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Abstract

We address a current question in econophysics: Are fluctuations in economic indices correlated? To this end, we analyze

1-minute data on a stock index, the Standard and Poor index of the 500 largest stocks. We extend the 6-year data base studied

by Mantegna and Stanley by including the 13 years 1984–1996 inclusive, with a recording frequency of 15 seconds. The total

number of data points in this 13 years period exceed 4.5 million, which allows for a very detailed statistical analysis. We find

that the fluctuations in the volatility are correlated, and that the correlations are well described by a power law. We also briefly

describe some recent scaling results in economics, specifically some surprising features that appear to be common to the growth

rates of business firms, countries, research budgets, and bird populations. ! 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

We begin by pointing out that economics, as a

science, is not well understood. This seems to be

almost generally accepted; in fact, the cover article

of the 23 August 1997 issue of The Economist was

actually entitled “The Puzzling Failure of Economics”.

What does this new field of econophysics have to

offer to any solution to this puzzle? We begin with

an assumption that I and my coworkers first encoun-

tered years ago when we worked on critical phenom-

ena: “Everything depends on everything else”.A care-

ful analysis of any system involves studying the prop-

agation of correlations from one unit of the system to

the next. We learned that these correlations propagate

both directly and indirectly.

Our approach is to begin empirically, with real data

that we can analyze in some detail. In economics, we

have available to us a great deal of real data and, since

1 E-mail: hes@miranda.bu.edu.

we have at our disposal the tools of computational

physics and the computing power to carry out any

number of approaches, this abundance of data is to our

great advantage. For us, studying the economy means

studying a wealth of data on a well-defined complex

system. Today we are going to look at some examples

of scale-invariant correlations that are of interest to

social scientists.

At one time, it was imagined that the “scale-free”

phenomena are relevant to only a fairly narrow slice

of physical phenomena [1]. However, the range of

systems that apparently display power law and hence

scale-invariant correlations has increased dramatically

in recent years, ranging from base pair correlations

in noncoding DNA [2,3], lung inflation [4,5] and in-

terbeat intervals of the human heart [6–9] to com-

plex systems involving large numbers of interact-

ing subunits that display “free will”, such as city

growth [10–12], animal behaviour [14–19], and even

economics [20,21]. In particular, economic time se-

ries, as, e.g., stock market indices or currency ex-

0010-4655/99/$ – see front matter ! 1999 Elsevier Science B.V. All rights reserved.

PII: S0010-4655(99)00301-X



146 L.A.N. Amaral et al. / Computer Physics Communications 121–122 (1999) 145–152

change rates depend on the evolution of a large number

of strongly interacting systems far from equilibrium,

and belong to the class of a complex evolving systems.

Thus, the statistical properties of fi nancial markets

have attracted the interests of many physicists [22–33].

Methods originating in statistical physics have been

proven useful in analyzing fi nancial indices. They

are also used to construct new models for the pric-

ing of derivatives and the assessment of the involved

risk [25].

The recent availability of very high frequency data

allows to study economic time series with a high ac-

curacy on a wide range of time scales varying from

less than 1 minute up to more than 10 years. Conse-

quently, a large number of methods known from sta-

tistical physics have been applied to characterize the

time evolution of stock prices and foreign exchange

rates [22–26,30–33]. It turns out that the distributions

of the increments of economic time series, both in

stock market indices and foreign currency exchange

rates, are nearly symmetric and have strong “leptokur-

tic” wings [34,26]. Index increments as a function of

time show only weak correlations on short time scales

below 10 minutes [34,35], which seemingly makes

them fundamentally different from well known exam-

ples of complex dynamic systems in physics such as,

e.g., turbulent flow where power law correlations on

long time scales are commonly observed [36].

The situation is different for the volatility, i.e.,

the market fluctuations averaged on a suitable time

interval. There is long time persistence much larger

than the correlation time in volatility [37]. Volatility

is the key input of virtually all option pricing models,

including the classic Black and Scholes [38] and Cox,

Ross, and Rubinstein [39] binomial models that are

based on estimates of the asset’s volatility over the

remaining life of the option. So to understand the

dynamics of the volatility has very important practical

reason.

Here, we quantify long range power law correla-

tions in the volatility of the S&P 500 stock index and

report an occurrence of a cross-over phenomena of this

long range correlation. Furthermore, we discuss the

distribution of the volatility, and show that it can be

fi tted very well by a log-normal distribution.

2. Quantification of correlations in S&P 500

2.1. Data description and detrending

The S&P 500 index, an index of the New York

Stock Exchange, consists of the 500 largest companies

in the US. It is a market-value weighted index (stock

price times number of shares outstanding), with each

stock’s weight in the index proportionate to its market

value. The S&P 500 index is one of the most widely

used benchmarks of US equity performance. Our data

cover 13 years (from Jan. 1984 to Dec. 1996) with a

recording frequency of 15 seconds interval. The total

number of data points in this 13 years period exceed

4.5 million, which allows for a very detailed statistical

analysis.

The S&P 500 indexZ(t) from 1984 to 1996 tends to
increase constantly on a semi-log graph except during

crashes, e.g., October 1987 and May 1990. Since the

standard deviation of Z(t +!t)−Z(t) is proportional

to the price level, we take the logarithmic of the index

as everyone does. We defi ne the forward change

G(t) ≡ loge Z(t + !t) − loge Z(t), (1)

where !t is the time-lag (set to 1 minute in the

correlation study).

We only count the number of minutes during the

opening hours of the stock market, and remove the

nights, weekends and holidays from the data set, i.e.,

the closing and the next opening of the market is

continuous.

The absolute value of G(t) describes the amplitude

of the fluctuation. |G(t)| is, by defi nition, always
positive, and there are no obvious global trends visible,

which is due to the logarithmic difference, i.e., the

relative increment on the original index Z(t). The
large values of Z(t) correspond to the crashes and

big rallies of the index. It is known in the fi nancial

literature that the volatility varies in time [40], as

expected the |G(t)| quantity also fluctuates in time.
It is known that there exits intra-day patterns in

NYSE and S&P 500 index data, one simple explana-

tion is that there are many information traders active

near the open and many liquidity traders active near

the close [41]. We fi nd the similar intra-day pattern in

our S&P 500 index data set. The intra-day pattern

A(t) ≡
∑N

i=1 |G(ti,same)|
N

, (2)
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where N is the total trading days over the 13-year

period and tsame is the same time of each day (N =
3309 in our study). In order to avoid the artifi cial

correlation caused by this daily oscillation,G(t) signal

is normalized by the intra-day pattern

g(t) ≡ G(t)/A(t), (3)

i.e., each data point divided by the intra-day pattern of

its corresponding time during the day.

2.2. Methods to calculate correlations

We have three methods to quantify the correlations.

The direct method to study the correlation property is

the correlation function estimation, which is defi ned as

C(τ ) ≡ 〈G(t)G(t + τ )〉 − 〈G(t)〉2
〈G2(t)〉 − 〈G(t)〉2 , (4)

where τ is the time-lag. The problem with the correla-

tion function estimation is that it depends on the esti-

mated average value of the time series. Since it is diffi -

cult to calculate the true average value, the correlation

function can only give us a qualitative estimation [42].

Another method to calculate the correlation func-

tions is the traditional power spectrum analysis. Since

this method can only apply to linear and stationary (or

strictly periodic) time series, although it could give

quantitative measures, we still need other method to

confi rm its results.

We applied the third method – termed detrended

fluctuation analysis (DFA) [43,7] – to quantify the cor-

relation exponent. The advantages of DFA over con-

ventional methods (e.g., spectral analysis and Hurst

analysis) are that it permits the detection of long-

range correlations embedded in a nonstationary time

series, and also avoids the spurious detection of ap-

parent long-range correlations that are an artifact of

nonstationarities. This method has been validated on

control time series that consist of long-range correla-

tions with the superposition of a nonstationary exter-

nal trend [43]. The DFA method has also been suc-

cessfully applied to detect long-range correlations in

highly complex heart beat time series [7,44], and other

physiological signals [45,46].

A detailed description of the DFA algorithm appears

elsewhere [43,7]. Briefly, the |g(t)| time series (with
N data) is fi rst integrated,

y(t) ≡
t∑

i=1
|g(i)|. (5)

Next the integrated time series is divided into boxes of

equal length, n. In each box of length n, a least squares
line is fi t to the data (representing the trend in that

box). The y coordinate of the straight line segments

is denoted by yn(t). Next we detrend the integrated
time series, y(t), by subtracting the local trend, yn(t),
in each box. The root-mean-square fluctuation of this

integrated and detrended time series is calculated by

F(n) =

√√√√ 1

N

N∑

t=1

[
y(t) − yn(t)

]2
. (6)

This computation is repeated over all time scales

(box sizes) to provide a relationship between F(n),
the average fluctuation as a function of box size. In our

case, the box size n ranged from 10 min to 105 min,
the upper bound of n is determined by the actual data
length. Typically, F(n) will increase with box size n.
A linear relationship on a double log graph indicates

the presence of power law (fractal) scaling. Under

such conditions, the fluctuations can be characterized

by a scaling exponent α, the slope of the line relating

logF(n) to logn.
For exactly self-similar process, as, e.g., fractional

Brownian motion, the DFA exponent α is related to

the power spectrum exponent β through the relation

α = (1 + β)/2 [42]. The calculation of F(n) can
distinguish four types of behavior.

(1) Uncorrelated time series give rise to uncorrelated

random walks described by F(n) ∼ nα with α =
1/2, as expected from the central limit theorem.

Power spectrum would be flat with β = 0.

(2) Markov processes with a characteristic correlation

length t0, gives C(τ ) ∼ exp(−τ/t0). For t < t0,
it is the Brownian process with α = 1.5 and
corresponding β = 2, nonetheless the asymptotic

behavior for suffi ciently large t with α = 1/2
would be unchanged from the purely random case.

(3) In the presence of long-range correlations with

no characteristic time scale, the scaling property

would be a power law function with α &= 1/2 and
β &= 0.
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2.3. Correlation results of S&P 500 index

Using correlation function estimation, we fi nd that

the correlation function of g(t) decays exponentially

with a characteristic time of the order of 1–10 min,

but the absolute value |g(t)| does not. This result is
consistent with previous studies on several economic

series [35,37,47].

The power spectrum calculation of |g(t)| shows that
the data fi t not one but rather two separate power laws:

for f > f× the power law exponent is β1 = 0.31,
while for f < f× the exponent β2 = 0.90 is three

times larger; here f× is called the crossover frequency.
DFA method confi rms our power spectrum results.

From the behavior of the power spectrum, we expect

that the DFA method will also predict two distinct

regions of power law behavior, with exponents α1 =
0.66 and α2 = 0.95 for t less than or greater than a

characteristic time scale t× ≡ 1/f×, where we have
used the relation

α = (1+ β)/2. (7)

The data yield α1 = 0.66, α2 = 0.93, thereby confi rm-

ing the consistency of the power spectrum and DFA

methods. Also the crossover time is very close to the

result obtained from the power spectrum, with

t× ≈ 1/f× ≈ 600 min (8)

about 1.5 trading days.

To test whether this correlation is due to the distri-

bution function, we shuffled each point of the |g(t)|
time series randomly. The shuffling operation keeps

the distribution of |g(t)| unchanged, but kills the cor-
relations in the time series totally if there are any. DFA

measurement of this randomly shuffled data does not

show any correlations and gives exponent α = 0.50.
This tells us that the long-range correlations are actu-

ally due to the dynamics of the economic system and

not simple due to the distribution.

The observed long range correlation and the cross-

over behavior noted above is from the entire 13-year

period, so it is natural to enquire whether it will still

hold for periods smaller than 13 years. Therefore,

we choose a sliding window (with size 1 year) and

calculate both exponentsα1 and α2 within this window
as the window is dragged, down the data set with

one month step. We fi nd that the value ofα1 is very

“stable” (independent of the position of the window)

fluctuating around the mean value 2 /3. Surprisingly,
however, the variation of α2 is much greater, showing

sudden jumpswhen very volatile periods enter or leave

the time window.

We studied several standard mathematical models,

such as fractional Brownian motion [42,48] and frac-

tional ARIMA processes [49], commonly used to ac-

count for long-range correlation in a time series and

found that none of them can reproduce the large fluc-

tuation of α2.

3. The volatility distribution of S&P 500

The volatility is a measure of the mean fluctuation

of a market price over a certain time interval T . The
volatility is of practical importance since it quantifi es

the risk related to assets [25]. As shown above, unlike

price changes that are correlated only on very short

time scales [35] (a few minutes), the absolute values

of price changes (which are closely related to the

volatility) show correlations on time scales up to many

years [37,47,50,51].

The same data set of the S&P 500 index of the

New York stock exchange is explored here to study the

volatility distribution. This data set has been extended

by 7 years the data set previously analyzed in [26].

We calculate the logarithmic increments G(t) in
Eq. (1), whereG(t) is the relative price change#Z/Z
in the limit #t → 0. Here we set #t = 30 min, well

above the correlation time of the price increments;

and we obtain similar results for other choices of #t
(larger than the correlation time).

As we show in the correlation discussion, there

is a strong “U-shape” market activity over the day.

To remove artifi cial correlations resulting from this

intra-day pattern of the volatility [52,53,55,54], we

normalized |G(t)| by A(t) as shown in Eq. (3).
We obtain the volatility at a given time by averaging

|g(t)| over a time window T = n · #t with some
integer n,

vT (t) ≡ 1

n

t+n−1∑

t ′=t

∣∣g(t ′)
∣∣. (9)

The volatility fluctuates strongly showing a marked

maximum for the 1987 crash. Generally periods of

high volatility are not independent but tend to “clus-

ter”. This clustering is especially marked around the
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1987 crash, which is accompanied by precursors (pos-

sibly related to oscillatory patterns [25]). Clustering

occurs also at other times (e.g., during the second half

of 1990), while there are extended periods where the

volatility remains at a rather low level (e.g., in 1985

and 1993).

When we consider a scaled probability distribution

P(vT ) for several values of T , the data for different av-

eraging windows collapse to one curve. Remarkably,

the scaling form is log-normal, not Gaussian. In the

limit of very long averaging times, one expects that

P(vT ) becomes Gaussian, since the central limit theo-

rem holds also for correlated series [42], with a slower

convergence than for non-correlated processes [29,

56]. However, a log-normal fi ts the data better than a

Gaussian.

Correlations can be accurately quantifi ed using de-

trended fluctuation analysis [43]. The analysis reveals

power-law behavior independent of the T value cho-

sen with an exponent α ∼= 0.9 in agreement with the

value found for the absolute price increments (see Sec-

tion 2).

4. Discussion of empirical results on finance

In this study, we have used the DFA method to

display correlation in the volatility of S&P 500 index.

We fi nd that the volatility is highly correlated, and

that the correlation is remarkably long range, indeed,

over 5 decades. Moreover, the quantitative scaling of

the correlation follows the power law form observed

in numerous phenomena which have a self-similar or

“fractal”origin.

We have also found that the probability distribu-

tion of the S&P 500 volatility can be well described

by a log-normal function. This functional shape does

not depend on the averaging time interval T used

to calculate volatility vT (t). The log-normal shape

of the distribution is consistent with a multiplicative

process [57] for the volatility [27]. However, a mul-

tiplicative behavior would be surprising, because ef-

fi cient market theories [35] assume that the price re-

flects all current information that could anticipate fu-

ture events and the price changes, G(t), are caused

by incoming new informations about an asset. Since

such information-induced price changes are additive

in G(t), they should not give rise to multiplicative be-

havior of the volatility.

To account for the time dependence of the volatility

and its long-range correlations, ARCH [58], GARCH

[59] models and related approaches [49] have been

developed, which assume that the volatility depends

on time and on the past evolution of the index. It may

be also worthwhile to test these models with regard to

the volatility distribution P(vT ).

5. Scale invariance in economics

Economics is different than fi nance, and we have

also looked at economic data. Specifi cally, in col-

laboration with a card-carrying economist, Michael

Salinger – we studied the possibility that all the com-

panies in a given economy might interact, more or

less, like an Edwards–Anderson spin glass. As in an

Edwards–Anderson spin glass, each spin interacts with

another spin – but not with the same coupling and not

even with the same sign.

If the sales in a given company x decreases by, e.g.,

10%, it will have repercussions in the economy. Some

of the repercussions will be favorable – company y ,

which competes with x , may experience an increase

in market share. Others will be negative – service

industries that provide personal services for company

x employees may experience a drop-off in sales

as employee salaries will surely decline. There are

positive and negative correlations for almost any

economic change. Can we view the economy as a

complicated Ising system or spin glass?

To approach this interesting bit of statistical “po-

etry” and make sense of it, we fi rst located and se-

cured a database that lists the actual size of every fi rm

in the United States. With this information, we did an

analysis to determine how the distribution of fi rm size

changes from one year to the next.We then made a his-

togram for each of three characteristic fi rm sizes. The

largest fi rms have a very narrow distribution – plausi-

ble because the percentage of size change from year to

year for the largest fi rms cannot be that great. On the

other hand, a tiny company or a garage-based start-

up can radically increase (or decrease) in size from

year to year. The histograms have a width determined

by the size of the fi rm. When this width is plotted on

the y axis of log-log paper as a function of the size of
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the fi rm on thex axis, the data are approximately lin-

ear over 8 orders of magnitude, from the tiniest fi rms

in the database to the largest. The width scales as the

fi rm size to an exponentβ , with β ≈ 1/6 [60]. We can

therefore normalize the growth rate and show that all

the data collapse on a single curve – demonstrating the

scaling of this measure of fi rm size.

Why does this occur? We are working on that.

If we model this fi rm structure as an approximate

Cayley tree, in which each subunit of a fi rm reacts

to its directives from above with a certain proba-

bility distribution. This model, developed primarily

by Sergey Buldryev, seems to be consistent with the

critical exponent −1/6 [61]. More recently, Amaral
et al. [62] have proposed a microscopic model, and

Takayasu [32] has extended the empirical results to a

wide range of countries, and developed still another

model.

It is not impossible to imagine that there are some

very general principles of complex organizations at

work here, because similar empirical laws appear to

hold for data on a range of systems that at fi rst sight

might not seem to be so closely related. For example,

instead of studying the growth rate of fi rms one can

study the growth rates of countries by analyzing the

ratio of the GDP of a country in one year compared

to its value in the previous year. It appears that the

country GDP behaves the same way as the size of a

fi rm [63,64]. Very recently, a data base comprising

research budgets of universities were analyzed in the

same way, with similar results [65].

Instead of the population of a fi rm at time t
(measured in number of employees) onemight analyze

the population Ns(t) of a species s in successive

years. Such data exist for a 30-year period for every

species sighted in North America, and very recently

Keitt and Stanley [18,19] have analyzed this database

using the same sort of techniques used to describe

long-term data sets on economics and fi nance. They

fi nd statistical properties that are remarkably similar,

and consistent with the idea that “every bird species

interacts with every other bird species”, just as the

economic analysis supports the notion that “every

fi rm interacts with every other fi rm”. This empirical

result is not without interest, since it serves to cast

doubt on models of bird population (and of economic

systems) in which one partitions the entire data set into

strongly-interacting and weakly-interacting subsets,

and then ignores or oversimplifi es the interactions in

the weakly-interacting subset.

6. Conclusions

Is the point of this talk just to show that a lot of dif-

ferent systems appear to develop scale-invariant cor-

relations? If so, how do we understand this empirical

fact?

Bak’s idea that systems self-organize themselves

such that they are in effect near a critical point is

an appealing unifying principle. Near a critical point,

there is a delicate balance between the exponentially-

growing number of different one-dimensional paths

connecting any two faraway subunits and the exponen-

tially-decaying correlations along each one-dimen-

sional path (this concept is illustrated, e.g., in Fig. 9.4

of Ref. [1]. If the control parameter (say coupling

constant) is too small, the correlations die out so

fast along each one-dimensional path that subunits far

from one another are not well correlated. However,

at a critical point, the exponentially-large number of

paths connecting each pair of subunits is suffi cient

to balance out the exponential decay along each

path and the “correction factor” wins out – this

correction factor is the power law that governs the

total number of one-dimensional paths connecting two

distant subunits. The exponent in this correction factor

depends primarily on the system dimension, and not at

all on the actual arrangement of the subunits (lattice or

no-lattice).

Could it be that somehow social systems push

themselves up “up to the limit” – just as a sandpile

is pushed to the limit before an avalanche starts, an

image that has attracted recent attention in the debate

between “self-organized criticality” and “plain old

criticality”(see, e.g., Vespignani and Zapperi [66] and

references therein)? For example, in economics every

subunit plays according to rules and pushes itself up

against the limits imposed by these rules. But social

systems display a variety of rich forms of “order”, far

richer than we anticipate from studies of ferromagnets

and antiferromagnets (see, e.g., some of the papers

appearing in Knobler et al. [67]). Could such orderings

arise from the complex nature of the interactions? Or

from the range of different “sizes” of the constituent

subunits as, e.g., one fi nds ordering in sandpiles when
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sand particles of two different grain sizes are dropped

onto a heap – see, e.g., Refs. [66–69]. These are

questions that occupy us now, and questions I would

be delighted to discuss with any of the conference

participants.
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