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Abstract

We consider the question of how the cardiac rhythm spontaneously self-regulates and propose a new mechanism as a possible
answer. We model the neuroautonomic regulation of the heart rate as a stochastic feedback system and find that the model
successfully accounts for key characteristics of cardiac variability, including the 1/f power spectrum, the functional form and
scaling of the distribution of variations of the interbeat intervals, and the correlations in the Fourier phases which indicate
nonlinear dynamics.  1999 Published by Elsevier Science B.V. All rights reserved.

The principle of homeostasis asserts that biological
systems seek to maintain a constant output after
perturbation [1]. Recent evidence, however, indicates
that healthy systems display highly irregular dynamics
with complex fluctuations [2]. A particularly striking
example is heart rate variability [3–6]. Contrary to
what we would naively expect [7], the human heart
rate is not a stable quantity. Even at rest, the human
heart rate shows high variability (cf. Fig. 1(a)). We
study this variability in the framework of fluctuations
in critical phenomena [8] in order to obtain some
insight into the mechanisms regulating the heart rate.
Here, we present a physiologically-motivatedmodel

that introduces the concept of stochastic feedback to
the study of physiological systems [9]. The model as-
sumes that the heart rate is set by the competing in-
puts of different neuroautonomic centers. These cen-
ters bias the heart rate towards specific rates which
are set by random environmental stimuli. The model
yields several interesting features not fully explained
by other models [10]: (1) 1/f power spectrum, (2) sta-

1 E-mail: http://polymer.bu.edu/amaral.

ble scaling form for the distribution P(A) of ampli-
tudes A of the variations in the interbeat intervals and
(3) Fourier phase correlations.
First, we review some basic physiological aspects

of the neuroautonomic control of the heart rate. The
healthy human heart rate is mainly determined by
three major inputs: the sinoatrial (0) node; and the
parasympathetic (+) and sympathetic (−) branches of
the autonomous nervous system.
• The sinoatrial node or pacemaker is responsible for
the initiation of each heart beat; in the absence
of other external stimuli, it is able to maintain an
essentially constant interbeat interval [1]. Experi-
ments in which parasympathetic and sympathetic
inputs are blocked reveal that the interbeat intervals
are very regular and average 0.6 s [11].

• The parasympathetic fibers conduct impulses that
increase (+) the interbeat intervals. Suppression of
sympathetic stimuli, while under parasympathetic
regulation, can result in the increase of the interbeat
interval to as much as 1.5 s [11]. The activity of the
parasympathetic system changes with external stim-
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Fig. 1. (a) Sequence of interbeat intervals τ for a healthy individual. (b) Sequence of interbeat intervals for the model (the values of the
parameters are given in [9]). (c) Schematic representation of the dynamics of the model: Random walk with two stochastic feedback controls.
The levels of attraction τ0 and τ1 change values in time. Each level persists for a time interval Ti drawn from a distribution with an average
value Tlock. Perturbed by changing external stimuli, the system nevertheless remains within the bounds defined by "τ even after many steps.
We find that this dynamical mechanism, based on a single characteristic time scale Tlock, generates a 1/f power spectrum over several decades.
Moreover, P (A) decays exponentially [12], which we attribute to the nonlinear character of the dynamics.

uli and with internal cycles such as the sleep/wake
cycle.

• The sympathetic fibers conduct impulses that de-
crease (−) the interbeat intervals. Abolition of
parasympathetic influences when the sympathetic
system remains active can decrease the interbeat in-
tervals to less than 0.3 s [11]. There are several cen-
ters of sympathetic activity which are highly sensi-
tive to environmental influences [11].
Thus, we can assume as a starting point that the

changes in the interbeat interval τ are described by:

τ (n + 1) − τ (n) = I0(n, τ0) + I+(n, τ+)

+
N∑

j=1
I

j
−
(
n, τ

j
−
)
. (1)

Clearly, Eq. (1) cannot fully reflect the complexity
of the human cardiac system. However, it provides a
general framework that can easily be extended to in-
clude other physiological controls (such as breathing,
baroreflex, etc.). On the other hand, many of the in-
puts not considered in (1) do not contribute to the fre-
quency regime where scale-free behavior is reported
[3–6]. Thus, we can expect that Eq. (1) captures the
essential ingredients responsible for a number of im-
portant scaling properties of the healthy heart rate.

For each of the inputs in (1), we assume the
following mathematical form:

Ik(n) =
{

wk(1+ η), if τ (n) < τk ,
−wk(1+ η), if τ (n) ! τk.

(2)

Here, the weight wk is the strength of the feedback
input biasing the interbeat interval τ to return to its
preferred level τk , and η is an uncorrelated noise term.
From a biological point of view, it is clear that the
preferred levels τk of the inputs Ik cannot remain
constant in time, for otherwise the system would not
be able to respond to varying external stimuli. Hence,
we assume that each preferred interval τk is a random
function of time, with values correlated over a time
scale T k

lock. We next coarse grain the system and
choose (a) τk(n) to be a random step-like function
drawn from an uniform distribution and constrained to
have values within a certain interval and (b) the length
of the steps from a normal distribution with an average
value Tlock (Fig. 1(b)–(c)).
A notable feature of the present model is that

in addition to the power spectra, it accounts for
the functional form and scaling properties of P(A),
which are independent from the power spectra [12].
No similar tests for nonlinear dynamics have been
reported for other models [10].
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We study the model for changes in the parameters
and find an extended “zone” in parameter space where
scaling behavior holds [9]. This robustness of the
model to changes in the parameters is consistent
with the observation that all healthy individuals obey
approximately the same scaling properties in spite of
the many differences among them.
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