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Abstract

The di5erence between the complicated and the complex is not just quantitative; it is also qualitative. Complexity requires both an
augmentation of the conceptual framework and new tools. In this manuscript we describe the challenges faced when studying complex
systems and describe how scientists from many di5erent areas have responded to these challenges. We brie:y describe the toolkit used for
studying complex systems: nonlinear dynamics, statistical physics, and network theory. We place particular emphasis on network theory
due to the explosive rate of advance that the ;eld has recently experienced. We argue that chemical engineering—conversant with a
systems viewpoint that is deeply embedded in its culture and the ability to tackle problems across a broad range of length and time scales
—is in excellent position to master and develop new tools and to tackle the many challenges posed by complex systems. To illustrate this
fact, we brie:y review two cases—ecologic food webs and cellular networks—where chemical engineers could have an immediate impact.
? 2004 Elsevier Ltd. All rights reserved.
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1. What is a complex system?

It is likely that if one brought together 10 researchers
working on complex systems, one would end up with at least
11 de;nitions of what a complex system is. Researchers
studying complex systems include physicists, ecologists,
economists, engineers of all kinds, entomologists, computer
scientists, linguists, sociologists, and political scientists.
Considering this diversity, the cynics among us would
likely conclude that the study of complex systems is an
ill-de;ned area of study, while the enthusiast would likely
counter that complex systems are such a broad area of re-
search that it is di?cult for the practitioners to converge
on a single concise de;nition. Before trying to put forward
a concise de;nition of what a complex system is, it might
be worthwhile to distinguish between what we mean by
simple, complicated and complex.
Simple systems have a small number of components

which act according to well understood laws: Consider what
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is perhaps the prototypical simple system; the pendulum.
The number of parts is small, in fact, one. The system can
be described in terms of well-known laws—Newton’s equa-
tions. The example of the pendulum raises an important
point: The need to distinguish between complex systems
and complex dynamics: It takes little for a simple system
such as the pendulum to generate complex dynamics. A
forced pendulum—with gravity being a periodic function of
time—is chaotic. In fact one can argue that the driven pen-
dulum contains everything that one needs to know about
chaos; the entire dynamical systems textbook by Baker and
Gollub (1990) is built around this theme. And a pendulum
hanging from another pendulum—a double pendulum—is
also chaotic (Fig. 1a).
Complicated systems have a large number of compo-

nents which have well-de0ned roles and are governed by
well-understood rules: A Boeing 747–400 has, excluding
fasteners, 3 × 106 parts (Fig. 1b). In complicated systems,
such as the 747, parts have to work in unison to accomplish
a function. One key defect (in one of the many critical parts)
brings the entire system to a halt. This is why redundancy
is built into the design when system failure is not an op-
tion. More importantly, complicated systems have a limited
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Fig. 1. Simple, complicated and complex systems. (a) The double pendulum—a pendulum hanging from another pendulum—is an example of a simple
system. All parts can be well characterized and the equations describing their motion are also well known. (b) The Boeing 747–400 has on excess of
3 × 106 parts. (c) A :ock of migrating geese. The Boeing is not a complex system because all its parts have strictly de;ned roles. This is typical of
complicated systems, for which greater robustness is achieved through redundancy, i.e., including several copies of the same part in parallel. In contrast,
for complex systems, robustness is achieved by enabling the parts to adapt and adopt di5erent roles. The migrating geese provide a good example of
such strategy, the ubiquitous “V” formations of the migrating geese are not static structures with a leader at the head, instead the structures are very
:uid with a number of birds occupying the head position at di5erent times.

range of responses to environmental changes. A 747 with-
out its crew is not able to do much of anything to adjust to
something extraordinary, and even the most advanced me-
chanical chronometers can only adjust to a small range of
changes in temperature, pressure and humidity before they
loose accuracy.
Complex systems typically have a large number of com-

ponents which may act according to rules that may change
over time and that may not be well understood; the con-
nectivity of the components may be quite plastic and roles
may be :uid: Contrast the Boeing 747–400 with a :ock of
migrating geese (Figs. 1b and c). Super;cially, the geese
are all similar and the :ock has likely fewer members than
the Boeing has parts, so one might be tempted to think that
the Boeing is more complex than the :ock of geese. How-
ever, the :ock of migrating geese is an adaptable system,
which the Boeing is not. The :ock responds to changes in
the environment—that is indeed why it migrates—more-
over, and unlike what one may guess, the migrating geese
self-organize without the need for a leader or maestro to
tell the rest of the :ock what to do. This is clearly revealed
by observing the dynamic unrepeated patterns generated by
the geese as they adjust their :ying formations. Roles in
the :ock are :uid and one goose at the head of the forma-
tion will quickly be replaced by another. This feature of the
:ock gives it a great deal of robustness as no single goose
is essential for the :ock’s success during the migration.
The stock market, a termite colony, cities, or the human

brain, are also complex. As in the example of the :ock
of geese, the number of parts is not the critical issue. The
key characteristic is adaptability. The systems respond to
external conditions—a food source is obstructed and an ant
colony ;nds a way to go around the object.
A working de0nition: Self-organization and emergence:

Toulmin (1961) wrote about the creation of knowledge that:
“De;nitions are like belts. The shorter they are, the more
elastic they need to be. [...] [A] short de;nition, applied to
a heterogeneous set of examples, has to be expanded and

contracted, quali;ed and reinterpreted, before it will ;t every
case. Yet the hope of hitting on some de;nition which is
[...] satisfactory and brief dies hard...”
Agreeing on a concise de;nition may be di?cult if not

impossible. It is clear however that the hallmark of complex
systems is the fact that (i) the units comprising the system
are able to self-organize—as exempli;ed by the migrating
geese—and (ii) out of the interaction of the units compris-
ing the system something new is created—emergence. As
the Nobelist Philip Anderson pointed out in his classical ar-
ticle “More is di5erent” (Anderson, 1972), the interaction
between a large number of units can give rise to totally dif-
ferent class of behaviors. Examples are among some of the
most elusive and fascinating questions investigated by re-
searchers nowadays: how consciousness arises out of the in-
teractions of the neurons in the brain and between the brain
and its environment, how humans create and learn societal
rules, or how DNA orchestrates the processes in our cells.
Nonlinear interactions, one of the greatest challenges in

the study of complex systems, are at the core of the emer-
gence of qualitatively di5erent states, new states that are
not mere combinations of the states of the individual units
comprising the system. The role of nonlinear dynamics on
the understanding of complex systems has been common
knowledge for more than two decades (Ottino, 2003).
Recently, a new aspect underlying the behavior of com-

plex systems has been recognized—the structure of the net-
work of interactions between the units comprising the sys-
tem. As we will discuss in this paper, the realization of the
importance of the network structure of complex systemsmay
have provided the missing tool in the toolbox of complexity.
Objectives and organization of the manuscript: The goal

of this manuscript is to argue that chemical engineering is
in an excellent position to tackle the challenges posed by
the study of complex systems and to master the use of the
tools available for their study. In the remaining of the paper
we describe the challenges faced when studying complex
systems and describe how scientists from many di5erent
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areas have responded to these challenges. We also brie:y
describe the toolkit used for studying complex systems.
Speci;cally we look at the three major categories of tools:
nonlinear dynamics, statistical physics, and network theory.
We place particular emphasis on network theory due to the
explosive rate of advance that the ;eld has experienced in
the last 5 years. We will then brie:y review two cases—
ecologic food webs and cellular networks—where chemical
engineers can have an immediate impact. Finally, we will
discuss the need for a “new”, or at very least, expanded def-
inition of the meaning of prediction in the context of the
study of complex systems.

2. Challenges in the study of complex systems

The units comprising a complex system do not have
strictly de;ned roles, yielding a greater adaptability and
robustness of the system. This feature of complex systems,
however, increases the challenges in describing their struc-
ture and evolution. The prototypical challenges one faces
when studying a complex system at various levels are:
The nature of the units: Complex systems typically com-

prise a large number of units, however, unlike the situation
in many scienti;c problems, the units need not to be neither
structureless nor identical.

Challenges:
• units have complex internal structures;
• units are not identical;
• units do not have strictly de;ned roles.

The nature of the interactions: Complex systems typi-
cally have units that interact strongly, often in a nonlinear
fashion. Moreover, there are frequently stochastic compo-
nents to the interaction and external noise acting on the sys-
tem. An additional and crucial challenge is posed by the fact
that the units are connected in a complex web of interactions
that may be mostly unknown.

Challenges:
• nonlinear interactions;
• noise;
• complex network of interactions.

The nature of the forcing or energy input: Complex sys-
tems are typically out-of-equilibrium. For example, living
organisms are in a constant struggle with their environ-
ment to remain in a particular out-of-equilibrium state,
namely alive. Social and economic systems are also driven,
out-of-equilibrium, systems; new technologies change the
balance of power between companies, terrorist attacks
change economic expectations, etc.

Challenges:
• poorly characterized distribution of external perturba-
tions;

• poorly characterized correlations of external perturba-
tions;

• nonstationarity of external perturbations.

3. Tools for the study of complex systems

In a rough sense, the current toolbox used in tackling com-
plex systems involves three main categories (i) nonlinear
dynamics, (ii) statistical physics, including discrete models,
and (iii) network theory. Elements of nonlinear dynamics
should be familiar to many of the readers of this journal
(Doherty and Ottino, 1988). The one with perhaps the great-
est degree of novelty to chemical engineers—because of the
recent nature of most of the signi;cant advances—is net-
work theory, so we will try to provide a short introduction
into the concepts and techniques of interest. First, however,
we will quickly comment on the two other tool categories.

3.1. Nonlinear dynamics and chaos

Nonlinear dynamics and chaos in deterministic systems
are now an integral part of science and engineering. The the-
oretical foundations are on ;rm mathematical footing. There
are well agreed upon mathematical de;nitions of chaos,
many of them formally equivalent. Because of its novelty
and, in many case, counter-intuitive nature, there are still
many misconceptions about chaos and its implications. Ex-
treme sensitivity to initial conditions does not mean that pre-
diction is impossible. Memory of initial conditions is lost
within attractors but the attractor itself may be extremely
robust. In particular chaotic does not mean unstable.
Chaos means that simple systems are capable of produc-

ing complex outputs. Simple 1D mappings can do this—the
logistic equation being the most celebrated example. The :ip
side is that complex looking outputs need not have complex
or even complicated origins; seemingly random-looking out-
puts can be due to deterministic causes. Many techniques
have been developed to analyze signals and to determine if
:uctuations stem from deterministic components.
Nonlinear dynamics is now ;rmly embedded through-

out research; applications arise in virtually all branches
of engineering and physics—from quantum physics to
celestial mechanics. There are numerous applications in
geophysics, physiology and neurophysiology (Glass and
MacKey, 1988). Even sub-applications have developed
into full-:edged areas. For example, mixing is one of the
most successful areas of applications of nonlinear dynamics
(Ottino, 1989). Within chemical engineering, successful
applications have included mixing, dynamics of reactions,
:uidized beds, pulsed combustors, bubble columns. For
example, chemical reactions, in combination with di5usion,
can be exploited to produce a dizzying array of structures
(Kiss and Hudson, 2003).
It is clear that nonlinear dynamics does not exist in iso-

lation but it is now a platform competency. This does not
mean that all theoretical questions have been answered and
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that all ideas are uncontroversial. For example there is sig-
ni;cant discussion about the presence of chaos in physics
and the role it may play in determining the universe’s “arrow
of time”, the irreversible :ow from the past to the future.

3.2. Statistical physics: universality and scaling

Of the three revolutionary new areas of physics born at the
turn of the 20th century—statistical physics, relativity, and
quantum mechanics, it is fair to say that statistical physics
has been the area that least caught people’s imagination.
The reason may be that, on the surface, statistical physics
most resembles pre-20th century physics. However, statis-
tical physics brought three very important conceptual and
technical advances:

(1) It lead to a new conception of prediction—cf. the
Maxwell demon paradox. We shall have more to say
about this change when we discuss the concept of pre-
diction latter in the paper.

(2) It circumvented classical mechanics and the impossi-
bility to solve the three-body problem by tackling the
many-body problem. In doing so, it casted solutions in
terms of ensembles.

(3) It introduced the concept of discrete models—ranging
from the Ising model to cellular automata (Wolfram,
2002) and agent-based models (Epstein and Axtell,
1996).

In the 1960s and 1970s, fundamental advances occurred in
our understanding of phase transitions and critical phenom-
ena leading to the development of two important new con-
cepts: universality and scaling (Stanley, 1971, 1999). The
;nding, in physical systems, of universal properties that are
independent of the speci;c form of the interactions gives
rise to the intriguing hypothesis that universal laws or re-
sults may also be present in complex social, economic and
biological systems (see Fig. 2).
Indeed, recently it has come to be appreciated that

many complex systems obey universal laws that are in-
dependent of the microscopic details. Findings in one
system may translate into understanding of the behavior

Fig. 2. Visualizing universality. (a) Lascaux cave paintings, beginning of Magdalenian Age (approximately 15,000–13,000 B.C.); (b) Apis bull, Egypt
(3000–500 B.C.); (c) Bull;ght: Suerte de vara (detail), Francisco de Goya y Lucientes (1824); oil on canvas (50× 61 cm), The J. Paul Getty Museum,
Los Angeles. Despite the di5erence in details, styles, and medium, all images are easily identi;ed as despictions of bulls. Clearly, all images capture the
essential characteristics of the animal. However, for a computer program, the task of classifying the subject matter of all pictures as being identical is
far from trivial. The concept of universality in statistical physics and complex systems may aspires to the same goal as such a computer program would:
to capture the essence of di5erent systems and to classify them into distinct classes.

of many others. For example, :uctuations in physiologic
outputs of healthy individuals display universal degree of
correlations (Peng et al., 1995; Ivanov et al., 1999; Amaral
et al., 2001a; Goldberger et al., 2002), as do :uctuations
of ;nancial assets (Pagan, 1996; Gopikrishnan et al., 1999;
Plerou et al., 1999a; Muller et al., 1999). Similarly, it has
been recently shown that scaling and universality hold for
a broad range of human organizations (Stanley et al., 1996;
Amaral et al., 1997; Lee et al., 1998; Plerou et al., 1999a,
b; Amaral et al., 2001b; Stanley et al., 2002).

3.2.1. Scaling
The scaling hypothesis which arised in the context of the

study of critical phenomena led to two categories of predic-
tions, both of which have been remarkably well veri;ed by
a wealth of experimental data on diverse systems. The ;rst
category is a set of relations, called scaling laws, that serve
to relate the various critical-point exponents characterizing
the singular behavior of the order parameter and of response
functions.
The second category is a data collapse, which can

be explained in terms of the simple example of a liq-
uid at the critical point. One writes the equation of state
as a functional relationship of the form R� = R�(p; �),
where R� = �(liquid) − �(gas), p is the pressure, and
� ≡ (T − Tc)=Tc is a dimensionless measure of the de-
viation of the temperature T from the critical tempera-
ture Tc. Since R�(p; �) is a function of two variables,
it can be represented graphically as R� vs. � for a se-
quence of di5erent values of p. The scaling hypoth-
esis predicts that all the curves of this family can be
“collapsed” onto a single curve provided one plots not
R� vs. � but rather a scaled R� (R� divided by p to
some power) vs. a scaled � (� divided by p to some
di5erent power).
The predictions of the scaling hypothesis are supported

by a wide range of experimental work, and also by numer-
ous calculations on model systems. Moreover, the general
principles of scale invariance just described have proved
useful in interpreting a number of other phenomena, rang-
ing from elementary particle physics (Jackiw, 1972) and
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galaxy structure (Peebles, 1980) to ;nance and sociology
(Amaral et al., 2001a; Stanley et al., 2002; Liljeros et al.,
2003).

3.2.2. Universality
Another fundamental concept arising from the study of

critical phenomena is universality. The idea has to do with
taxonomy: One can classify all critical systems into “uni-
versality classes.” Assume that one has the experimental
(R�; p; T ) data on ;ve substances near their respective crit-
ical points. For each of the ;ve substances, the data collapse
onto a scaling function, supporting the scaling hypotheses.
More remarkably, the scaling function is the same (apart
from two substance-dependent scale factors) for all ;ve sub-
stances.
The fact that the exponents and scaling functions are the

same for all ;ve substances implies they all belong to the
same universality class. This fact suggests than when study-
ing a given problem, one may pick the most tractable sys-
tem to study and the results one obtains will hold for all
other systems in the same universality class. This result has
been demonstrated exactly for some physical systems and
by renormalization group methods for others (Stanley, 1971,
1999).
This apparent universality of critical behavior motivated

the search for the features of the microscopic interparticle
force which are important for determining critical-point ex-
ponents and scaling functions, and which ones are unimpor-
tant. These questions were answered by numerous works on
the renormalization group (Binney et al., 1992). The studies
led to the idea that when the scale changes, the equations
which describe the system also change accordingly and that
in the macroscopic limit only a few “relevant” features re-
main. When one uncovers universality in a given system, it
means that some profound, usually simple, mechanisms are
at work. This conceptual framework has guided many physi-
cists forays into interdisciplinary research yielding insights
across seemingly dissimilar disciplines.

3.2.3. Discrete models
Discrete-space and discrete-time modeling is based on the

assumption that some phenomena can and should be mod-
eled directly in terms of computer programs (algorithms)
rather than in terms of equations. Cellular automata—which
can be traced to John von Neumann and Stanislaw Ulam
and were further developed and popularized in Conway’s
“game of life” and, more recently, Wolfram—are the sim-
plest example of discrete time and space models that were
developed with the computer in mind.
Examples of the application of cellular automata exist in

physical, chemical, biological and social sciences; they can
be as simple as propagation of ;re and simple predator–prey
models between a handful of species and as complex as the
evolution of arti;cial societies. The central idea is to have
agents that live on the cells of regular d-dimensional lattices

and interact with each other according to prescribed rules.
The basic building blocks may be identical or may di5er
in important characteristics; moreover these characteristics
may change over time, as the agents adapt to their environ-
ment and learn from their experiences—see e.g. Epstein and
Axtell (1996) in the context of the social sciences.
Discrete, or agent-based, modeling has been extremely

successful because of the intuition-building capabilities it
provides and the speed with which it permites the investiga-
tion of multiple scenarios. For this reason discrete modeling
has led in some cases to a replacement of equation-based ap-
proaches in disciplines such as ecology, tra?c optimization,
supply networks, and behavior-based economics. Applica-
tions of cellular automata to problems familiar to chemical
engineers are somewhat more classical, involving :uid-:ow
and :ow of granular matter (e.g. Peng and Herrmann, 1994,
1995; or DTesTerable, 2002).

4. Networks

It has recently become clear that neither random net-
works nor regular lattices are adequate frameworks within
which to study the network of interactions among the units
comprising “real-world” complex systems (Kochen, 1989;
Watts, 1999; Newman, 2000; Strogatz, 2001; Albert and
BarabTasi, 2002; Dorogovtsev and Mendes, 2002), includ-
ing chemical-reaction networks (Alon et al., 1999; Jeong
et al., 2000, 2001; Wagner and Fell, 2001; Ravasz et al.,
2002; Milo et al., 2002; Oltvai and BarabTasi, 2002), neu-
ronal networks (Koch and Laurent, 1999; Lago-Fernandez
et al., 2000), food webs (Pimm et al., 1991; Paine, 1992;
Camacho et al., 2002a,b; Dunne et al., 2002), social net-
works (Wasserman and Faust, 1994; Liljeros et al., 2001;
Jin et al., 2001; Girvan and Newman, 2002; Watts et al.,
2002; Newman, 2003), scienti;c-collaboration net-
works (van Raan, 1990; Newman, 2001), and the In-
ternet and the World Wide Web (Faloutsos et al.,
1999; Albert et al., 1999; Huberman and Adamic, 1999).

4.1. Network theory: a short history

The birth of network (or graph) theory links together two
famous mathematicians: Euler and ErdUos. The “conception”
of the theory is universally attributed to Euler (1736) and
his solution of the celebrated KUonigsberg bridge puzzle. As
stated in Euler’s manuscript: “In the town of KUonigsberg in
Prussia there is an island A, called “Kneipho5”, with the
two branches of the river (Pregel) :owing around it. There
are seven bridges, a, b, c, d, e, f, and g, crossing the two
branches. The question is whether a person can plan a walk
in such a way that he will cross each of these bridges once
but not more than once. [...] On the basis of the above I
formulated the following very general problem for myself:
Given any con;guration of the river and the branches into
which it may divide, as well as any number of bridges, to
determine whether or not it is possible to cross each bridge
exactly once.”
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Fig. 3. The KUonigsberg bridge puzzle (Euler, 1736). (a) The town of KUonigsberg, now Kaliningrad, Russia, had at the time seven bridges connecting
the island of Kneipho5 to the margins of the river Pregel. (b) Schematic representation of the area with the bridges. (c) Euler’s representation of the
problem. Euler realized that physical distance was of no importance in this problem, only topology matters. For this reason the bridges can be represented
as links in a graph connecting nodes representing the di5erent margins and islands.

Euler’s solution of the KUonigsberg bridge puzzle devel-
oped naturally from his formulation of the problem, once
again showing that formulation of a problem is as impor-
tant, if not more than, the solution itself. Euler noticed that
physical distance is of no importance in this problem and
represented the topological constraints of the problem in the
form of a graph—a set of nodes and the set of links con-
necting pairs of nodes (Fig. 3). Euler divided the nodes into
odd and even based on the parity of the degree of the node,
that is, the number of links directly connected to the node.
He then demonstrated that

(1) the sum of degrees of the nodes of a graph is even;
(2) every graph must have an even number of odd nodes.

These results enabled him to show that

(1) if the number of odd nodes is greater than 2 no Euler
walk exists—a Euler walk being a walk between two
arbitrary nodes for which every link in the graph appears
exactly once;

(2) if the number of odd nodes is 2, Euler walks exist start-
ing at either of the odd nodes;

(3) with no odd nodes, Euler walks can start at an arbitrary
node.

Therefore, since all four nodes in the KUonigsberg bridge
problem are odd, Euler demonstrated that there was no so-
lution to the puzzle, that is, there was no path transversing
each bridge only once. Euler’s work was of seminal impor-
tance because it identi;ed topology as the key issue of the
problem, thus enabling his later work on topology and the
establishment of e.g. relations among the numbers of edges,
vertices and faces of polyhedrons.
If the conception of network theory is due to Euler, its

“delivery” is due in great part to ErdUos. As in Euler’s case,

ErdUos interest on network theory is linked to a social puz-
zle: What is the structure of social networks? This problem
was formalized by Kochen and Pool in the a 1950s, leading
them to the de;nition of random graphs (Kochen, 1989)—
graphs in which the existence of a link between any pair of
nodes has probability p. ErdUos, in collaboration with RTenyi,
pursued the theoretical analysis of the properties of random
graphs obtaining a number of important results, including
the identi;cation of the percolation threshold—that is, the
average number of links per node necessary in order for a
random graph to be fully connected—or the typical number
of intermediate links in the shortest path between any two
nodes in the graph.

4.2. Small-world networks

Kochen and Pool’s work, which was widely circulated
in preprint form before it ;nally was published in 1981
(Kochen, 1989), was a percursor to experimental work that
lead to the discovery of the so-called six-degrees of sepa-
ration phenomenon, later popularized in a homonym play
by John Guare. The six-degree of separation phenomenon
is typically referred to in the scienti;c literature as the
small-world phenomenon (Milgram, 1967; Travers and
Milgram, 1969).
A recurrent characteristic of networks in complex sys-

tems is the small-world phenomenon, which is de;ned by
the co-existence of two apparently incompatible condi-
tions, (i) the number of intermediaries between any pair
of nodes in the network is quite small—typically referred
to as the six-degrees of separation phenomenon—and (ii)
the large local cliquishness or redundancy of the network
—i.e., the large overlap of the circles of neighbors of two
network neighbors. The latter property is typical of or-
dered lattices, while the former is typical of random graphs
(BollobTas, 1985).
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Fig. 4. A minimal model for generating small-world networks. Watts and Strogatz construct networks that exhibit the small-world phenomenon by
randomizing a fraction p of the links connecting nodes in an ordered lattice. In the case displayed, the ordered lattice is one-dimensional with 4
connections per node. After Watts and Strogatz (1998).

Recently, Watts and Strogatz (1998) proposed a minimal
model for the emergence of the small-world phenomenon
in simple networks. In their model, small-world networks
emerge as the result of randomly rewiring a fraction p of
the links in a d-dimensional lattice (Fig. 4). The parameter
p enables one to continuously interpolate between the two
limiting cases of a regular lattice (p=0) and a random graph
(p= 1).
Watts and Strogatz probed the structure of their

small-world network model and of real networks via two
quantities: (i) the mean shortest distance L between all pairs
of nodes in the network, and (ii) the mean clustering coef-
;cient C of the nodes in the network. For a d-dimensional
lattice one has L ∼ N 1=d and C = O(1), where N is the
number of nodes in the network. In contrast, for a random
graph one has L ∼ lnN and C ∼ 1=N . Fig. 5a shows the
dependence of L and C on p for the small-world model
of Watts and Strogatz. The emergence of the small-world
regime is clear for p¿ 0:01, as L quickly converges to the
random graph value, while C remains in the ordered graph
range, this two characteristic de;ning a small-world net-
work. Watts and Strogatz (1998) found clear evidence of
the small-world phenomenon for (a) the electric-power grid
for Southern California, (b) the network of movie-actor
collaborations, and (c) the neuronal network of the worm
C. elegans.
A question is prompted by the results of Fig. 5a: “Un-

der which conditions does the small-world regime emerge?”
Speci;cally, does the small-world behavior emerge for a
;nite value of p when N approaches the thermodynamic
limit? (BarthTelemy and Amaral, 1999). Numerical results
and theoretical arguments show that the emergence of the
small-world regime occurs for a value of p that approaches
zero as N diverges (BarthTelemy and Amaral, 1999; Barrat
and Weigt, 2000); cf. Fig. 5b. The implications of this ;nd-
ing are quite important: Consider a system for which there is
a ;nite probability p of random connections. It then follows
that independently of the value of p, the network will be in
the small-world regime for systems with size N ∼ 1=p, the

reason being that to have a ;nite number of random links,
i.e., that Np must be of O(1). This implies that most large
networks are small-worlds! Importantly, the nodes will be
“un-aware” of this fact as the vast majority of them has no
long-range connections (BarthTelemy and Amaral, 1999).

4.3. Scale-free networks

An important characteristic of a graph that is not taken
into consideration in the small-world model of Watts and
Strogatz is the degree distribution, i.e., the distribution of
number of connections of the nodes in the network. The
ErdUos–RTenyi class of random graphs has a Poisson degree
distribution (BollobTas, 1985), while lattice-like networks
have even more strongly peaked distributions—a perfectly
ordered lattice has a delta-Dirac degree distribution. Simi-
larly, the small-world networks generated by the Watts and
Strogatz model also have peaked, single-scale, degree dis-
tributions, i.e., one can clearly identify a typical degree of
the nodes comprising the network.
Against this theoretical background, BarabTasi and

co-workers found that a number of real-world networks
have a scale-free degree distribution with tails that decay
as a power law (Albert et al., 1999; BarabTasi and Albert,
1999). As shown in Figs. 6a–c, the network of movie-actor
collaborations, the webpages in the nd.edu domain, and
the power grid of Southern California, all appear to obey
distributions that decay in the tail as a power law (BarabTasi
and Albert, 1999). Moreover, other networks such as the
network of citations of scienti;c papers also are reported to
be scale-free (Seglen, 1992; Redner, 1998).

BarabTasi and Albert (1999) suggested that scale-free net-
works emerge in the context of growing network in which
new nodes connect preferentially to the most connected
nodes already in the network. Note that scale-free networks
are a subset of all small-world networks because (i) the
mean distance between the nodes in the network increases
extremely slowly with the size of the network BarabTasi
and Albert, 1999; Cohen and Havlin, 2003), and (ii) the
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Fig. 5. Ubiquity of small-world networks. (a) Dependence of L and C on p for the small-world model of Watts and Strogatz. The emer-
gence of the small-world regime is clear for p¿ 0:01, as L(p) quickly converges to the random graph value, while C(p) remains in the or-
dered graph range. After Watts and Strogatz (1998). (b) Dependence of L on p for di5erent network sizes. The numerical results show that
the emergence of the small-world regime occurs for a value of p that approaches zero as N diverges (BarthTelemy and Amaral, 1999; Barrat
and Weigt, 2000). After Barrat and Weigt (2000).

clustering coe?cient is larger than for random networks.
Importantly, scale-free networks provide extremely e?cient
communication and navigability as one can easily reach any
other node in the network by sending information through
the “hubs”, the highly-connected nodes. The e?ciency of
the scale-free topology and the existence of a simple mech-
anism leading to the emergence of this topology led many
researchers to believe in the absolute ubiquity of scale-free
network. As it often happens, one ;nds what one is looking
for!

4.4. Classes of small-world networks

An important aspect question prompted by the work of
BarabTasi and Albert is how to connect the ;ndings of Watts
and Strogatz on small-world networks with the new ;nding
of scale-free structures. Speci;cally, one may ask “Under
what conditions will growing networks be scale-free?” or,
more to the point, “Under what conditions will the action
of the preferential attachment mechanism be hindered?” Re-
call that preferential attachment gives rise to a scale-free de-
gree distribution in growing networks (BarabTasi and Albert,
1999), hence if preferential attachment is not the only factor
determining the linking of incoming nodes one may observe
other topologies. As is illustrated in Figs. 6d–f, Amaral and
co-workers have demonstrated that preferential attachment
can be hindered by at least three classes of factors:
Aging: This e5ect can be illustrated with the network of

actors. In time, every actress or actor will stop acting. For
the network, this implies that even a very highly connected
node will eventually stop receiving new links. The node
may still be part of the network and contributing to network
statistics, but it no longer receives links. The aging of the
nodes thus limits the preferential attachment preventing a
scale-free distribution of degrees from emerging (Amaral
et al., 2000).
Cost of adding links and limited capacity: This e5ect can

be illustrated with the network of world airports. For rea-
sons of e?ciency, commercial airlines prefer to have a small
number of hubs through which many routes connect. To ;rst

approximation, this is indeed what happens for individual
airlines, but when we consider all airlines together, it be-
comes physically impossible for an airport to become a hub
to all airlines. Due to space and time constraints, each airport
will limit the number of landings/departures per hour, and
the number of passengers in transit. Hence, physical costs
of adding links and limited capacity of a node will limit the
number of possible links attaching to a given node (Amaral
et al., 2000).
Limits on information and access: This e5ect can be illus-

trated with the selection of outgoing links from a webpage in
the World Wide Web: Even though there is no meaningful
cost associated with including a hyperlink to a given web-
page in one’s own webpage, there may be constraints e5ec-
tively blocking the inclusion of some webpages, no matter
how popular and well connected they may been. An exam-
ple of such constraints is distinct interest areas—a webpage
on granular mixing is unlikely to include links to webpages
discussing religion (Mossa et al., 2002).
As can be seen in Fig. 7, the presence of constraints

leads to a cut-o5 of the power-law regime in the degree
distribution, and that for a su?ciently strong constraints
the power-law regime disappears altogether (Amaral et al.,
2000). Empirical data suggest the existence of three classes
of small-world networks (Amaral et al., 2000): (a) scale-free
networks; (b) broad-scale or truncated scale-free networks,
characterized by a degree distribution that has a power-law
regime followed by a sharp cut-o5 that is not due to the ;nite
size of the network; (c) single-scale networks, characterized
by a degree distribution with a fast decaying tail, such as ex-
ponential or Gaussian. It is important to note that scale-free
networks are small-world networks but the inverse may not
be true!

5. Some possible chemical engineering applications

Mass and energy transport have been traditional domains
of chemical engineering for ;ve decades now. In many cases
the topology of the system through which the transport is
occurring is unimportant. In this section, we consider two
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Fig. 6. Ubiquity of scale-free networks. Double logarithm plot of (a) the degree distribution of the network of movie-actor collaborations (each node
corresponds to an actor and links between actors indicated that they collaborated on at least one movie); (b) the degree distribution of the webpages in
the nd.edu domain (each node is a webpage and links between webpages indicate hyperlinks pointing to the other webpage); and (c) the degree distri-
bution of the power grid of Southern California (each nodes is a transmission station and links are power lines connecting the stations). After BarabTasi
and Albert (1999). (d) Degree distribution of the nematode C. elegans. Each of the 302 neurons of C. elegans and their connec-
tions has been mapped. Note that the plot is semi-logarithmic, so a straight line indicates an exponential dependence. After Amaral
et al. (2000). (e) Degree distribution of the power grid of Southern California. Note that the data is much better described by an exponential decay then
by a power law decay. After Amaral et al. (2000). (f) Degree distribution of the WWW. Note the truncation of the power law regime. After Mossa
et al. (2002). (g) Distribution of number of sexual partners for Swedish females and males. Note the power law decay in the tails of the distributions.
After Liljeros et al. (2001).

examples for which the way elements of the system are con-
nected determines transport and the dynamics of the system.

5.1. The topology of natural ecosystems

Species in natural ecosystems are organized into complex
webs. Ecologists have studied these webs from the per-
spective of network theory. Every species in the ecosystem
being a node in a network and the existence of a trophic

link—i.e., a prey–predator relationship—between two
species indicating the existence of a directed link between
them.We are far from this ideal, but understanding the struc-
ture of these food webs should be of fundamental impor-
tance in guiding policy decisions concerning, for example,
the recommended limits on consumption of ;sh with high
levels of pollutants, the selection of areas for establishment
of protected ecosystems, or the management of boundary
areas between protected ecosystems and agro-businesses.
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Fig. 7. Truncation of scale-free degree of the nodes by adding constraints
to the model of BarabTasi and Albert (1999). E5ect of cost of adding
links on the degree distribution. These results indicate that the cost of
adding links also leads to a cut-o5 of the power-law regime in the degree
distribution, and that for a su?ciently large cost the power-law regime
disappears altogether. After Amaral et al. (2000).

The study of such questions is extremely challenging for
a number of reasons. First, the characterization of the topol-
ogy of a given ecosystem is a very cumbersome and expen-
sive task, which a priori may be of value only for the partic-
ular environment considered. Second, the precise modeling
of the nonlinear interactions between the numerous individ-
uals belonging to each of the many species comprising the
ecosystem and the stochastic external variables (such as the
climate) a5ecting the ecosystem may be impossible.
This topic has been outside of the province of chemical

engineering. This, however, need not be the case. Consider
for example, contaminant accumulation in aquatic species.
Understanding of mass and energy balances, :uid dynamics
and transport phenomena, statistical mechanics, kinetics, and
applied mathematics are fundamental for the tackling of the
problem on all relevant scales. When looked in its totality,
the case for chemical engineers involvement is compelling.
Recently, Amaral and co-workers studied the topology

of food webs from a number of distinct environments—in-
cluding freshwater habitats, marine–freshwater interfaces,
deserts, and tropical islands—and found that this topology
may be identical across environments and described by sim-
ple analytical expressions (Camacho et al., 2002a,b, 2004).
This ;nding is demonstrated in Fig. 8, where, as an example,
we present the distributions of number of prey and number
of predators for the species comprising eight distinct food
webs.
In the same spirit, a recent paper in Nature reports on a

study of food webs as transportation networks (Garlaschelli
et al., 2003). The underlying idea is that the directional-
ity of the links (pointing from prey to predator) de;nes a
“:ow” of resources—energy, nutrients, prey—between the
nodes of the network. Because every species feeds directly
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Fig. 8. Test of the “scaling hypothesis” that the distributions of number
of prey (predators) have the same functional form for food webs from
di5erent environments. (a) Cumulative distribution Pprey of the scaled
number of prey k=2z for eight distinct food webs (see Camacho et al.,
2004 for details). The solid line is the analytical prediction derived in
Camacho et al. (2002a). The data “collapses” onto a single curve that
agrees well with the analytical results derived in Camacho et al. (2002a).
(b) Cumulative distribution Ppred of the scaled number of predators m=2z
for the same eight webs as in (a). The solid lines are the analytical
predictions of. Semi-logarithmic plot of the scaled distributions of (c)
number of prey, and (d) number of predators. After Camacho et al. (2004).

or indirectly on environmental resources, food webs are con-
nected (that is, every species can be reached by starting from
an additional “source” node representing the environment.
This fact enabled Garlaschelli et al. (2003) to de;ne a span-
ning tree on any food web—i.e., a loopless subset of the
links of the web such that, starting from the environment,
every species can be reached. Importantly, they ;nd that
those spanning trees are characterized by universal scaling
relations.
These results are of great practical and fundamental im-

portance because they are consistent the hypothesis that scal-
ing and universality hold for ecosystem—i.e., food webs
display universal patterns in the way trophic relations are
established despite apparently signi;cantly di5erences in
factors such as environment (e.g. marine versus terrestrial),
ecosystem assembly, and past history. This fact suggests that
a general treatment of the problems considered in environ-
mental engineering may be within reach.

5.2. Cellular networks

The complexity of the web of nonlinear interactions be-
tween genes, proteins and the environment necessitates the
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development of simpli;ed models to illuminate biological
function. As Vogelstein et al. (2000) wrote recently: “How
can the vast number of activating signals, covalent and
non-covalent modi;cations, and downstream regulators of
p53 be put into context? One way to understand the p53 net-
work is to compare it to the Internet. [...] An appreciation of
the existence and complexity of cellular networks should en-
able more rational design and interpretation of experiments
in the future, and should allow more realistic approaches to
treatment.”
A number of recent studies have indeed started to high-

light the existence and complexity of cellular networks. Olt-
vai, BarabTasi and co-workers performed a systematic analy-
sis of the metabolic networks of 43 organisms representing
all three domains of life (Jeong et al., 2000). They found
that, despite signi;cant variation in their individual con-
stituents and pathways, these metabolic networks have the
same topological scaling properties and show striking simi-
larities to the inherent organization of complex nonbiologi-
cal systems. They concluded that metabolic organization is
not only identical for all living organisms, but also com-
plies with the design principles of robust and error-tolerant
scale-free networks, and may represent a common blueprint
for the large-scale organization of interactions among all
cellular constituents (Jeong et al., 2000).
The same group also studied the protein–protein interac-

tion network for two organisms, the yeast S. cerevisiae and
the bacteriumH. pylori (Jeong et al., 2001). They found that
the network of protein interactions for these two organisms
form a highly inhomogeneous scale-free network in which a
few highly connected proteins play a central role in mediat-
ing interactions among numerous, less connected proteins.
Further, Jeong et al. (2001) tested the importance of the

di5erent proteins for the survival of the yeast by mutating
its genome. For random mutations, they found that removal
does not a5ect the overall topology of the network. How-
ever, they found that the likelihood that removal of a protein
will prove lethal correlates with the number of interactions
the protein has. For example, although proteins with ;ve
or fewer links constitute about 93% of the total number of
proteins, they found that only about 21% of them are es-
sential. By contrast, only some 0.7% of the yeast proteins
with known phenotypic pro;les have more than 15 links,
but single deletion of 62% or so of these proves lethal. This
implies that highly connected proteins are three times more
likely to be essential than proteins with only a small number
of links to other proteins.
In order to uncover the structural design principles of

complex networks, Uri Alon and co-workers de;ned net-
work motifs, patterns of interconnections occurring in real
networks at numbers that are signi;cantly higher than those
in randomized networks (Milo et al., 2002). They found mo-
tifs in networks from biochemistry, neurobiology, ecology,
and engineering. Remarkably, the motifs shared by ecolog-
ical food webs were distinct from the motifs shared by the
genetic networks of E. coli and S. cerevisiae or from those

found in the World Wide Web. Similar motifs were found in
networks that perform information processing, even though
they describe elements as di5erent as biomolecules within a
cell and synaptic connections between neurons in the worm
C. elegans.
Speci;cally, the two transcription networks and the neu-

ronal connectivity network of C. elegans show the same
motifs: a three-node motif termed “feedforward loop” and
a four-node motif termed “bi-fan”. The feedforward loop
motif, in particular, may play a functional role in informa-
tion processing. One possible function of this circuit is to
activate output only if the input signal is persistent and to
allow a rapid deactivation when the input goes o5. Many of
the input nodes in the neural feedforward loops are sensory
neurons, which may require this type of information pro-
cessing to reject transient input :uctuations that are inherent
in a variable or noisy environment.
An area where chemical engineers are already con-

tributing to a systems’ approach to the study of cellular
networks is the important work being done on metabolic
engineering.

6. The meaning of prediction and the study of complex
systems

Much discussion and debate, not always useful, has arisen
when evaluating the fruits of a complex systems approach
to problems. In our view, much of the disagreement is due
to overly restrictive views of what is meant by prediction
and what the limits to prediction are.
In order to put this question into perspective, let us ex-

amine the most usual meaning of prediction in the natu-
ral sciences, the “Newtonian” de;nition, put forward in its
strongest form by Laplace and the meaning under which
most scientists still operate today. In Newtonian physics
one is able to predict the future and post-dict the past of
any system for which one knows the position and velocity
of all particles. A modern perspectic reveals a number of
de;ciencies.
First, it does not take into consideration computability is-

sues. These are of two kinds. Assume one wants to compute
the state of the entire universe, would not the “computer”
be part of the system? Clearly, one cannot possibly model
the behavior of the entire Universe, as that would not leave
us with any material substrate with which to store the infor-
mation or with which to perform the computation, for the
same reason that one cannot draw a map that contains every
detail of the real-world as the map must then be part of the
map itself. Even if one would consider only a subset of the
Universe, say, the water in a glass, one would still have to
take into consideration the in:uence of the rest of the Uni-
verse on the water. One could easily model such in:uence
as ‘noise’ acting on the system but that noise would destroy
our ability to implement the Laplacian goal of predicting
exactly the position and velocity of all particles.
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Second, the study of deterministic nonlinear systems has
clearly demonstrated the impossibility in exactly predicting
of the velocities and positions of even simple systems inter-
acting nonlinearly. The extreme dependence on initial con-
ditions of chaotic nonlinear systems implies that in order to
predict the positions and velocities of the units comprising
a system interacting nonlinearly one would need to be able
to measure initial velocities and positions exactly, a clearly
unattainable goal even without considering quantum e5ects.
Moreover, even if Newtonian prediction was possible,

it would not, in our view, convey in an enlightening and
conceptual-building way the relevant information about the
system. Consider again the water in a glass; it is clear that
one can in principle determine the macroscopic state of the
system—solid, liquid, or gas—and its temperature, volume
and pressure from a complete description of the positions
and velocity of the O(1023) particles composing the sys-
tem. However, would one want to do this? Clearly, the val-
ues of the macroscopic thermodynamic quantities provide a
considerably more parsimonious description of the system.
And, unarguably, the thermodynamic description of the sys-
tem permits a deeper insight into the behavior of the system
than the Newtonian approach of calculating forces and de-
termining trajectories of all particles.
A more relevant class of what constitutes prediction in

the context of the study of complex systems originated with
developments in our understanding of phase transitions and
critical phenomena. Close to the critical point most details
of the system become irrelevant and the behavior of the
systems is determined by a small number of relevant param-
eters and “mechanisms”. For this reason, systems that may
be very di5erent in their details are actually described by the
exact same scaling functions and sets of exponents (Stanley,
1971, 1999). A striking example of this type of predic-
tion is the derivation of so-called allometric relationships:
For example, the functional relationship between an or-
ganism’s mass and its metabolic rate holds for organisms
varying in mass over 27 orders of magnitude (; West
et al., 1997; Banavar et al., 1999).

7. Concluding remarks

Dynamics and robustness of metabolic pathways, ecosys-
tems, the web, and the US power grid; the propagation of
HIV infections and the transfer of knowledge within orga-
nizations. These are all systems that fall within the scope
of complex systems. The common characteristic of all com-
plex systems is that they display organization without any
external organizing principle being applied; a central char-
acteristic is adaptability. The topic has already captured the
attention of physics, biology and ecology, economics and
social sciences. Where does engineering appear in this spec-
trum? And more speci;cally: Whats the role of chemical
engineers?

In engineering, and chemical engineering in particular, we
do both technology and science; we make and we explain.
We explain (andmodel) phenomena and processes; wemake
materials and design processes. Some problems we pick;
others are thrust upon us.
The hallmark of complex systems is adaptability and

emergence: No one designed the web, the US power grid, or
the metabolic processes within a cell. And this is where the
conceptual con:ict with engineering arises. Engineering is
not about letting systems be (Ottino, 2004). The etymology
of engineer, the verb and the noun, is revealing: ingenitor,
contriver, ingenire, to contrive, as in to engineer a scheme.
Engineering has a purpose and end result. Engineering is
about convergence, assembling pieces that work in speci;c
ways, optimum design and consistency of operation; the
central metaphor is a clock. Complex systems, on the other
hand, are about adaptation, self-organization and continu-
ous improvement; the metaphor may be an ecology. It is
robustness and failure where both camps merge. However,
a successful merge will require augmenting the conceptual
framework, even to the point of reshaping what one means
by prediction.
In this paper we have focused on topological aspects of

complexity; how agents are connected and what are the
consequences of those interactions. An expansion of what
constitutes complexity may be appropriate at this point.
A complex system may alternatively be imagined as being
comprised of a large number of units that interact with each
other and with their environment; the interaction among
units may be across length and time scales; the units can be
all identical or di5erent, they may move in space or occupy
;xed positions, and can be in one state or multiple states.
Thus, if one follows this de;nition, then tools based on

agent-based models come to the forefront. Alternatively one
may de;ne a complex system by (i) what it does: display or-
ganization without any organizing principle being applied,
i.e. behavior emerges; or by (ii) how it may or may not
be analyzed: decomposing the system and analyzing a part
does not give a clue as to the behavior of the whole. This
is probably the broadest de;nition: A complex system may
be de;ned as a system that displays either (i) and/or (ii).
Agent-based models and network theory contribute to ex-
plain (i); network theory provides tools on how to address
some aspects (ii), as we have described in this article.
Many classical problems of engineering interest fall under

(ii) as well. Granular dynamics provides an illustration. A
classical example is the work of vibrated granular layers of
(Umbanhowar et al., 1996) and the formation of oscillons.
Detailed analysis of individual particles does not reveal the
self-organization that takes place as the forcing of the sys-
tem is changed. Other problems that squarely ;t in this cat-
egory are the many instances of multiscale modeling, cases
where there is a linkage among a wide spectrum of length
and time scales as in many cases of materials modeling,
where there is a linkage between atomistic to macroscopic
scales (Maroudas, 2000). Continuum physics provides other
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examples that conceptually ;t in the complex systems area,
though it is unclear at the moment is any of the complex
systems tools will be able to yield increased understanding
of the main issues. Here we have in mind multiphase tur-
bulent :ow problems, where very strong :uctuations occur,
and may be imagined as multiscale in both space and time,
typically handled by means of coarse-graining.
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