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EDUCATIONFORUM

   E
ducation researchers have struggled 

for decades with questions such as 

“why are troubled schools so diffi cult 

to improve?” or “why is the achievement gap 

so hard to close?” We argue here that con-

ceptualizing schools and districts as com-

plex adaptive systems, composed of many 

networked parts that give rise to emergent 

patterns through their interactions ( 1), holds 

promise for understanding such important 

problems. Although there has been consid-

erable research on the use of complex sys-

tems ideas and methods to help students 

learn science content ( 2), only recently have 

researchers begun to apply these tools to 

issues of educational policy.

We roughly categorize existing educa-

tion research into two categories, “mecha-

nism based” and “effects based.” Mecha-

nism-based studies include ethnographies, 

case studies, and laboratory experiments that 

focus on understanding individuals and their 

interactions inside schools. Such work has 

provided insight into the motivation and cog-

nition of students, teachers, and school lead-

ers, as well as how social phenomena unfold 

inside schools ( 3,  4). Effects-based research 

treats factors contributing to academic per-

formance of schools as inputs that work 

together to yield a particular level of student 

achievement ( 5). By analyzing variation in 

quantitative observational data on inputs and 

outcomes ( 6), or through the execution of 

fi eld experiments ( 7), effects-based research 

has increased our understanding of the rela-

tive importance of factors such as teacher-

pupil ratio, family background, and teacher 

quality and has established effects (or lack 

thereof) of specifi c interventions designed to 

improve achievement.

What Works, How It Works

Despite of such successes, and as evidenced 

by the call for more “mixed-methods” 

designs ( 8), a key challenge facing education 

research is to integrate insights about “micro-

level” processes with evidence about aggre-

gate, “macro-level” outcomes that emerge 

from those processes. For example, suppose 

we have results of a well-executed experi-

ment using a nationally representative sam-

ple of schools that indicates students in small 

classes perform better than those in large 

ones. Although it is tremendously helpful 

to know that, on average, students in small 

classes do better, this alone is not enough to 

fully understand what changes policy-makers 

and school leaders should implement.

One reason for this is the issue of hetero-

geneous treatment effects ( 9). If small class 

size mattered under certain conditions but not 

others, school leaders would need to under-

stand what happened differently in some 

small classrooms that led to better student 

outcomes. Both mechanism- and effects-

based research may be helpful here, exam-

ining differing contexts and how programs 

are implemented. But we still face the chal-

lenge of aligning micro-level accounts with 

aggregate data. This is all the more diffi cult 

when considering inherent impediments to 

understanding complex systems: Effects are 

disproportional to cause; cause and effect are 

separated in time and space; and prop-

erties of the macro-level system may 

be confused with properties of constit-

uent, micro-level elements (e.g., attrib-

uting intelligence to individual ants 

when observing an entire ant colony 

intelligently gathering food) ( 10).

Additionally, we need to consider 

what are often referred to as “general 

equilibrium effects,” i.e., the systemic impli-

cations of class-size reductions enacted at a 

large scale ( 11). For example, partly on the 

basis of results of a randomized fi eld exper-

iment in Tennessee, California mandated 

statewide class-size reductions. However, 

many school districts had to hire teachers 

with limited training and credentials because 

the supply of qualifi ed teachers was too small 

to handle the sudden increase in demand ( 12). 

If identifi ed a priori, we can try to account for 

such effects using econometric models esti-

mated from observational data ( 13). Although 

such models can often help characterize par-

ticular equilibrium states of educational sys-

tems at a larger scale, we are still interested 

in an additional, policy-relevant step: how to 

best move the system from one equilibrium 

state to another. Regardless of how well we 

account for heterogeneous treatment and 

general equilibrium effects, complex systems 

methods can help bridge these aggregate out-

comes to underlying mechanisms at work in 

the system, as well as discover new and unan-

ticipated systemic consequences.

Bridging the Gap

Applying a complex systems perspective to 

education research parallels the recent use of 

complex systems methods to model the spread 

of epidemics ( 14). Traditionally, one relied on 

(i) detailed case studies that traced social con-

Complex Systems View 
of Educational Policy Research

EDUCATION

S. Maroulis, 1 ,2, 3 R. Guimerà ,1, 4 H. Petry, 2 M. J. Stringer ,1 L. M. Gomez, 5 L. A. N. Amaral, 1 ,6 U. Wilensky 1 ,2 *      

Agent-based modeling and network analysis 
can help integrate knowledge on “micro-level” 
mechanisms and “macro-level” effects.

1Northwestern Institute on Complex Systems, Northwest-
ern University, Evanston, IL 60208, USA. 2Center for Con-
nected Learning and Computer-Based Modeling, North-
western University, Evanston, IL 60208, USA. 3Ford Motor 
Company Center for Global Citizenship, Kellogg School of 
Management, Evanston, IL 60208, USA. 4Institució Cata-
lana de Recerca i Estudis Avançats (ICREA) and Chemical 
Engineering, Universitat Rovira i Virgili, Tarragona 43007, 
Catalonia. 5School of Education, University of Pittsburgh, 
Pittsburgh, PA 15260, USA. 6Howard Hughes Medical Insti-
tute, Northwestern University, Evanston, IL 60208, USA.

*Author for correspondence. E-mail: uri@northwestern.edu

ABM of school choice in Chicago. Students, 
represented by small dots, are shown in their 
census block. Dark red indicates high-poverty 
locations; dark green, low. Each circle rep-
resents a school. Color refl ects the expected 
academic performance of students attending 
the school, given the experimental conditions 
of the model. Light blue indicates high mean 
achievement; dark blue, low. Circle size is pro-
portional to expected enrollment. For more 
information, see the text and (32).
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tacts of a few infected individuals to identify 

the origin of an outbreak and elucidate infec-

tion mechanisms ( 15), or (ii) theoretical stud-

ies assuming large “perfectly mixed” popula-

tions where differences in infection mecha-

nisms were simplifi ed to aggregate measures 

of susceptibility and infectiousness ( 16). 

More recent work utilizing agent-based mod-

eling (ABM), which allows modelers to “run” 

scenarios involving interconnected agents 

over discrete time steps to discover the emer-

gence of macro-level properties, has helped 

link theoretical and case studies. Research-

ers now understand epidemics as macro-level 

outcomes that depend on relational, micro-

level properties of the system, such as the 

structure of the contact network ( 17) and the 

reactions of agents to changing conditions 

( 18). Such work has aided the development 

of antiviral drug distribution and quarantine 

strategies ( 19).

Although operationalizing rules govern-

ing individual behavior in educational sys-

tems may be more diffi cult than specifying 

micro-level rules of disease transmission, 

techniques for studying complex systems can 

complement more traditional approaches to 

education research in at least two ways. The 

fi rst way is through visualization techniques, 

measures, and algorithms that facilitate net-

work characterizations of social context. 

Although network characterizations are not 

new in social science ( 20– 22), recent advances 

are particularly useful for education research. 

New tools for visualization of longitudinal 

network data enable researchers to connect 

fi ne-grained observations of classroom inter-

actions, such as the content of student conver-

sations, to emergent outcomes such as class-

room discipline ( 23). Algorithms and mea-

sures developed to identify “communities” 

in networks ( 24) can identify boundaries of 

potentially infl uential social groups as they 

emerge from interactions driven by the local 

school context (as opposed to a priori cate-

gorizations of students into groups of “schol-

ars,” “athletes,” etc.). Such techniques can be 

applied to widespread, existing data, enabling 

large cross-context analysis. For instance, one 

study used a network clustering algorithm to 

identify adolescent peer groups from class 

schedules and showed in a national sample of 

U.S. high schools that girls are more sensitive 

to social infl uence with respect to enrollment 

in mathematics courses ( 25).

The second way complex systems meth-

ods complement existing research is through 

the use of ABM, providing insights into how 

individual and group-level behaviors relate to 

systemwide phenomena ( 10, 26 ). To illustrate 

the potential of ABM, consider school choice 

reform. Empirical research on programs that 

give households more choice is inconclusive, 

with methodological concerns arising for both 

observational and experimental studies ( 28). 

Computation has enabled work addressing the 

systemic effects, and related policy implica-

tions, of programs. For example, economists 

have used computational general equilibrium 

(CGE) simulations to identify features likely 

to minimize “cream-skimming” of top stu-

dents by private schools in systems where 

government-issued vouchers are used to pay 

for private schooling ( 29).

ABM can extend such research by address-

ing questions pertaining to the paths between 

equilibrium points, such as whether a tran-

sition to choice might make a system worse 

before it gets better and for how long and for 

whom it is worse. Moreover, ABM enables 

investigation of a broader range of agent-

level behaviors, including rules for students 

and schools that more directly correspond to 

behaviors observed from mechanism-based 

studies and agent-level data ( 30,  31). We have 

used student- and school-level data from Chi-

cago Public Schools to initialize an ABM that 

allows households to choose among all public 

schools in a district (see the fi gure) . In one set 

of computational experiments, we allowed for 

schools with a greater “value-added” (ability 

to increase student test scores) to enter the 

district and varied the manner in which stu-

dents ranked schools. When students valued a 

school’s previous test scores much more than 

its geographic proximity, it became more dif-

fi cult for new schools of higher, but initially 

unknown, value-added to survive. Conse-

quently, a micro-level rule that one might 

surmise should aid district improvement 

(placing a relatively high value on school 

achievement) can also limit district-level per-

formance in certain conditions ( 32). Future 

models could be used more directly to design 

school choice programs. For instance, by cal-

ibrating the model with more detailed infor-

mation about the distribution of household 

decision-making rules, one could identify 

locations for new schools that would most 

increase district-level achievement.

By providing tools to characterize and 

quantify relationships between individu-

als and to investigate how individual actions 

aggregate into macro-level outcomes, a com-

plex systems approach can help integrate 

insights from different types of research and 

better inform educational policy. Education 

research must establish not only what works 

but also how and why it works.
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