access—This effect can be illus-
trated with the selection of outgoing links from a webpage
in the world-wide-web: Even though there is no meaning-
ful cost associated with including a hyperlink to a given
webpage in one’s own webpage, there may be constraints
effectively blocking the inclusion of some webpages, no
matter how popular and well connected they may been.
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An example of such constraints is distinct interest areas—
a webpage on granular mixing is unlikely to include links
to webpages discussing religion [78].

These different constraints can be formalized by
adding terms to 1. Specifically,

pi(n + 1) =
ki(n)f(ki(n), n, i, ...)∑n

i=−n0+1 ki(n)f(ki(n), n, i, ...)
, (2)

where f(ki(n), n, i, ...) is a cost function that may depende
on the degree of node i, on its age, on time, and on a
number of other factors. As can be seen in Figure 8, the
presence of constraints leads to a cut-off of the power-
law regime in the degree distribution, and that for a suf-
ficiently strong constraints the power-law regime disap-
pears altogether [77]. Empirical data suggest the existence
of three classes of small-world networks [77]: (a) scale-free
networks; (b) broad-scale or truncated scale-free networks,
characterized by a degree distribution that has a power-
law regime followed by a sharp cut-off that is not due to
the finite size of the network; (c) single-scale networks,
characterized by a degree distribution with a fast decay-
ing tail, such as exponential or Gaussian. It is important
to note again that scale-free networks are small-world net-
works but the inverse may not be true!

4.5 Network modelling

The previous sections merely skim the surface of all the
work being done in modelling the structure and emergence
of complex networks. This is an extremely active field of
research with hundreds of papers having been written,
and published, in the last four years. Clearly, this paper
is not the forum to discuss in detail all of those mod-
elling efforts and we direct the readers to the excellent
reviews [32,34,35,79] and books [31,80] available.

5 Brief review of a selection of complex
systems’ research with a network focus

5.1 The topology of the Internet and the dynamics
of Internet traffic

The Internet [81,82]—a large communication network
that now connects more than 108 hosts—is a prime ex-
ample of a self-organizing complex system [83–86], hav-
ing grown mostly in the absence of centralized control or
direction. In this network, information is transferred in
the form of packets from the sender to the receiver via
routers, computers which are specialized to transfer pack-
ets to another router “closer” to the receiver (Fig. 9a). A
router decides the route of the packet using only local in-
formation obtained from its interaction with neighboring
routers, not by following instructions from a centralized
server. Thus, it can be viewed as a simple and autonomous
entity. A router stores packets in its finite queue and pro-
cesses them sequentially. However, if the queue overflows

Fig. 9. Measuring Internet traffic. (a) Schematic representa-
tion of Internet topology. The Internet comprises links and
nodes (routers and hosts), which are connected in a scale-free
structure [46,106]. Suppose that one downloads a file on a web
page in a host at aaa.edu from a host in NTT laboratories. In
this case, a connection is established between the two hosts,
and the packets encoding the file travel from the source host
to the destination host via routers. The connection is based
on a feedback control, so that the duration of the connection
for transferring the file strongly depends on the current net-
work traffic conditions; if the network is congested, it takes
longer to finish the transfer. (b) Measuring the number of con-
nections. In the top panel, each line represents a connection
passing through the observation link. For example, the first
connection starts at 0.5 s (black circle) and finishes at 3.5 s
(open circle). We count the number of connections within a
one second interval and obtain a time series of the number of
connections (bottom panel). (c) A typical data set, showing
the number of connections between NTT laboratories and the
Internet for each of the 3, 600 one second intervals between
13:00 and 14:00 on July 19, 2001. After [97].

due to excess demand, the router will discard incoming
packets, a situation corresponding to congestion. A router
can only control incoming traffic by discarding arriving
packets, so that in order to know and adjust to the cur-
rent network traffic condition, each host has the ability
to control its traffic by using a feedback-based flow con-
trol [87] for the communication between the sender and
the receiver.

Even though the rules controlling traffic flow were
programmed by humans, the dynamics of Internet traf-
fic [88–95] are difficult to predict due to the complex in-
teractions between routers, the flow control mechanisms,
and the diversity of applications running in the Internet.
Moreover, the traffic flow is also highly correlated with
human activity.

A number of studies has probed the topology of the
Internet and its implications for traffic dynamics. It has
been reported that Internet traffic fluctuations are sta-
tistically self-similar [88–90] and that the traffic displays
two separate phases, congested and non-congested. At the
point separating the two phases, traffic fluctuations are
characterized by 1/f–correlations [91–95].

Fukuda and co-workers recorded every packet flowing
through the link between NTT laboratories in Tokyo and
the Internet during 4 days in July 2001 (Figs. 9b, c). They
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found that time series of number of connections are non-
stationary, and are characterized by different mean val-
ues depending on the observation period; the mean num-
ber of connections is ≈50 connections/s during the night,
and ≈700 connections/s during the day. Moreover, they
found that the distribution of durations of stationary pe-
riods [96] display tails decaying as power-laws for both
night and day—implying that the duration of stationary
periods has no typical scale [97].

Eriksen et al. [98] studied the spectral properties of
a diffusion process taking place on the Internet network
focusing on the slowest decaying modes. These modes en-
abled them to identify modules in the topology of the
Internet. Eriksen et al. were able to map those modules
to individual countries. For example, the slowest decay-
ing mode corresponds to a diffusion current flowing from
Russia to US military sites [98].

Barthélémy et al. analyzed data from the French na-
tional “Renater” network which comprises 30 intercon-
nected routers located in difference regions of France and
is used by approximately 2 million individuals [99]. They
found that the Internet flow is strongly localized: most
of the traffic takes place on a spanning network connect-
ing a small number of routers which can be classified ei-
ther as “active centers,” which are gathering information,
or “databases,” which provide information. Interestingly,
Barthélémy and co-workers also found that the Internet
activity of a region increases with the number of published
papers by laboratories of that region [99].

A number of groups have also demonstrated that the
Internet displays a number of properties that distinguishes
it from random graphs: wiring redundancy and cluster-
ing, [46,100–102], non-trivial eigenvalue spectra of the
connectivity matrix [46], and a scale-free degree distribu-
tion [46,101–104].

Vespignani, Pastor-Satorras and collaborators under-
took a systematic study of the evolution of the topology
of the Internet by analyzing Internet maps collected by
the National Laboratory for Applied Network Research
(NLANR) for the period 1997–2000 [105]. Their stud-
ies demonstrated that most quantities characterizing the
topology of the network have reached stationary values
and that the Internet has an hierarchical structure re-
flected in non-trivial scale-free betweenness and degree
correlations functions [106]. They also found that the time
evolution of the Internet topology reveals the presence of
growth dynamics with aging features [107].

5.2 The topology of natural ecosystems

Species in natural ecosystems are organized into complex
webs [49]. Ecologists have studied these webs from the
perspective of network theory. Every species in the ecosys-
tem being a node in a network and the existence of a
trophic link—i.e., a prey-predator relationship—between
two species indicating the existence of a directed link be-
tween them. We are far from this ideal, but understanding
the structure of these food webs should be of fundamen-
tal importance in guiding policy decisions concerning, for

example, the recommended limits on consumption of fish
with unacceptable levels of pollutants, the selection of ar-
eas for establishment of protected ecosystems, or the man-
agement of boundary areas between protected ecosystems
and agro-businesses.

The study of such questions is extremely challeng-
ing for a number of reasons. First, the characterization
of the topology of a given ecosystem is a very cumber-
some and expensive task, which a priori may be of value
only for the particular environment considered. Second,
the precise modelling of the nonlinear interactions be-
tween the numerous individuals belonging to each of the
many species comprising the ecosystem and their separa-
tion from stochastic external variables (such as the cli-
mate) affecting the ecosystem may be impossible.

Recently, Amaral and co-workers studied the topology
of food webs from a number of distinct environments—
including freshwater habitats, marine-freshwater inter-
faces, deserts, and tropical islands—and found that this
topology may be identical across environments and de-
scribed by simple analytical expressions [51,52,108]. This
finding is demonstrated in Figure 10, where, as an ex-
ample, we present the distributions of number of prey and
number of predators for the species comprising twelve dis-
tinct food webs [108].

In the same spirit, a recent paper in Nature reports
on a study of food webs as transportation networks [109].
The underlying idea is that the directionality of the links
(pointing from prey to predator) defines a “flow” of resour-
ces—energy, nutrients, prey—between the nodes of the
network. Because every species feeds directly or indirectly
on environmental resources, food webs are connected (that
is, every species can be reached by starting from an addi-
tional “source” node representing the environment. This
fact enabled Garlaschelli et al. [109] to define a spanning
tree on any food web—i.e., a loop-less subset of the links
of the web such that, starting from the environment, every
species can be reached. Importantly, they find that those
spanning trees are characterized by universal scaling rela-
tions.

These results are of great practical and fundamen-
tal importance because they support the hypothesis that
scaling and universality hold for ecosystems—i.e., food
webs display universal patterns in the way trophic rela-
tions are established despite apparently significantly differ-
ences in factors such as environment (e.g. marine versus
terrestrial), ecosystem assembly, and past history. This
fact suggests that a general treatment of the problems
considered in environmental engineering, with reasonable
caveats, may be within reach.

5.3 Spread of epidemics in complex networks

Some infectious agents are beneficial—the spread of ideas,
technologies, or domesticated animals and some kinds of
plants. Others clearly are not: human or animal infec-
tious diseases [26,110], email virus and other computer
virus [111,112]. A third class may involve those with no
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Fig. 10. Test of the “scaling hypothesis” that the distribu-
tions of number of prey (predators) have the same functional
form for food webs from different environments. (a) Cumula-
tive distribution Pprey of the scaled number of prey k/2z for
eight distinct food webs (see [108] for details), where z is the
average number of trophic links per specie. The solid line is the
analytical prediction derived in [51]. The data “collapse” onto a
single curve that agrees well with the analytical results derived
in [51]. (b) Cumulative distribution Ppred of the scaled number
of predators m/2z for the same eight webs as in a. The solid
lines are the analytical predictions of semi-logarithmic plot of
the scaled distributions of (c) number of prey, and (d) number
of predators. After [108].

clear connotation, such as fads or rumours [113]. Regard-
less of the particular case, spreading processes share a
number of properties which make them amenable to a gen-
eralized analysis. A number of general results have indeed
been derived, including the fact that in the steady state
regime a system can be in one of two phases—no epi-
demic or endemic disease—depending on the value of the
so-called reproduction rate R of the infection. For R < 1
there is no epidemic, while for R > 1 the infection becomes
endemic.

For the mean-field case, in which all units have the
same number of contacts with (a random sample of other)
units—the reproduction rate is proportional to the num-
ber of contacts c, to the probability of transmission β of
the disease for each contact between infected and suscepti-
ble units, and the mean duration of the infectious state D.
For the more realistic case in which the number of contacts
per unit is not constant but follows some distribution, R
is given by

R = cβD

(
1 +

σk
2

k̄

)
, (3)

where k̄ and σk are the mean and standard deviation of
the number of contacts, respectively. The dependence of
R on c and β immediately suggests a strategy for prevent-

ing an epidemic: The reduction of the number of contacts
between infected and susceptible individuals. One way to
achieve this is through immunization, which reduces the
number of susceptible individuals; another is to just de-
crease contacts by behavior modification.

Recently, Pastor-Satorras and Vespignani [111] demon-
strated through numerical simulations and analytical cal-
culations that scale-free networks do not have an epi-
demic threshold, i.e., R > 1 for β > 0. This seemingly
counterintuitive result is particularly significant because
network such as the web of sexual contacts [39] and the
Internet [46] display a high degree of local redundancy
and a power law decaying degree distribution (Fig. 6). As
equation (3) implies, the absence of a finite infectability
threshold is due to the unbounded variance of the degree
in scale-free networks.

The same authors have also reported that the ran-
dom uniform immunization of individuals does not lead
to the eradication of infections in all complex networks.
Namely, networks with scale-free degree distributions
do not acquire global immunity from major epidemic
outbreaks even in the presence of unrealistically high
densities of randomly immunized individuals [112]. Pastor-
Satorras and Vespignani showed that successful immu-
nization strategies can be developed only by taking into
account the heterogeneity of scale-free networks. In partic-
ular, targeted immunization schemes based on the nodes’
degree can sharply lower the network’s vulnerability to
epidemic attacks. Similar results have been reported by
other groups [114,115]

Egúıluz and Klemm have analyzed the spreading of
infections in scale-free networks with high clustering and
degree correlations, as found for the Internet [116]. They
reported that the degree correlations restore a finite in-
fectability threshold. However, Vazquez et al. [117] demon-
strated that the finite threshold reported by Egúıluz and
Klemm is simply a by-product of the fact that the model
of reference [116] generates a one-dimension network.

Liebovitch et al. [118] analyzed the timing of the ar-
rival of email viruses at different computers as a way
of probing the structural and dynamical properties of
the Internet. They found that the intervals between the
arrival of four different strains of email viruses have a
power law distribution and that there are positive cor-
relations between these intervals [118]. Newman and co-
workers [119] have studied the role of the structure of
electronic mail networks [44,45] on the spread of com-
puter viruses and have extracted the implications of this
structure for the understanding and prevention of com-
puter virus epidemics. Specifically, their study demon-
strated that random immunization has little effect on virus
spreading while targeted immunization can have a signif-
icant impact [119].

5.4 Cellular networks

The complexity of the web of nonlinear interactions be-
tween genes, proteins and the environment necessitates
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the development of simplified models to illuminate bio-
logical function. As Vogelstein et al. [120] wrote recently:
“How can the vast number of activating signals, covalent
and non-covalent modifications, and downstream regula-
tors of p53 be put into context? One way to understand the
p53 network is to compare it to the Internet. [...] An appre-
ciation of the existence and complexity of cellular networks
should enable more rational design and interpretation of
experiments in the future, and should allow more realistic
approaches to treatment.”

A number of recent studies have indeed started to
highlight the existence and complexity of cellular net-
works. Oltvai, Barabási and co-workers performed a sys-
tematic analysis of the metabolic networks of 43 organ-
isms representing all three domains of life [62]. They found
that, despite significant variation in their individual con-
stituents and pathways, these metabolic networks have
the same topological scaling properties and show striking
similarities to the inherent organization of complex non-
biological systems. They concluded that metabolic organi-
zation is not only identical for all living organisms, but also
complies with the design principles of robust and error-
tolerant scale-free networks, and may represent a common
blueprint for the large-scale organization of interactions
among all cellular constituents [62].

The same group also studied the protein-protein inter-
action network for two organisms, the yeast S. cerevisiae
and the bacterium H. pylori [59]. They found that the net-
work of protein interactions for these two organisms form
a highly inhomogeneous scale-free network in which a few
highly connected proteins play a central role in mediating
interactions among numerous, less connected proteins.

Further, Jeong et al. [59] tested the importance of the
different proteins for the survival of the yeast by mutat-
ing its genome. For random mutations, they found that
removal does not affect the overall topology of the net-
work. However, they found that the likelihood that re-
moval of a protein will prove lethal correlates with the
number of interactions the protein has. For example, al-
though proteins with five or fewer links constitute about
93% of the total number of proteins, they found that only
about 21% of them are essential. By contrast, only some
0.7% of the yeast proteins with known phenotypic pro-
files have more than 15 links, but a single deletion of 62%
of these proves lethal. This implies that highly connected
proteins are three times more likely to be essential than
proteins with only a small number of links to other pro-
teins.

In order to uncover the structural design principles of
complex networks, Uri Alon and co-workers defined net-
work motifs, patterns of interconnections occurring in real
networks at numbers that are significantly higher than
those in randomized networks [57]. They found motifs in
networks from biochemistry, neurobiology, ecology, and
engineering. Remarkably, the motifs shared by ecological
food webs were distinct from the motifs shared by the ge-
netic networks of E. coli and S. cerevisiae or from those
found in the World Wide Web. Similar motifs were found
in networks that perform information processing, even

though they describe elements as different as biomolecules
within a cell and synaptic connections between neurons in
the worm C. elegans.

Specifically, the two transcription networks and the
neuronal connectivity network of C. elegans show the same
motifs: a three-node motif termed “feedforward loop” and
a four-node motif termed “bi-fan”. The feedforward loop
motif, in particular, may play a functional role in informa-
tion processing. One possible function of this circuit is to
activate output only if the input signal is persistent and to
allow a rapid deactivation when the input goes off. Many
of the input nodes in the neural feedforward loops are sen-
sory neurons, which may require this type of information
processing to reject transient input fluctuations that are
inherent in a variable or noisy environment.

5.5 Infrastructure robustness

On September 11, 2000, a late Summer storm hit Chicago
leading to the closing of O’Hare airport. Five thousand
people were left stranded in the airport. Massive cancella-
tions of incoming and departing flights caused ripple-effect
delays at airports across the USA. On August 15, 2003,
four otherwise innocuous events on the northeast Ohio
power grid—including the failures of a coal-fired genera-
tor and an automated warning system—combined to cre-
ate a catastrophic situation that darkened a huge patch
of the eastern United States and Canada. Parts of New
York City were left without electricity for several days! At
3am on September 28, 2003, 57 million italians—the en-
tire country except for Sardinia—found themselves with-
out electricity. The problem was blamed on a series of
failures on power lines from Switzerland and France due
to the bad weather and on a tree felled by the storms.

As theses cases amply illustrate, the robustness of crit-
ical infrastructures in particular, and complex networks in
general, is a matter of the great importance. Recent work
on network theory has started to address the question of
the robustness of complex networks to failure and directed
attack. By robustness of the network we mean the ability
of the network to sustain a giant component. The problem
will be quite different depending on the existence or not
of cascading events. For example, in the cases considered
earlier, the nodes have limited capacity and thus one ob-
serves cascading events, as the failure of a node leads to a
redistribution of the load in the nodes of the network and
the consequent failure of other nodes.

Albert and co-workers studied the robustness of scale-
free and single-scale networks to failure of nodes in the
absence of cascading effects [121]. They found that scale-
free networks were more robust to failure than single-scale
networks. However, they also found that scale-free net-
works were very susceptible to attack of the highest de-
gree nodes [121]. Similar calculations were performed by
Broder and co-workers for the world-wide-web graph [122].
These results provoked a number of theoretical efforts aim-
ing to characterize the percolation transition controlled by
the critical fraction of nodes needed to be removed before
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the giant component breaks-up [123–125]. The case of cas-
cading failure was first considered by Watts [113] for node
failure, while Holme has considered both link and node
failure with cascading [126,127].

6 The meaning of prediction and the study
of complex systems

Much discussion and debate, not always useful, has arisen
when evaluating the fruits of a complex systems approach
to problems. In our view, much of the disagreement is due
to overly restrictive views of what is meant by prediction
and what the limits to prediction are.

In order to put this question into perspective, let us
examine the usual meaning of prediction in the natural
sciences, the “Newtonian” definition, put forward in its
strongest form by Laplace and the standard under which
most scientists still operate today. In Newtonian physics
one is able to predict the future and post-dict the past of
any system for which one knows the position and velocity
of all particles. A modern perspective reveals a number of
deficiencies.

First, it does not take into consideration computability
issues. These are of two kinds. Assume one wants to com-
pute the state of the entire universe, wouldn’t the “com-
puter” be part of the system? Clearly, one cannot possibly
model the behavior of the entire Universe, as that would
not leaves us with any material substrate with which to
store the information or with which to perform the compu-
tation, for the same reason that one cannot draw a map
that contains every detail of the real-world as the map
must then be part of the map itself. Even if one would
consider only a subset of the Universe, say, the water in a
glass, one would still have to take into consideration the
influence of the rest of the Universe on the water. One
could easily model such influence as ‘noise’ acting on the
system but that noise would destroy our ability to imple-
ment the Laplacian goal of predicting exactly the position
and velocity of all particles.

Second, the study of deterministic nonlinear systems
has clearly demonstrated the impossibility in exactly pre-
dicting of the velocities and positions of even simple sys-
tems interacting nonlinearly. The extreme dependence on
initial conditions of chaotic nonlinear systems implies that
in order to predict the positions and velocities of the units
comprising a system interacting nonlinearly one would
need to to be able to measure initial velocities and po-
sitions exactly, a clearly unattainable goal even without
considering quantum effects.

Moreover, even if Newtonian prediction was possible,
it would not, in our view, convey in an enlightening and
conceptual-building way the relevant information about
the system. Consider again the water in a glass; it is clear
that one can in principle determine the macroscopic state
of the system—solid, liquid, or gas—and its temperature,
volume and pressure from a complete description of the
positions and velocity of the O(1023) particles composing
the system. However, why would one want to do this?

Clearly, the values of the macroscopic thermodynamic
quantities provide a considerably more parsimonious de-
scription of the system. And, unarguably, the thermody-
namic description of the system permits a deeper insight
into the behavior of the system than the Newtonian ap-
proach of calculating forces and determining trajectories
of all particles.

A more relevant class of what constitutes prediction
in the context of the study of complex systems originated
with developments in our understanding of phase transi-
tions and critical phenomena. Close to the critical point
most details of the system become irrelevant and the be-
havior of the systems is determined by a small number of
relevant parameters and “mechanisms”. For this reason,
systems that may be very different in their details are ac-
tually described by the exact same scaling functions and
sets of exponents [7,8]. A striking example of this type of
prediction is the derivation of so-called allometric relation-
ships: For example, the functional relationship between an
organism’s mass and its metabolic rate holds for organisms
varying in mass over 27 orders of magnitude [128–130].

7 Concluding remarks

A crude simplification, not without truth, ascribes the
study of simple systems to the natural sciences and the
study of complicated systems to engineering. Systems that
we have classified here as complex, have been left to the
social sciences, to ecology, and to medicine. The underly-
ing belief is that for simple and complicated systems one
can discover quantitative “laws” while for complex sys-
tems one can only hope to obtain qualitative “lessons” or
heuristics [131].

The common characteristic of all complex systems is
that they display organization without any external orga-
nizing principle being applied; a central characteristic is
adaptability. The topic has clearly captured the attention
of physicists, statistical physicists in particular.

For engineers the conceptual conflict may arise from
the fact that the hallmark of complex systems is adaptabil-
ity and emergence: No one designed the web, the US power
grid, or the metabolic processes within a cell. Engineering
is not about letting systems be. The etymology of “engi-
neer,” both the verb and the noun, is revealing: ingenitor,
contriver, ingenire, to contrive, as in to engineer a scheme.
Engineering has a purpose and end result. Engineering is
about convergence, assembling pieces that work in spe-
cific ways, optimum design and consistency of operation;
the central metaphor is a clock. Complex systems, on the
other hand, are about adaptation, self-organization and
continuous improvement; the best metaphor may be an
ecosystem. It is robustness and failure where both camps
merge [132]. However, a successful merge will require aug-
menting the conceptual framework, even to the point of
reshaping what one means by prediction.

The conceptual challenge for social science is that
quantitative laws may actually govern the dynamics and
organization of complex systems, the result of many inter-
actions resulting in a clearly determinable outcome and
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that these results are not in any way contradictory to
the existence of free will. For engineering, the challenge
is the realization that many systems—for example, the
web, the power grid, and the metabolic pathways in a
cell—are not the result of a single design but an evolu-
tion and merging of designs, and that in many instances,
self-organization can be used in profitable ways. It is ap-
parent that continuous and open exchange of ideas among
all groups will lead to higher level of understanding of
complex systems and the development of new theory and
tools.

We thank J.S. Andrade Jr., A. Arenas, A. Diaz-Guilera, M.
Barthélémy, C. Edling, R. Guimerà, V. Hatzimanikatis, F.
Liljeros, A.A. Moreira, S. Mossa, A. Scala, and A. Vespignani
for many stimulating discussions.

References

1. J.M. Ottino, AIChE J. 49, 292 (2003)
2. G.L. Baker, J.P. Gollub, Chaotic Dynamics: An

Introduction (Cambridge University Press, Cambridge,
UK, 1990)

3. L. Glass, M.C. MacKey, From Clocks to Chaos: The
Rhythms of Life (Princeton University Press, Princeton,
NJ, 1988)

4. J.M. Ottino, The Kinematics of Mixing: Stretching,
Chaos, and Transport (Cambridge University Press,
Cambridge, UK, 1989)

5. S. Wolfram, A New Kind of Science (Champaign, IL,
Wolfram Media, 2002)

6. J.M. Epstein, R.L. Axtell, Growing Artificial Societies:
Social Science from the Bottom Up (Cambridge, MA,
MIT Press, 1996)

7. H.E. Stanley, Introduction to Phase Transitions and
Critical Phenomena (Oxford University Press, Oxford,
1971)

8. H.E. Stanley, Rev. Mod. Phys. 71, S358–S364 (1999)
[Special Issue for the Centennial of the American Physical
Society]

9. C.-K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger,
Chaos 5, 82 (1995)

10. P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger et al.,
Nature 399, 461 (1999)

11. L.A.N. Amaral, P.Ch. Ivanov, N. Aoyagi et al., Phys. Rev.
Lett. 86, 6026 (2001)

12. A.L. Goldberger, L.A.N. Amaral, J.M. Hausdorff et al.,
Proc. Nat. Acad. Sci. USA 99 Supp. 1, 2466 (2002)

13. U.A. Muller, M.M. Dacorogna, R.B. Olsen et al., J.
Banking Fin. 14, 1189 (1990)

14. A. Pagan, J. Empirical Finance 3, 15 (1996)
15. P. Gopikrishnan, V. Plerou, L.A.N. Amaral et al., Phys.

Rev. E 60, 5305 (1999)
16. V. Plerou, P. Gopikrishnan, L.A.N. Amaral et al., Phys.

Rev. E 60, 6519 (1999)
17. M.H.R. Stanley, L.A.N. Amaral, S.V. Buldyrev et al.,

Nature 379, 804 (1996)
18. L.A.N. Amaral, S.V. Buldyrev, S. Havlin et al., J. Phys.

I France 7, 621 (1997)

19. Y. Lee, L.A.N. Amaral, D. Canning et al., Phys. Rev.
Lett. 81, 3275 (1998)

20. L.A.N. Amaral, S.V. Buldyrev, S. Havlin et al., Phys.
Rev. Lett. 80, 1385 (1998)

21. V. Plerou, L.A.N. Amaral, P. Gopikrishnan et al., Nature
400, 433 (1999)

22. L.A.N. Amaral, P. Gopikrishnan, K. Matia et al.,
Scientometrics 51, 9 (2001)

23. H.E. Stanley, L.A.N. Amaral, S.V. Buldyrev et al., Proc.
Nat. Acad. Sci. USA 99 Supp. 1, 2561 (2002)

24. R. Jackiw, Phys. Today 25, 23 (1972)
25. P.J.E. Peebles, The Large-Scale Structure of the Universe

(Princeton University Press, Princeton, NJ, 1980)
26. F. Liljeros, C.R. Edling, L.A.N. Amaral, Microbes Infect.

5, 189 (2003)
27. J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman,

The Theory of Critical Phenomena: An Introduction to
the Renormalization Group (Oxford University Press,
Oxford, 1992)

28. J. von Newmann, Theory of self-reproducing automata,
edited by A.W. Burks (University of Illinois Press,
Urbana and London, 1966)

29. S. Ulam, in Proc. Int. Congress Math. 2, 264 (1950)
30. M. Gardner, Scientific American 223, 120 (1970)
31. D.J. Watts, Small Worlds: The Dynamics of Networks

Between Order and Randomness (Princeton University
Press, Princeton, NJ, 1999)

32. M.E.J. Newman, J. Stat. Phys. 101, 819 (2000)
33. S.H. Strogatz, Nature 410, 268 (2001)
34. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)
35. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079

(2002)
36. S. Wasserman, K. Faust, Social Network Analysis

(Cambridge University Press, Cambridge, UK, 1994)
37. A.F.J. van Raan, Nature 347, 626 (1990)
38. M.E.J. Newman, P. Natl. Acad. Sci. USA 98, 404 (2001)
39. F. Liljeros, C.R. Edling, L.A.N. Amaral et al., Nature

411, 907 (2001)
40. E.M. Jin, M. Girvan, M.E.J. Newman, Phys. Rev. E 64,

046132 (2001)
41. M. Girvan, M.E.J. Newman, P. Natl. Acad. Sci. USA 99,

7821 (2002)
42. D.J. Watts, P.S. Dodds, M.E.J. Newman, Science 296,

1302 (2002)
43. M.E.J. Newman, Ego-centered networks and the ripple

effect. Soc. Networks. 25, 83 (2003)
44. H. Ebel, L.-I. Mielsch, S. Bornholdt, Phys. Rev. E 66,

035103(R) (2002)
45. R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, A.

Arenas, Self-similar community structure in organisa-
tions, arXiv:cond-mat/0211498

46. M. Faloutsos, P. Faloutsos, C. Faloutsos, ACM
SIGCOMM ’99, Comput. Commun. Rev. 29, 251 (1999)

47. R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130
(1999)

48. B.A. Huberman, L.A. Adamic, Nature 401, 131 (1999)
49. S.L. Pimm, J.H. Lawton, J.E. Cohen, Nature 350, 669

(1991)
50. R.T. Paine, Nature 355, 73 (1992)
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