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We present a model for relaxations in piles of granular material. The relaxations are determined by a
stochastic rule which models the effect of friction between the grains. We find power-law distributions for
avalanche sizes and lifetimes characterized by the exponentst51.5360.05 andy51.8460.05, respectively.
For the discharge events, we find a characteristic size that scales with the system size asLm, with
m51.2060.05. We also find that the frequency of the discharge events decreases with the system size as

L2m8 with m851.2060.05. @S1063-651X~96!51811-8#

PACS number~s!: 05.40.1j, 64.60.Ht, 05.70.Jk, 05.70.Ln

Since its introduction by Bak, Tang, and Wiesenfeld@1#,
the concept of self-organized criticality~SOC! and models
which display SOC behavior have been the focus of much
interest@1–9#. However, comparison with real systems has
proved to be a tough test for the theory and models@10–13#.
Furthermore, in one dimension the models tend to display
either trivial behavior or behavior that cannot be classified as
critical. Against this background, recent experiments on rice
piles @14# have shown that under some conditions a real rice
pile can self-organize into a critical state: For grains with a
large aspect ratio the system self-organizes into a critical
state. Fretteet al. explained this result with the increased
friction and packing possibilities that were able to cancel
inertia effects. Furthermore, they observed that large local
slopes developed in the pile.

Here, we propose a model for a pile of granular material
where we introduce randomness in the relaxation rule instead
of in the deposition rule. We study the model in one dimen-
sion and find power-law distributions for avalanche sizess
and lifetimesT. We also study the distribution of sizes for
discharge events~i.e., particles falling off the pile!, and find
it to be bounded. The results show that our model belongs to
a new universality class for systems displaying SOC.

First, we define the one-dimensional model. The system
consists of a plate of lengthL, with a wall at i50 and an
open boundary ati5L11. The profile of the pile evolves
through two mechanisms: deposition and relaxation. Deposi-
tion is always done ati51, and one grain at a time. The rate
of deposition is slow enough that any avalanche, initiated by
a deposited grain, will have ended before a new grain is
deposited.

During relaxation we look at allactivecolumns of the rice
pile: A column i of the pile is considered active if, in the
anterior time step, it~i! received a grain from columni21,
~ii ! toppled a grain to columni11, or ~iii ! column i11
toppled one grain to its right neighbor. If a columni is active
and the local slope, i.e.,dh( i )[h( i )2h( i11), is strictly
larger than a threshold valueS1, then with probabilityp a
grain will move from i to i11. However, ifdh( i ).S2, a
grain is moved fromi to i11 with probability 1. Grains
toppled from columni5L leave the system. When no active
columns remain on the pile, the avalanche is said to be over.

The physical interpretation of our rules is the following:
Suppose that a column, or portion, of the pile is in a meta-
stable configuration. If a new grain is deposited or toppled on
top of it, or the local slope changes, then that metastable
configuration can become unstable. To model such an effect,
we introduce the parameterp, which represents the fact that
there is a finite probability that a new stable configuration is
reached. Physically the parameterp thus describes the fric-
tion between the rice grains and the possibility that a meta-
stable packing configuration will be attained. The friction
effect in our model comes directly from the observation that
there exists a large range of slopes in the rice pile instead of
a single critical value@14#. The friction p can be a compli-
cated function of local slopes and packings of the particles,
but we find that the results are insensitive to the specific form
and value ofp. The parameterS2 models the effect of grav-
ity on the packing arrangements. We assume that above the
maximum valueS2 of the local slope, it is no longer possible
for a local stable configuration to be achieved, thus a grain
must be toppled. In the limiting casesp50,1, orS25S1, we
recover the model in Ref.@1# ~which has trivial behavior for
one dimension!.

The simulation of the model shows two distinct regimes, a
transient period followed by a steady~critical! state; cf. Fig.
1. Here, we focus on the properties of the model in the criti-
cal state. As can be seen in Fig. 1, the model leads to the
establishment of a state with wildly varying avalanches sizes
and a complicated structure in time. The size of an avalanche
can be defined in a number of ways: the number of topplings
s, the lifetime of the avalancheT, or the size of the discharge
eventsm. We start by investigating the distribution ofs.
Figure 2~a! shows the probability density of avalanche sizes
for different system sizes. The distribution follows the scal-
ing form

P~s,L !;s2t f s~s/L
n!, ~1!

where f s is a scaling function rapidly decaying for large
arguments. The best collapse is obtained with the exponents
t51.5360.05 andn52.2060.05, cf. Fig. 2~b!. Even though
t is close to the mean-field value 3/2@15–17#, our model
describes a different universality class. This can be shown by
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mapping the avalanche dynamics to the motion of an inter-
face through a disordered medium@18#. By using that the
average number of topplings is^s&5L in the critical state, it
follows from Eq.~1! that

t522
1

n
, ~2!

in agreement with our numerical results.
An interesting characteristic of the distribution is the pres-

ence of a peak, deviating from the power-law behavior, for a
size close to the cutoff of the distribution. A close look at
Fig. 1 shows that the biggest avalanches coincide with large
changes in the average slope of the pile and with discharge
events. Furthermore, as shown in Fig. 3, the numbernd of
avalanches reaching the open boundary, for a given number
of deposited grains, scales with the system size as

nd;L2m8, ~3!

with m851.2060.05. This suggests that the peak is due to
finite-size effects which lead the system into a supercritical

FIG. 1. ~a! In the inset, we show the average slope as a function
of time ~measured as the number of deposited grains!. As all the
data presented in this paper, the average slope was obtained for
p50.6,S151, andS254. The system sizes shown areL540, 80,
160. We can see that after an initial transient regime, whose dura-
tion depends strongly on the system size, a steady state is reached.
The figure shows the fluctuations in the average slope of the pile,
and the size of the discharge events, as a function of time for as
system of size 80. It is visually apparent that there is a close con-
nection between sharp changes in the average slope and the dis-
charge events at the boundary. It is interesting to note that although
our model does not include either a repose or a maximum angle for
the pile, the dynamicssuggestthe existence of such angles because
of the large discharge events.~b! Plot of the avalanches sizes as a
function of time for the same system and interval as in~a!. Again,
the connection between the largest avalanches and the discharge
events is observed.

FIG. 2. ~a! Log-log plot of the probability density of avalanche
sizes s for several system sizes. It is visually apparent that for
s@1 a power-law dependence is observed. For values ofs close to
the cutoff, imposed by the finiteness of the system, we observe a
peak deviating from the power-law behavior. To show that the peak
is due to the system reaching a supercritical state~which is followed
by a discharge! we also plot the distribution of avalanches whenno
discharge event occurred: That curve, obtained forL5640, is
shifted vertically by a factor of 8, to make it more visible.~b! Data
collapse of the curves shown in~a! according to Eq.~1! with the
exponentst.1.53 andn.2.20.

FIG. 3. The dependence of the number of discharge eventsnd as
a function ofL. A power-law behavior, cf. Eq.~3!, with m8.1.20 is
obtained.
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state, followed by a massive avalanche and a large change in
the average slope. We check this hypothesis by considering
only the avalanches for which no discharge occurred at the
boundary. As can be seen in Fig. 2~a!, the peak for very large
values of s is then no longer present and the cutoff has
moved to a smaller value, confirming our hypothesis. We
find that the data is described by Eq.~1! with the same values
of the exponents as when the peak is present.

Next, we study the distribution of lifetimesT for the ava-
lanches. As shown in Fig. 4~a!, the data is described by the
scaling form

P~T,L !;T2yf T~T/L
s!, ~4!

which is confirmed by the good data collapse obtained with
the exponentsy51.8460.05 ands51.4060.05. From con-
servation of probability follows thats(y21)5n(t21)
@18#, in nice agreement with our results. Finally, we study
the distribution of sizesm for the discharge events@see Fig.
5~a!#. The scaling ansatz

P~m,L !;L2k f m~m/Lm!, ~5!

where the scaling functionf m decays exponentially, de-
scribes the data. Since the distributionP(m,L) does not di-
verge form→0 and its integral must equal 1, it follows that

k5m. This result is confirmed by the data collapse shown in
Fig. 5~b!, obtained for the exponentsk51.260.1 and
m51.260.1.

It is possible to obtain additional scaling relations for the
exponents besides those mentioned above. In the steady
state, the input of matter must balance the output through the
open boundary. Thus, we obtain that the frequency of dis-
charge events must balance their characteristic size, and
m5m8. The characteristic size of the discharge events de-
pends on the system size asLm. So, we can conclude that
whenever the system reaches a supercritical state, the num-
ber of grains discharged is of orderLm. Since the average
number of topplings for a given grain before being dis-
charged is of orderL, it follows that the cutoff size for the
avalanches must scale asL3Lm;Ln, thus n511m, in ac-
cordance with our results.

Just before submission of the present work, we became
aware of a model by Christensenet al. @19#, which for some
range of parameters seems to belong to the same universality
class as the model discussed here. The model in Ref.@19#
introduces stochasticity in the toppling of particles via the
selection of a new random critical slope for columns where a
toppling occurred. For local slopes above the critical slope, a
grain is always toppled. In Ref.@19# the predictions of the
model are compared with experimental results for the diffu-
sion of tracer particles. The numerical value of the exponent
describing the diffusion of the tracers is in rough agreement
with the numerical predictions of the model. The exponent

FIG. 4. ~a! Log-log plot of the probability density of avalanche
lifetimesT for several system sizes. It is visually apparent that for
t@1 a power-law dependence is observed. As for the avalanche
sizes, a peak is present for lifetimes close to the cutoff.~b! Data
collapse of the curves shown in~a! according to Eq.~4! with the
exponentsy.1.84 ands.1.40.

FIG. 5. ~a! Log-log plot of the probability density of the sizes
m of the discharge events for several system sizes. It is visually
apparent that the distribution is bounded.~b! Data collapse of the
curves shown in~a! according to Eq.~5! with the exponentsk5m
.1.20. As a visual aid, we display a line corresponding to an ex-
ponential dependence.
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a describing the scaling of the potential energy dissipated
during an avalanche isa.1.53 for our model@20#, in dis-
agreement with the experimental resulta.2. In fact, the
large disagreement between the experimental value ofa and
the numerical prediction of the model suggest that our model
and the model of Ref.@19# do not belong to the same uni-
versality class as the rice-pile experiment. In@21#, a stochas-
tic sandpile model is studied in which only the front of the
avalanches propagate~i.e., no backward avalanches are al-
lowed!. Such a rule leads to higher values fort but appar-
ently at the cost of destroying universality.

Fretteet al. also found that for ‘‘round’’ rice grains the
system did not evolve into a critical state, and that the dis-
tribution of avalanche sizes was bounded. The reason for this
result can be understood if the results for the role of inertia
on the dynamics of sandpiles are remembered@22,23#. It was
shown in Ref.@22# that the assumption of zero inertia is
essential for the establishment of the critical state. For real
experiments, where inertia cannot be avoided, that assump-
tion can only be valid for system with sizes smaller than a

threshold valueLc @22,23#. Thus, for the round rice grains all
system sizes studied in the experiments are larger thanLc ,
while for the elongated grains the opposite is true. Since our
model has the implicit assumption of zero inertia it is inevi-
table that we will only be able to investigate the regime
L!Lc , where SOC is observed.

In summary, we present a physically motivated model for
piles of granular material. We find that the model self-
organizes into a critical state with distributions for most
quantities described by power laws. We measure the expo-
nents characterizing these distributions, discuss scaling rela-
tions, and find that our model belongs to a new universality
class.
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