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Power Law Scaling for a System of Interacting Units with Complex Internal Structure
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We study the dynamics of a system composed of interacting units each with a complex internal
structure comprising many subunits and treat the case in which each subunit grows in a multiplicative
manner. We propose a model for such systems in which the interaction among the units is treated in a
mean field approximation and the interaction among subunits is nonlinear. We test the model and find
agreement between our predictions and empirical results based on a large economics database spanning
20 years. [S0031-9007(98)05355-1]
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In the physical sciences, power law scaling is usual
associated with critical behavior (thus requiring a particu
lar set of parameter values), or with scale free grow
processes [1]. For example, in the Ising model there is
particular value of the strength of the interaction betwee
the units composing the system that generates correlati
extending throughout the entire system and leads to pow
law distributions. In the social and biological science
there also appear examples of power law distributio
(such as incomes [2], bird populations [3], and hea
dynamics [4]). Although self-organized criticality has
been the preferred explanation for these results, it
difficult to imagine that for all these diverse systems, th
parameters controlling the dynamics spontaneously se
tune to their critical values.

In this Letter, we propose an alternative mechanism,
the spirit of scale free growth processes, that could expla
how power law scaling in biological or social science
can emerge even in the absence of critical dynamic
The guiding principles for our approach, to be justifie
below, are as follows: (i) The units composing th
system have a complex evolving structure (e.g., the firm
competing in an economy are composed of divisions, t
cities in a country competing for the mobile populatio
are composed of distinct neighborhoods, the populati
of some species living in a given ecosystem might b
composed of groups living in different areas), and (ii) th
size of the subunits composing each unit evolve accordi
to a random multiplicative process.

Fortunately, for one of the examples listed above, the
is a wealth of quantitative data, and here we focus o
a large database giving the time evolution of the siz
of firms [5]. In an economy, the units composing th
entire system are the competing firms. In general, the
firms have a complex internal structure, with each firm
composed of divisions (the subunits of each unit).
has been proposed that the evolution of a firm’s siz
is described by a random multiplicative process wit
variance independent of the size, and that each firm can
0031-9007y98y80(7)y1385(4)$15.00
ly
-

th
a
n

ons
er

s,
ns
rt

is
e
lf-

in
in

s
s.

d
e

s
he
n
on
e
e
ng

re
n
e

e
se

It
e

h
be

viewed as a structureless unit [6]. However, later stud
[7–10] reveal that the dynamics of real firms are not fu
consistent with the simplified picture of Ref. [6].

We develop a model that dynamically builds a dive
sified, multidivisional structure, reproducing the fact th
a typical firm passes through a series of changes in
ganization, growing from a single-product, single-pla
firm, to a multidivisional, multiproduct firm [11]. The
model reproduces a number of empirical observations
a wide range of values of parameters and provides a p
sible explanation for the robustness of the empirical
sults. Because of our encouraging results for the case
firm growth, our model may offer a generic approach
explain power law distributions in other complex system

The model, illustrated in Fig. 1, is defined as follow
A firm is created with a single division, which has a siz
j1st  0d. The size of a firmS ; Sijistd at time t is
the sum of the sizes of the divisionsjistd comprising the
firm. We define a minimum sizeSmin below which a firm
would not be economically viable, due to the competitio
between firms;Smin is a characteristic of the industry
in which the firm operates. We assume that the size
each divisioni of the firm evolves according to a random
multiplicative process [6]. We define

Djistd ; jistdhistd , (1)

where histd is a Gaussian-distributed random variab
with zero mean and standard deviationV independent of
ji. The divisions evolve as follows:

(i) If Djistd , Smin, division i evolves by changing its
size, andjist 1 1d  jistd 1 Djistd. If its size becomes
smaller thanSmin —i.e., if jist 1 1d , Smin —then with
probability pa, division i is “absorbed” by division1.
Thus, the parameterpa reflects the fact that when a
division becomes very small it will no longer be viabl
due to the competition between firms.

(ii) If Djistd . Smin, then with probabilitys1 2 pfd,
we set jist 1 1d  jistd 1 Djistd. With a probabil-
ity pf , division i does not change its size—so th
© 1998 The American Physical Society 1385
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FIG. 1. Schematic representation of the time evolution
the size and structure of a firm. We chooseSmin  2, and
pf  pa  1.0. The first column of full squares represent
the sizeji of each division, and the second column represen
the corresponding change in sizeDji . Empty squares represent
negative growth and full squares positive growth. We assum
for this example, that the firm has initially one division of size
j1  25, represented by a5 3 5 square. Att  1, division 1
grows by Dj1  3. A new division, numbered 2, is created
becauseDj1 . Smin  2, and the size of division 1 remains
unchanged, so fort  2, the firm has 2 divisions with sizes
j1  25 and j2  3. Next, divisionsj1 and j2 grow by 2
and 22, respectively. Division 2 is absorbed by division 1
since otherwise its size would becomej2  3 2 2  1 which
is smaller thanSmin. Thus, at timet  3, the firm has only
one division with sizej1  25 1 2 1 1  28. Note that if
division 1 would be absorbed, then division 2 would absor
division 1 and would then be renumbered 1. If division 1 i
absorbed and there are no more divisions left, the firm “dies.

jist 1 1d  jistd—and an altogether new divisionj is
created with sizejjst 1 1d  Djistd. Thus, the parame-
ter pf reflects the tendency to diversify: the larger ispf ,
the more likely it is that new divisions are created.

The dynamics are thus controlled by three independe
parameters:V , pa, and pf —Smin just sets the scale, so
the results of the model do not depend on its value. W
assume that there is a broad distribution of values ofSmin

in the system because firms in different activities will hav
different constraints.

In Fig. 2, we compare the predictions of the mode
for the distribution of firm sizes in the stationary stat
with the empirical data [10]. The stationary state i
reached after approximately 10 “years,” provided th
new firms are created regularly. We define one “yea
as , iterations of our rules applied to each firm, an
we find no significant dependence of the results on t
value of , for , . 10. We find similar results for a
wide range of parameters:V  0.1 0.2, pa  0.01 1,
andpf  0.1 1.0.
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FIG. 2. Probability density of the logarithm of firm size
for the model and for U.S. publicly traded manufacturing
firms in the 1994 “COMPUSTAT” database. These results were
obtained drawing logSmin from a Gaussian distribution with
average value logs5 3 105d and widthD  5. Similar results
would be obtained for other broad distributions ofSmin. The
numerical simulations were performed with parametersV 
0.15, pf  0.8, pa  0.05, and ,  50 (for these parameter
values, the actual probability of a new division being create
per division and per iteration is approximately 0.01).

It is common to study the logarithm of the one-yea
growth rate, r1 ; ln R1, where R1 ; Ss y 1 1dySs yd,
with Ss yd and Ss y 1 1d, are the sizes of the firm in
the yearsy and y 1 1. The empirical distribution of
r1 for firms with sizeS is, to first order approximation,
consistent with an exponential form [10]

psr1jSd 
1

p
2 s1sSd

exp

√
2

p
2 jr1 2 r̄1j

s1sSd

!
, (2)

where r̄1 represents the average growth rate. Moreove
the standard deviations1sSd is consistent with a power
law form

s1sSd , S2b , (3)

and for U.S. manufacturing firms,b ø 0.2 [10]. We
find that psr1jSd is quite similar in form to the empiri-
cal results [10]. Figure 3(a) comparess1sSd with the
empirical data of Ref. [10]: for both, Eq. (3) holds with
b  0.17 6 0.03. Equations (2) and (3) allow us to
scale the growth rate distributions for different firm size
[Fig. 3(b)].

We next address the question of the structure of a giv
firm. To this end, we calculate the probability densit
r1sjijSd to find a division of sizeji in a firm of sizeS.
For the model, we find that the distributionr1 scales as
a power law up toSa and then it decays exponentially.
Hence, we make the hypothesis thatr1 obeys the scaling
relation

r1sjijSd , S2af1sjiySad , (4)

where f1sud , ut for u ø 1 with t ø 2y3. This hy-
pothesis is confirmed by the scaling plot of Fig. 4(a). W
find a  0.66 6 0.05 from plotting the average value of
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FIG. 3. (a) Dependence of the standard deviation of th
growth rates on firm size. Shown are the predictions of th
model and the empirical results. The values of the paramet
are the same as in Fig. 2. The straight line with slope 0.17 is
least squares fit to the predictions of the model. (b) Probabil
density of one-year growth rates for different firm sizes plotte
in scaled variables. The distributions are tent shaped, as
the empirical data [10], and consistent with an exponenti
distribution.

ji againstS. The same value ofa leads to the best
scaling plot.

Next, we make the hypothesis that the probabilit
densityr2sNjSd to find a firm with sizeS composed of
N divisions obeys the scaling relation

r2sNjSd , S2s12adf2sNyS12a d . (5)

In writing (5), we use the fact that from (4) the charac
teristic size of a typical division scales asSa , so that the
typical number of divisions in a firm isSySa , S12a .
Figure 4(b) shows that the results of the model are co
sistent with the scaling relation (5), with the same valu
of the scaling exponenta used in Fig. 4(a).

The results described by Eqs. (4) and (5) are in qualit
tive agreement with empirical studies [9] that show large
firms to be more diversified. Moreover, Eq. (5) states th
the number of independent subunits in a firm of sizeS
scales asS12a . SinceN does not change much during a
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FIG. 4. (a) Data collapse of the conditional probability density
r1; the data fall onto a single curve corresponding to the scalin
form (4). (b) Data collapse of the conditional probability
density r2; the data fall onto a single curve corresponding to
the scaling form (5).

year and assuming that the subunits have similar sizes,
can apply the central limit theorem, from which it follows
thats1 , N21y2, leading to the testable scaling law

b  s1 2 ady2 . (6)

For a  0.66 6 0.05, Eq. (6) predictsb  0.17 6 0.03,
in remarkable agreement with our independent calculatio
of b.

We find that the predictions of the model are only
weakly sensitive to the parameter values, which perha
is the reason why firms operating in quite differen
industries are described by very similar empirical laws
Accordingly, we conjecture that the scaling laws found
for U.S. manufacturing firms [10] also hold for other
countries, such as Japan, withb ø 0.2; this conjecture
is currently being tested with empirical data [12].

The present model rests on a small number of a
sumptions. The three key assumptions are as follow
(i) Firms tend to organize themselves into multiple divi-
sions once they achieve a certain size. This assumpti
holds for many modern corporations [11]. (ii) There is
a broad distribution of minimum scales in the economy
This assumption has also been verified empirically [8
1387
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(iii) Growth rates of different divisions are independent o
one another. For an economist, the latter is the stron
of these assumptions. However, we find that correlatio
in the growth rates of divisions within the same firm, eve
weak correlations, lead tob ! 0. Thus, we confirm that
it is the assumption of independence among the grow
rates that generates results similar to the empirical fin
ings of Ref. [10].

There are two features of our results that are perha
surprising. First, although firms in our model consis
of independent divisions, we do not findb  1y2. To
understand whyb , 1y2, suppose that the distribution
of sm ; ln Smin is a Dirac-d function. Although this
assumption is unrealistic, it leads to an understanding
the underlying mechanisms in the model. In this case
is a plausible assumption that the number of divisions w
increase linearly with firm size, because the distributio
of division sizes is narrow and confined betweenSmin and
SminyV . This hypothesis is confirmed numerically, and w
find (i) b  1y2 anda  0, and (ii) that the distribution
of the logarithm of firm sizes is still close to Gaussian
with a width W which is a function of the parameters
of the model. Then, by integration of the distribution o
the logarithm of firm sizes oversm, we can estimate the
value of b for the case of a broader distribution ofsm.
Suppose thatsm follows some arbitrary distribution with
width D . Averagings

2
1 sSd over this distribution, we find

b  W y2sD 1 W d. For a wide range of the values o
the model’s parameters,D . W , and we find thatb is
remarkably close to the empirical valueb ø 0.2.

Second, the distributionpsr1jSd is not Gaussian but
“tent” shaped. We find this result arises from the in
tegration of nearly Gaussian distributions of the grow
rates over the distribution ofSmin. For large values
of jr1j, the saddle point approximation givespsr1jSd ,
exps2 log2 jr1jd, which decays slower than exponentially
in qualitative agreement with the model’s predictions an
with empirical observations. Forjr1j ø 1, psr1jSd is ap-
proximately Gaussian, while for intermediate values
jr1j, the distribution decays exponentially. Our analyt
cal predictions are in agreement with the model and w
empirical results.

The model leads to a number of conclusions. Firs
it suggests the deviations in the empirical data fro
predictions of the random multiplicative process may b
explained by (i) the diversification of firms, i.e., firms
are made up of interacting subunits, and (ii) the fact th
different industries have different underlying scales, i.e
there is a broad distribution of minimum scales for th
survival of a unit (for example, a car manufacturer mu
be much larger than a software firm).

Second, the model suggests a possible explanation
the common occurrence of power law distributions
complex systems. Our results suggest that the empirica
observed power law scaling does not require the syst
1388
f
ger
ns
n

th
d-

ps
t

of
, it
ill
n

e

,

f

f

-
th

,
d

of
i-
ith

t,
m
e

at
.,
e
st

for
in
lly

em

to be in a critical state, but rather can arise from a
interplay between random multiplicative growth and th
complex structure of the units composing the system
Here we addressed the case in which the interactio
between the units can be treated in a “mean field
way through the imposition of a minimum size for the
subunits. More general interactions may still lead t
power law scaling, so our model may offer a framewor
for the study of complex systems.
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