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We apply methods and concepts of statistical physics to the study of science & technology
(S&T) systems. Specifically, our research is motivated by two concepts of fundamental
importance in modern statistical physics: scaling and universality. We try to identify robust,
universal, characteristics of the evolution of S&T systems that can provide guidance to forecasting
the impact of changes in funding. We quantify the production of research in a novel fashion
inspired by our previous study of the growth dynamics of business firms. We study the production
of research from the point of view both of inputs (R&D funding) and of outputs (publications and
patents) and find the existence of scaling laws describing the growth of these quantitics.
We also analyze R&D systems of different countries to test the “universality” of our results.
We hypothesize that the proposed methods may be particularly useful for ficlds of S&T (or for
levels of aggregation) for which cither not enough information is available, or for which evolution
is so fast that there is not enough time to collect enough data to make an informed decision.

Introduction

The choices of decision makers have a fundamental role in the development and
evolution of a national science and technology (S&T) system. This fact is clearly
highlighted by the impact, nearly half a century ago, of Vannebar Bush’s “Report to the
President on a Program for Postwar Scientific Research” on the establishment of the
bipartisan approach of the USA to research and development (R&D).12

Decisions on how much to spend on R&D, how to partition funds among disciplines
(e.g., life sciences or natural sciences?), or how much to spend on focussed problems
(e.g., Human Genome Project, global warming, renewable sources of energy) can have a
dramatic impact of what advances might occur first, and may even seriously jeopardize
the competitiveness of a S&T system if a wrong strategic decision is made.3* Such
concerns are particularly pressing nowadays due to (i) the increased scale and resources
of the S&T systems as compared to 50 years ago, (ii) the increased rate of change of

0138-9130/2001/US 8 15.00
Copyright © 2001 Akadémiai Kiadd, Budapest
All rights reserved



L. A. N. AMARAL ct al.; Application of statistical physics methods and concepts

scientific advances, and (iii) the multidisciplinary character of cutting-edge research
(consider, e.g., the new field of bioinformatics, where biologists, mathematicians and
physicists are sometimes cooperating and sometimes competing).

To make informed choices, the decision maker needs information that is timely,
reliable, and clear. In an answer to these needs, the field of quantitative S&T studies has
gone through a revolutionary period,> with many developments occurring in the
identification of new indicators.® In spite of these new advances this is still an extremely
complex problem, for instance, indicators are by definition retrospective and heuristic.
Moreover, there are many difficulties in developing indicators’ that are general and
robust and can be applied across (i) the different S&T fields, (ii) for different
aggregation3-12 levels (from research groups to entire countries), and (iii) equally well
for input and output measures.

Specifically, fields where advances are slower or where the resources involved are
not too large (as pure mathematics) are much easier to quantify and manage than, for
example, the life sciences where Federal investment is nowadays very large and for
which the pace of change is staggeringly fast. Moreover, it is easier to forecast the
impact of an increase in expenditure in the number of researchers, or the spending in
new equipment, than it is to forecast what the impact will be in the number of
publications, or the number of citations or even the shifting in the direction of the field.

Our goal is to bring to bear on this problem concepts of statistical physics.
Specifically, we guide our research by two concepts of fundamental importance in
modern statistical physics: scale-invariance and universality. We try to identify robust,
universal, characteristics of the evolution of S&T systems that can prove useful in
forecasting the impact of changes in funding. Our proposed methods may be particularly
useful for those fields of S&T (or for levels of aggregation) for which either not enough
information is available or for which evolution is so fast that there isn’t enough time to
collect enough data to make an informed decision.

For our proposed approach to be useful, we first have to show that the principles of
universality and scaling — which hold for complex physical systems — will also apply for
S&T systems. In our preliminary work!3:14 we have tested these principles. We have
quantified the production of research in a novel fashion inspired by our study of the
growth dynamics of business firms. We studied the production of research from the
point of view both of inputs (R&D funding) and of outputs (publications and patents).
We also analyzed R&D systems of different countries to test the universality of our
results.
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Scaling and universality: Two concepts of modern statistical physics

Statistical physics deals with systems comprising a very large number of strongly-
interacting subunits. Predicting the exact behavior of the individual subunit would be
impossible, so one is limited to making statistical predictions regarding the collective
behavior of the subunits. In the last century, statistical physics has begun to address
systems (i) that are out of equilibrium, that is, systems driven by external “forces”, and
(ii) for which the exact interactions between the subunits comprising the system are not
known. Recently, it has come to be appreciated that many such systems which consist of
a large number of interacting particles obey universal laws that are independent of the
microscopic details (will be given later in this section examples).

The finding, in physical systems, of universal properties that do not depend on the
specific form of the interactions gives rise to the intriguing hypothesis that universal
laws or results may also be present in economic and social systems. An often-expressed
concern regarding the application of physics methods to the social sciences is that
physical laws are said to apply to systems with a very large number of subunits (of order
of =1023) while social systems comprise a much smaller number of elements. However,
the “thermodynamic limit” is reached in practice for rather small systems. For example,
in early computer simulations of gases or liquids reasonable results are already obtained
for systems with 102-103 particles.

Background

First we introduce some of the advances that have occurred in our understanding of
phase transitions and critical phenomena. Suppose we have a simple bar magnet. We
know it is a ferromagnet because it is capable of picking up thumbtacks, the number of
which is called the order parameter M. As we heat this system, M decreases and
eventually, at a certain critical temperature 7, it reaches zero: no more thumbtacks
remain! In fact, the transition is remarkably sharp, since M approaches zero at T, with
infinite slope. Such singular behavior is an example of a “critical phenomenon.”

The recent past of the field of critical phenomena has been characterized by several
important conceptual advances, two of which are scaling and universality.

Scaling

The scaling hypothesis has two categories of predictions, both of which have been
remarkably well verified by a wealth of experimental data on diverse systems. The first
category is a set of relations, called scaling laws, that serve to relate the various critical-
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point exponents characterizing the behavior of functions such as M. For example, the
magnetization M decays to zero at the critical temperature with an infinite slope which is
quantified by a critical exponent. Similarly, other thermodynamic quantities display
divergent behavior at the critical temperature. These behaviors are also quantified by
different critical exponents. The scaling laws relate a sub-set of these critical exponents
to the spatial dimension of the system under study.

The second category of predictions — which is more relevant to our study — is a sort
of data collapse. To understand the importance of this fact, we will first take a short
detour from our discussion, and present a simplified overview of some thermodynamic
results.

Consider again the magnet bar we have been discussing. Remarkably, the
macroscopic state of this magnet — that is, those characteristics of the magnet that can be
measured without probing the state of individual atoms — can be uniquely characterized
by just a few quantities: temperature 7, applied magnetic field H, and magnetization M,
Surprisingly, thermodynamics tells us that (any) one of these three quantities can be
written as a function of the other two. This functional relationship — the so-called
equation of state — can be written, for example, as M=M(H,T). That is, given a
temperature and applied magnetic field, one can calculate the magnetization, i.e., how
many thumbtack our magnet picks up.

Close to the critical temperature, one can write the equation of state as M= M(H,1),
where 1=(7-T,)/T, is a dimensionless measure of the deviation of the temperature T
from the critical temperature 7. Since M(H,T) is a function of two variables, it can be
represented graphically as M vs. T for a sequence of different values of H.

The scaling hypothesis!®:19 predicts that all the curves of this family can be
“collapsed” onto a single curve provided one plots not M vs. T but rather a scaled M (M
divided by H to some power) vs. a scaled T (1 divided by H to some different power)

M(H,1) = H"f(ib). )
H
The predictions of the scaling hypothesis are supported by a wide range of
experimental work, and also by numerous calculations on model systems. Moreover, the
general principles of scale invariance used here have proved useful in interpreting a
number of other phenomena, ranging from elementary particle physics!® and galaxy
structure!6 to finance.!”
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Universality

The second theme goes by the name “universality”. The utility of this concept is
maybe better expressed through an analogy with the Mendeleev periodic table of atomic
elements, Last century, Mendeleev notice that some elements shared similar physical
and chemical properties. That observation prompted him to organize the known atomic
elements at the time into a table in which atomic elements with similar properties
occupied the same column. By organizing the elements into this table, Mendeleev found
that some cells of this periodic table were left empty. Later it was found that those
empty cells correspond to newly discovered atomic elements whose chemical and
physical properties were well predicted by their position in the table.

Analogously, in statistical physics, it was found empirically that one could form a
table in which the cells are occupied by a given system, e.g., a magnet, water at the
critical point, or a polymer at its collapsing temperature. Surprisingly, these a priori
rather different systems could be organized into a few classes, each class being
described by the same scaling functions and the same set of scaling exponents.

This result is of great theoretical interest and it motivates an intriguing question:
“Which features of this microscopic inter-particle force are important for determining
critical-point exponents and scaling functions, and which are unimportant?”

Moreover, the discovery of universality in physical systems is also of great practical
interest. Specifically, when studying a given problem, one may pick the most tractable
system to study and the results one obtains will hold for all other systems in the same
universality class.

Scale-invariance in systems outside of physics

At one time, it was imagined that the “scale-free” phenomena are relevant to only a
fairly narrow slice of physical phenomena.!® However, the range of systems that
apparently display power law and hence scale-invariant correlations has increased
dramatically in recent years, ranging from base pair correlations in non-coding DNA,20
lung inflation,21 plaque aggregation in Alzheimer’s disease,22 and interbeat intervals of
the human heart?3 to complex systems involving large numbers of interacting subunits
that display “free will,” such as city growth,24 stock price fluctuations2S and currency
exchange fluctuations.26

Moreover, and of greater relevance to the proposed work, we have recently shown
that scaling and universality hold for economic organizations.!3:27-29 Namely, we found
that the distributions of growth rates for both business firms and the gross domestic
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product (GDP) of entire countries are described by the same universal functional form
and that the standard deviation of the distribution depends on organization size as a
power law.

Scaling and universality in the growth of economic organizations

In the study of physical systems, the scaling properties of fluctuations in the output
of a system often yield information regarding the underlying processes responsible for
the observed macroscopic behavior.1819:30 With that in mind, we analyzed the
fluctuations in the growth rates of different economic organizations.

Empirical results for business firms

In collaboration with an economist, Michael A. Salinger of Boston University, we
investigated the growth dynamics of US business firms. A classic problem in industrial
organizations is the size distribution of business firms.3! For some time, it was assumed
that firm size obeyed a rank-size law,32 that is, that the distribution of sizes decays a
power law of the size. In Figure 1a we show the distribution of log-sizes for US business
firms, it is clear that the distribution has a fast decaying tail, inconsistent with a power
law dependence.

We next consider the annual growth rate — that is to say, the fluctuation — of a firm’s
size,

g(r) = 1og(M) , @

S(1)
where S(7) and S(z+1) are the sales in US dollars of a given firm in the years 7 and #+1,
respectively. We expect that the statistical properties of the growth rate g depend on S,
since it is natural that the magnitude of the fluctuations g will decrease with S.
Therefore, we partition the firms into bins according to their sales — the size of the firm.
Figure 1b shows a log-linear plot of the probability distribution of growth rates for three
sizes. In such a plot, a Gaussian distribution has a parabolic shape. It is apparent from
the graph that the distributions are not Gaussian. Furthermore, it appears from the graph
that the form of the distributions for the different sizes are similar. Indeed, Figure 1b
suggests that the conditional probability density, p(g|S), has the same functional form,
with different widths, for all S.

14 Scientometrics 51 (2001)
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Figure 1. (a) Histogram of the sales S for publicly-traded manufacturing companies (with standard industrial
classification index of 2000-3999) in the US for eack of the years in the 1974-1993 period. All the
values for sales were adjust to 1987 dollars by the GDP price deflator. Also shown (solid circles) is
the average over the 20 years. It is visually apparent that the distribution is approximately stable
over the period. (b) Probability density p(7|S) of the growth rate » for all publicly-traded US
manufacturing firms in the 1994 Compustat database with Standard Industrial Classification index
of 2000-3999. The distribution represents all annual growth rates observed in the 19-year period
1974-1993. We show the data for three different bins of initial sales. The solid lines are exponential
fits to the empirical data close to the peak. We can see that the wings are somewhat “fatter” than
what is predicted by an exponential dependence.
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Figure 1. (¢) Scaled probability density p,., = 0p(glS) as a function of the scaled growth rate g, = [g—gl/0.
The values were rescaled using the measured values of g and 0. All the data collapse upon the
universal curve pg., =A—Ig.). (d) Standard deviation of the 1-year growth rates o for different
definitions of the size of a company as a function of the initial values. We find that o5 B. The
straight lines are guides for the eye and have slopes 0.19.
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To test if the conditional distribution of growth rates has a functional form
independent of the size of the company, we plot the scaled quantities:

g g
o(S)p| ——I|S |vs. ——, 3
( m(dsﬂj a(s) @
where the function fis independent of S.
Figure 1¢ shows that the scaled conditional probability distributions “collapse” onto
a single curve,19 suggesting that p(g|S) follows a universal scaling form [cf. Eq. (1)]

1 g
_s | 4
G(S)f(G(S)) @
We next calculate the standard deviation o(S) of the distribution of growth rates as a
function of S. Figure 1d demonstrates that o(S) decays as a power law

o(S) ~ 5P, Q)

with 3=0.19£0.05. One may ask if these results are only valid when the size of the firm
is defined to be the sales. To test this possibility, we perform similar an analysis
defining the size of the firms as (i) the number of employees, (ii) the assets, (iii) cost of
goods sold (COGS), and (iv) plants, property and equipment (PPE). Figure 1d confirms
that consistent results are obtained for all the above measures.

These results are intriguing for a number of reasons. First, we find consistent results
for a set of firms belonging to a wide range of industries (from services in the bin for the
smallest firms to oil and car companies in the bin for the largest firms). Second, we find
consistent results for quite different types of measures of a firms’ size, some such as
COGS, PPE, assets and number of employees are input measures, while sales is an
output measure. These two points suggest that universality is present in the growth
dynamics of business firms. Third, we find power law scaling in the width of the
distribution of growth rates, an unexpectedly “simple” results that suggests that simple
mechanisms may explain our observations.

p(glS)~

Empirical results for countries
In collaboration with another economist, David Canning from The Queen’s College

in Dublin and Harvard University, we extended the analysis described in the previous
subsections to the economy of countries. As earlier, we first consider the distribution of
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sizes S of a countries economy. Usually, the size of an economy is quantified by the
gross domestic product (GDP) of the country.33 Here, we detrend S by the world
average growth rate, calculated for all the countries and years in our database.34 We
find that p(logS) is consistent with a Gaussian distribution, implying that P(S) may be a
log-normal. We also find that the distribution P(S) does not depend on the time period
studied.

Next, we calculate the distribution of annual growth rate g, as defined in Eq. (2),
where S(¢) and S(¢+1) are the GDP of a country in the years 7 and #+1. As for business
firms, we expect that the statistical properties of the growth rate g depend on S, since it
is natural that the magnitude of the fluctuations g will decrease with S. Therefore, we
partition the countries into bins according to their GDPs. We calculate the probability
distribution of growth rates for three GDP sizes (small, medium and large) and find that
the distributions are not Gaussian. Furthermore, as for business firms, the form of the
distributions for the different sizes are consistent.

To test if the conditional distribution of growth rates has a functional form
independent of the size of the company, we plot the scaled quantities (3). Figure 2a
shows that the scaled conditional probability distributions “collapse” onto a single
curve, !9 suggesting that p(g|S) follows the universal functional form (4).

We next calculate the standard deviation a(S) of the distribution of growth rates as a
function of S. Figure 2b demonstrates that o(S) decays as a power law, o(S)~S~P, with
=0.15+£0.05. We have also confirmed these results by a maximum-likelihood
analysis.3> In particular, we find that the log-likelihood of p(g|S) being described by an
exponential distribution — as opposed to a Gaussian distribution — is of the order of ¢600
to 1. Similarly, we test the log-likelihood of o obeying Eq. (5). We find that Eq. (5) is
130 more likely than o(G)=const, and that adding an additional nonlinear term to Eq.
(5) does not increase the log-likelihood.

Surprisingly, we find that the same functional form appears to describe the
probability distribution of annual growth rates for both the GDP of countries and the
sales of firms; cf. Figure 2a. This result strongly suggests that universality, as defined in
statistical physics, holds for the growth dynamics of economic organizations.

18 Scientometrics 51 (2001)
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Figure 2. (a) Probability density function of annual growth rate for two subgroups with different ranges of G,

where G denotes the GDP detrended by the average yearly growth rate. The entire database was
divided into three groups: 6.9x107<G<2.4x10°, 2.4x10°<G<2.2x101%, and 2.2x101°<G<7.6x10',
and the figure shows the distributions for the smallest and largest groups. We consider only three
subgroups in order to have enough events in each bin for the determination of the distribution. We
plot the scaled probability density function, o(S)p(g/0(S)|S), of the scaled annual growth rate,
(g—2)/o(S) to show that all data collapse onto a single curve. (b) Standard deviation o(S) of the
distribution of annual growth rates as a function of .S, together with a power law fit (obtained by a
least square linear fit to the logarithm of o vs. the logarithm of S). The slope of the line gives the
exponent (3, with 3=0.15. We show the calculated standard deviation for two procedures: (i) for
each individual country over the 42-yr period of the data, and (ii) for binned data according to size
of GDP.
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Modeling the growth dynamics of economic organizations

We next address the question of how to interpret our empirical results. We first note
that an organization, such as a business firm, will comprise several subunits — the
divisions of a firm. A reasonable zero-order approximation3® is that the size of the
different subunits comprising a firm will grow independently. Hence, we may view the
growth of the size of each firm as the sum of the independent growth of subunits with
different sizes. A model incorporating these assumptions3’ was recently proposed to
describe the scale-invariant growth dynamics of different types of organizations.

Our model dynamically builds a diversified, multi-divisional structure, reproducing
the fact that a typical firm passes through a series of changes in organization, growing
from a single-product, single-plant firm, to a multi-divisional, multi-product firm.38 The
model reproduces a number of empirical observations for a wide range of values of
parameters and provides a possible explanation for the robustness of the empirical
results. Indeed, our model may offer a generic approach to explain power law
distributions in other complex systems.

The model, illustrated in Figure 3, is defined as follows. A firm is created with a
single division, which has a size &;(#=0). The size of a firm S=3; {,(¢) at time 7 is the
sum of the sizes of the divisions (#) comprising the firm. We define a minimum size
Smin Pelow which a firm would not be economically viable, due to the competition
between firms; S . is a characteristic of the industry in which the firm operates. We
assume that the size of each division i of the firm evolves according to a random
multiplicative process.3! We define

Ag; (1) =& (DN, (1), 6

where n(7) is a Gaussian-distributed random variable with zero mean and standard
deviation V independent of &;. The divisions evolve as follows:

(i) If AELH)<Spin> division i evolves by changing its size, and ,(1+1) = ()AL (7).
If its size becomes smaller than S, —i.e. if € (++1)<S,;, — then with probability
P, division i is “absorbed” by division 1. Thus, the parameter p,, reflects the fact
that when a division becomes very small it will no longer be viable due to the
competition between firms.

(i) If AE(H>Smin> then with probability (1-pp, we set E(t+1)=E(DHAE(r). With a
probability ps division i does not change its size — so that E(t+1)=¢ ) —and an
altogether new division j is created with size Ej(t+1) =A& (). Thus, the parameter
pyreflects the tendency to diversify: the larger is p; the more likely it is that new
divisions are created.

20 Scientometrics 51 (2001)
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Figure 3. Schematic representation of the time evolution of the size and structure of a firm. We choose
Siin=2, and p/=p,=1.0. The first column of full squarcs represents the size &; of each division,
and the second column represents the corresponding change in size AE;. Empty squares represent
negative growth and full squares positive growth, We assume, for this example, that the firm has
initially one division of size &, =25, represented by a 5x5 square. At z=1, division 1 grows by
A&, =3. A new division, numbered 2, is created because AE>S, ., =2, and the size of division 1
remains unchanged, so for =2, the firm has 2 divisions with sizes §;=25 and &,=3. Next,
divisions &, and &, grow by 2 and -2, respectively, Division 2 is absorbed by division 1, since
otherwise its size would become §,=3-2=1 which is smaller than S_; . Thus, at time 7=3, the
firm has only onc division with size &; =25+2+1 =28. Note that if division 1 would be absorbed,
then division 2 would absorb division 1 and would then be renumbered 1. If, division 1 is absorbed
and there are no more divisions left, the firm “dies.”

The present model rests on a small number of assumptions. The three key
assumptions are: (i) Firms tend to organize themselves into multiple divisions once they
achieve a certain size. This assumption holds for many modern corporations.38 (ii)
There is a broad distribution of minimum scales in the economy. This assumption has
also been verified empirically.3? (iii) Growth rates of different divisions are independent
of one another. For an economist, the third is the stronger of these assumptions.
However, a recent study by John Sutton of the London School of Economics finds
empirical support for this hypothesis.36
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There are two features of our results that are perhaps surprising. First, although firms
in our model consist of independent divisions, we do not find B=1/2. To understand
why [<1/2, suppose that the distribution of s,,=InS,,, is a Dirac d-function. Although
this assumption is unrealistic, it leads to an understanding of the underlying mechanisms
in the model. In this case, it is a plausible assumption that the number of divisions will
increase linearly with firm size, because the distribution of division sizes is narrow and
confined between S,,;, and S;,/V. This hypothesis is confirmed numerically, and we
find (i) B=1/2 and, (ii) that the distribution of the logarithm of firm sizes is still close to
Gaussian, with a width w which is a function of the parameters of the model. Then, by
integration of the distribution of the logarithm of firm sizes over s,,, we can estimate the
value of B for the case of a broader distribution of s,,. Suppose that s, follows some
arbitrary distribution with width v. Averaging 02(S) over this distribution, we find

=%
2(v+w)

Q)

To gain intuition on the results predicted by the expression, consider two
representative cases: (1) v=0 implies f=1/2, (2) v=w implies B=w/(4w)=1/4. For a
wide range of the values of the model’s parameters, we find v>w implying that 3 is
remarkably close to the empirical value $=0.2.

Second, the distribution p(g|S) is not Gaussian but “tent” shaped. We find this result
arises from the integration of nearly-Gaussian distributions of the growth rates over the
distribution of S .

Predictions for an organizations’ structure

We next address the question of the structure of a given firm. To this end, we
calculate the probability density p(&|S) to find a division of size & in a firm of size S. For
the model, we find that the distribution p is scaled as a power law up to S® and then it
decays exponentially. Hence, we make the hypothesis that p obeys the scaling relation

[cf. Eq. (1)]
1 §
P(EIS) ~ S—f(S—aj , ®)
where f{u)~u' for u<<1 with 1=2/3.
The results described by Eq. (8) are in qualitative agreement with empirical

studies*0 that show larger firms to be more diversified. Moreover, Eq. (8) implies that
the number of independent subunits in a firm of size S scales as S1-9. Since N does not
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change much during a year and assuming that the subunits have similar sizes, we can
apply the central limit theorem, from which it follows that o~N-12, leading to the
testable scaling law

B=(1-0)2. ©9)

Analysis of R&D growth at US universities

The impact of S&T activities on a country’s economy led us to consider the question
of the growth dynamic of R&D activities within a given national system. In particular,
we hypothesized that the growth of R&D activities might mimic that of business firms.
To test this hypothesis, we analyzed the fluctuations in the growth rates of university
research activities, using five different measures of research activity. We studied the
production of research both from the point of view of inputs — R&D funding — and
outputs — publications and patents. First, we will consider an input quantity, the R&D
expenditures of US research universities.!3

Empirical analysis: R&D inputs

We analyzed an NSF database containing the annual R&D expenditures for science
and engineering of more than 500 US universities*! for the 17-year period 1979-1995
(=12,000 data points). The expenditures — a measure of R&D inputs — are broken down
by school and department. As in Eq. (2), the annual growth rate of R&D expenditures is
defined as

s =1og 020, (10

where S(7) and S(z+1) are the R&D expenditures of a given university in the years
t and t+1, respectively. Also, as before, we expect that the statistical properties of the
growth rate g will depend on S. In fact, it is natural that the magnitude of the
fluctuations in g will decrease with S. As shown in Figure 4a, we partition the
universities into three classes according to the size of their R&D expenditures. Figure
4b shows a log-linear plot of the probability distribution of growth rates for the three
size-classes of universities. In such a plot, a Gaussian distribution has a parabolic shape.
It is apparent from the graph that the shapes are not parabolic, i.e., that the distributions
are inconsistent with Gaussian statistics.
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Figure 4. Growth dynamics of research activitics at universitics. (a) Histogram of the logarithm of the annual
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R&D expenditures of US universities for the 17-year period 1979-1995, expressed in 1992 US
dollars. Here, S denotes the R&D expenditures detrended by inflation so that values for different
years are comparable. The bins were chosen equally spaced on a logarithmic scale with bin size 0.5.
The line is a Gaussian fit to the data, which is a prediction of Gibrat’s theory.3! (b) Conditional
probability density function p(g|S) of the annual growth rates g. For this plot the entire database is
divided into three groups (depicted in (a) by different shades).
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Figure 4. (¢) Standard deviation o(S) of the distribution of annual growth rates as a function of S.
The straight line is a power law fit to thedata, and its slope gives the exponent 3=0.25+0.05. (d)
Scaled probability density function p(g|S)/o-1(S) plotted against the scaled annual growth rate
(g—g)/o(S) for the three groups defined in (b). Note that the scaled data collapse onto a single curve.
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Based on the central limit theorem, one expects Gaussian distributions when one
observes variables that are themselves the sum of a large number of nearly independent
and nearly identically distributed random variables. While the growth rates of large
universities are undoubtedly affected by a large number of variables many of which are
largely independent of each other, we might expect only a small number of factors to
dominate annual growth rates, especially for small universities.

Hence, it would appear that the distribution of growth rates should approach a
Gaussian for the largest universities because the growth rate would be affected by more
factors. In contrast to this expectation, it appears from the graph that the forms of the
distributions for the different size classes are similar. Moreover, as we expected, the
distribution is wider for smaller universities.

We next calculated the width o(S) of the distribution of growth rates as a function of
S. Figure 4¢ shows a log-log plot of o(S) versus size. It is visually apparent that there is
a strong dependence of the standard deviation of the growth rates on size. Moreover, it
is striking that the relationship is nearly linear on a log-log plot, i.e., the width of the
distribution decays as a power law with size 6(S)~S~P. From the graph, we estimate that
3=0.25£0.05.

Figure 4b suggests that the conditional probability density, p(g|S), has the same
functional form, with different widths, for all S. To see whether they do, we produce
what is called, in statistical physics, a “data collapse,” shown in Figure 4d. We compute
the distribution for different size classes and scale each by their standard deviation. As
Figure 4d shows, the rescaled distributions “collapse” onto a single, “tent-shaped”
curve.,

Robustness of empirical results

R&D outputs: publications and patents. To test if these results for the growth of
R&D expenditures are valid for other measures of research activity, we considered a
measure of a university’s research output: the number of papers published each year.
We analyzed data from the US University Science Indicators published by ISI42 for the
17-year period 1981-1997. This database records the number of papers published by the
largest 112 US universities (=1,900 data points). We find that the analog of Figure 4
holds. Particularly striking is the fact that the same exponent value, 3=1/4, is found,
and that the same functional form of p(g|S) is displayed; cf. Figure 5.

26 Scientometrics 51 (2001)



L. A. N. AMARAL ct al.: Application of statistical physics methods and concepts

A US: patents
< US: papers
o US: R&D [USD]

Standard deviation
a

—_
o
T

» Canada: grants [CAD] ©
¢ England: income [GBP]
1 0‘2 — | N L T L d d vl | ol
107 10’ 10° 10° 10’ 10°
Size
T T T
» Small grants: Canada A Few patents: US
0 Large grants: Canada & Many patents: US
‘§‘ * Small income: England <« Few papers: US
rs 0 < Large income: England <\ Many papers: US
< 10" o smanren: vs ¥ E
& O Large R&D: US s
= a e
g &
3 7 <!
S & s
~ 1 O—1 .d];@ C\)‘\ i
_ e Aes m
3 6w TS
mg N
3 JEan s A%
A P
4,/ e
10_2 - L 1 n 1 L 1 (.b)
-2.0 -1.0 0.0 1.0 20
Scaled growth rat

Figure 5. Robustness of empirical findings for the distribution of growth rates. (a) Standard deviation o(S) of
the distribution of annual growth rates for different measures of research activitics and different
academic systems from the data in the five distinct databases analyzed: (i) the number of papers
published cach year at 112 US universities, (ii) the number of patents issued cach year to 106 US
universities, (iii) the R&D expenditures in US dollars of 719 US universities, (iv) the total amount
in Canadian dollars of the grants to 60 Canadian universitics, and (v) the external incomes in
British pounds of 90 English universitics. It is apparent that for all measures and all academic
systems analyzed, we find a power law dependence — with the same exponent 3 = 1/4. The values of
o for the different measures were shifted vertically for better comparison of the estimates of the
exponents. (b) The distribution of annual growth rates, scaled as in Figure 4d, for the five
databases. We show the distribution of growth rates for 2 different groups, obtained in a way
similar to that described in Figure 4b, for cach of the five measures. The data appear to collapse
onto a single curve, suggesting that the different measures have similar statistical properties.
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Next, we analyzed another measure of R&D output: the number of patents issued to
a university. We “manually” retrieve from the webpages of the US Patent and
Trademark Office’s database® the number of patents issued yearly to each of 106
universities for the 22-year period 1976-1997 (=2,300 data points). We again confirm
that the analog of Figure 4 holds, with the same exponent value, 3=1/4, and the same
functional form of p(g|S); cf. Figure 5.

Different academic systems. To test if our findings hold for different academic
systems, we analyze two databases on research funding of English** and Canadian*®
universities. The same quantitative behavior is found for the distribution of growth rates
and for the scaling of 0, with the same exponent value and the same functional form of
p(glS); cf. Figure 5. Thus, our analysis of all five databases — which comprise a large
number of universities from three different countries — indicates that the same
quantitative results hold across different measures of research activity and academic
systems.

Interpretation

A natural question that arises from our empirical findings for US universities is how
to interpret their meaning. A first aspect we will focus on is the similarity of the results
to those found for economic organizations. To understand this similarity we start with
the observation that research is an expensive activity, and that the university must
“offer” its research to external sources such as governmental agencies and business
firms. Thus, an increase in R&D expenditures at university 4 and a decrease at
university B implies that the funders of research increasingly choose their research from
university 4 as opposed to university B.#¢ This qualitative picture parallels the
competition among different business firms, so it helps us to identify mechanisms that
can lead to the same results for those apparently distinct types of organizations. Our
results also suggest that peer review, together with government oversight, may lead to an
outcome similar to that induced by market forces, where the analog of peer-review
quality control may be consumer evaluation, and the analog of government oversight
may be product regulation.

A second aspect is the origin of the similarity in the results for R&D expenditures
and R&D outputs (patents and publications). Could it be that what we measure is merely
a causal relationship rather than a universal physical law? It is plausible to assume some
sort of causal relationship between expenditures and output, hence it is natural to
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wonder that the similarity of the results for input and output measures is just a reflection
of that fact.* Nonetheless, it should be noted that the relationship between input and
output is not a trivial one. If it was, then a lot of our problems would be solved and the
solution to any problem would be “to throw money at it”. There are reasons to believe
that expenditures influence output and that output affects expenditures, at least, at the
“microscopic” (research groups) or “mesoscopic” (universities) levels. The feedback
between the two quantities are very likely a nonlinear process that we would want to
understand at a basic level, since that may guide science policy in assessing responses to
changes in funding or structure of S&T systems.

We feel it is particularly important to estimate the time delay between changes in
expenditures and changes in output as a function of the scale of the S&T system. Only
then can accurate measurements of the effect of changes in funding or priorities be
correctly estimated.

Internal structure of US universities

US universities are not monolithic entities but instead comprise different schools
with varying degrees of autonomy. This fact prompts us to investigate the internal
structure of US universities. As we showed previously, our model37 for the growth of
economic organizations makes several predictions regarding the size of the subunits
comprising a given organization. Hence we can also test these predictions against the
empirical data on US universities.

As discussed in connection with Eq. (8), we may quantify the internal structure of a
university through the conditional probability density p(§|S), that measures the
probability to find a school of size § in a university of size S (Figure 6a). The model
predicts that p(|S) obeys the scaling form37

o(E|S) ~iaf[iaj, an
S S

where flu)~u"' for u<<l, and Au) decays as a stretched exponential for #>>1.

* As pointed out by one of the Referees, the analysis of “publication propensity” of large European research
institutions, reported in the 2nd Edition of the European Report on S&T Indicators, for instance, appears to
suggest that there is neither a simple causal relationship between R&D expenditure and, say, publication
output nor a unique “law” conditioning such relationships.
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Figure 6. Statistical analysis of the units forming the internal structure of a university, the schools. (a)
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Conditional probability function p(§|S) of finding a school of size  in a university of size S. To
improve the statistics, we partition the universitics by size into four groups. (b) To illustrate the
scaling relation (11), we plot the scaled probability density S& p(£/5%)S) versus the scaled size of
the school £/5%. In agreement with Eq. (11), we find that the scaled data fall onto a single curve.
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Figure 6. (c) Scaling of the typical size of a school in a university of a given size for different university sizes.
The data obey a power law with exponent a=0.75+0.05. (d) Standard deviation w of the
distribution of growth rates of schools versus school size §. The data obey a power law with
exponent y=0.16+0.05. Using Eq. (15) and this value of y, we obtain an independent estimate
3=0.25+0.05.
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We find 1=0.37%0.10 (Figure 6b), and o =0.75+0.05 (Figure 6c). We test the scaling
hypothesis (8) by plotting the scaled variables:

s p(iw) vs. i. (12)
s s
Figure 6b shows that all curves collapse onto a single curve, which yields the scaling
function fu).
Equation (11) implies that the typical number of schools with research activities in a
university of size S scales as S1-%, while the typical size of these schools scales as SC.
Hence, we can calculate how o depends on S,

0(S) ~ (ST V2u(E). (13)

In order to determine o, we first find the dependence of w on §. Figure 6d shows that
w~&Y with y=0.16+0.05. Substituting into Eq. (13) and remembering that the typical
size of the schools is S, we obtain

a(8)~ (s (sN)7Y, (14)
which leads to the testable exponent relation

1-a

B=—

+ay. (15)

For a=3/4 and y=1/6, Eq. (15) predicts f=1/4, in surprising agreement with our
empirical estimate of [3 from the five distinct databases analyzed (Figure 5a).

These results are intriguing for a number of reasons. First, they suggest that there are
statistical laws describing the stationary structure of US universities. These laws impose
constraints on the feasibility of achieving the intended goals of university administrators
or governmental regulators. Second, our results suggest that for very large universities
the largest school has a considerable smaller size than the size of the university while for
small universities a single school may dominate. Third, as expected we find that even
the schools cannot be modelled as monolithic structures and that it is important to study
R&D at the level of the departments and of the research groups. Finally, one may
hypothesize that scaling laws may hold for the growth of schools, departments and
research groups.
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Conclusion

In this paper, we have described a style of research that may be quite new in the field
of science policy. We believe that this new approach may shed new light on the
behavior and characteristics of S&T systems, answering questions such as “To what
extent do S&T systems at different scales (countries, universities, different financing
modes) obey the same underlying evolutionary laws?”

Understanding these processes and the data characterizing them is of great relevancy
not only in S&T studies but also for science policy. Indeed, OECD countries are
increasingly stressing performance because research funding is becoming more and
more an instrument in safeguarding long term economic competitiveness.
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