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a b s t r a c t

Recently, the modified BFW model on random graphs [W. Chen, R.M. D’Souza, Phys.
Rev. Lett. 106 (2011) 115701], which shows a discontinuous percolation transition with
multiple giant components, has attracted much attention from physicists and statisticians.
In this paper, by establishing the evolution equations on the modified BFW model, the
evolution process and steady-states on both random graphs and finite-dimensional lattices
are analyzed. On a random graph, by varying the edge accepted rate α, the system
stabilizes in a steady-state with different numbers of giant components. Moreover, a close
correspondence is built between the values of α and the number of giant components in
steady-states, the efficiency of which is verified by the numerical simulations. Then, the
sizes of giant components for different evolution strategies can be obtained by solving
some constraints derived from the evolution equations. Meanwhile, a similar analysis
is expanded to finite-dimensional lattices, and we find the BFW (α) model on a finite-
dimensional lattice has different steady-states from those on a random graph, but they
have the same evolution mechanism. The analysis of the evolution process and steady-
state is of great help to explain the properties of discontinuous percolation and the role of
nonlocality.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Percolation is a classical model in statistical physics, probability theory, complex networks and epidemiology, which is
initiated as amathematical framework for the study of random physical processes such as flow through a disordered porous
medium [1,2]. The research in percolation is not only of academic interest but also of considerable practical value. During the
last five decades, percolation theory has found a broad range of application in epidemic spreading, porousmedia, robustness
of networks to attacks [3–5], etc.

Percolation has been studied on various topological structures such as scale-free networks, lattices with different
dimensions, random graphs, etc. Taking a percolation model on the Erdös–Rényi random graph (ER model) as an example,
thismodel is one of themost simple and classicalmodels that undergoes a phase transition of an emerging giant component.
Typically, the percolation phase transition is considered as a robust second-order transition until recent work by Achlioptas,
et al. [6], in which they propose that the phase transition of some certain Achlioptas process is discontinuous, and call
it explosive percolation. This interesting phenomenon leads to intensive studies [7,8] on the other models like scale-free
networks [9,10], local cluster aggregation models [11], lattices [12,13], etc. More recently, it has been demonstrated that all
Achlioptas processes have continuous phase transitions in the mean-field limit [14–19]. But some other kinds of models,
which have different and special rules of evolution [20–27], such as the triangle rule [11] and largest cluster rule [28], have
been analyzed in detail and indeed exhibit explosive percolation.
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In particular, the BFW model on random graphs, originally introduced by Bohman, Frieze, and Wormald [29], is similar
to Achlioptas processes but more restricted. The recent work of W. Chen and R. M. D’Souza [30,31], shows a discontinuous
percolation with multiple giant components in the BFW model. It is also shown that with smaller values of edge accepted
rate α, the transition will become more explosive and the number of giant components will increase. Furthermore, K. J.
Schrenk et al. [32] generalize the results to the lattice with different dimensions.

So far, although continuous percolations on several topological structures have been analyzed theoretically and a
wealth of rigorous results have been obtained, such as one- and two-dimensional percolations [33,34], and mean-field
percolation [35], the discontinuous ones still remain on research, especially the BFW model. Many properties of the BFW
model are still not clear, which drives us to investigate the evolution process of the BFW model with both simulation and
theoretical methods.

This paper is organized as follows. In Section 2, we introduce the BFW algorithm with parameter α in detail; the
mathematical expression of the BFW model is established and analyzed in theory. In Section 3, the dynamical evolution
equations of the BFW (α) model on random graphs are described accurately, by which we obtain the steady-state condition
and evolution mechanism of the BFW model for any α; meanwhile, we find the relationship between parameter α and the
steady-state, that is when α ∈ ( 1

m+1 ,
1
m ], the BFW algorithm must stabilize with m giant components, for any m ∈ N+;

moreover, the sizes of these components must satisfy some constraint equations which are given in our paper. In Section 4,
the evolution equations and steady-state of the BFW (α) model are expanded to the finite-dimensional lattice; comparing
to the random graph, we find some metastable states during the evolution process, which are similar to the steady-states
on random graphs. In Section 5, we give a brief discussion about the scaling properties and nonlocality; based on the
analysis above, we can prove the transition of the BFW (α) model is discontinuous by both theoretical methods and
simulations.

2. Evolution analysis on the BFW (α) model

The BFW model on random graphs is first introduced by T. Bohman, A. Frieze, and N. C. Wormald [29], aiming to choose
a subset A ⊂ {e1, e2, . . . , e2t}with |A| = t such that for t as large as possible the size of the largest component in G = (n, A)
is o(n) (i.e. G does not contain a giant component); here n denotes the number of nodes and {e1, e2, . . .} are the sequence
of edges chosen randomly and uniformly from the edge set of the complete graph; A represents the set of accepted edges
(initialized to A = ∅) and t = |A| represents the number of accepted edges.

According to the BFW model, one of the sampled edges is considered at each step, and either accepted to the graph
or rejected provided that the fraction of accepted edges is never smaller than the decreasing function g(k), which
asymptotically approaches the value 1/2. If taking u as the total number of sampled edges, the fraction of accepted edges
is represented by t/u; k denotes the stage and the function g(k) = 1/2 + 1/

√
2k. Just similar to the Achlioptas process, in

which half of the sampled edges are accepted at each step exactly, thismodel does that essentially on average.Moreover, the
BFW model shows that the threshold of a giant component is t = c∗n where c∗ satisfies a certain transcendental equation
and c∗ ∈ [0.9792, 0.9793]. This result has been verified by theoretical methods [29] and simulations [30].

Recently, the BFW model is extended to the BFW (α) one and analyzed by W. Chen and R. M. D’Souza [30] by modifying
the function g(k) toα+1/

√
2k. It is shown thatmultiple giant components appear in a discontinuous percolation transition.

Furthermore, with the value of α decreasing, the threshold will delay and the phase transition will be more explosive. In
Ref. [32], the results of the BFWmodel on random graphs are expanded to lattices of different dimensions. In the following
sections, we will discuss the reason and properties of these phenomena and provide theoretical analysis.

For the theoretical analysis on the BFW (α) model, the BFW (α) algorithm is shown as follows:

algorithm BFW (α)
1 begin
2 A = ∅;
3 k = 2;
4 t = u = 1;
5 e is a randomly sampled edge;
6 while(t < 2n)
7 begin
8 l= Maximal size of component in A


{e};

9 if(l ≤ k)
10 A = A


{e};

11 t = t + 1;
12 u = u+ 1;
13 sample an edge e randomly;
14 else if(t/u < α + 1/

√
2k)

15 k = k+ 1;
16 else
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17 u = u+ 1;
18 sample an edge e randomly;
19 end
20 end

To analyze the evolution of the BFW (α) model and its steady-states, we consider the following variables: k, t, u and n
possess the same meaning as they have in the BFW (α) algorithm;m represents the number of components; Ci denotes the
fraction of the ith largest component.

In the BFW (α) algorithm, there are three cases when an edge is sampled:
• Case I: the vertices of sampled edge are in the same component;
• Case II: they are in two components Ci and Cj and Ci + Cj ≤ k/n;
• Case III: they are in two components Ci and Cj and Ci + Cj > k/n.

According to the BFW (α) algorithm, we sample a random edge at step u: in Case I, the edge is also accepted; in Case
II, the edge is also accepted and two components Ci and Cj merge together; in Case III, we should consider the constraint
condition t/u < α + 1/

√
2k (on the 14th line of the BFW (α) algorithm). This constraint condition is the kernel hard core

of the BFW (α) model, which ensures components increase either evenly or dramatically.
Let’s first introduce a function fα(t, u, k), which denotes themaximal acceptable value of1k at one step (1k is the change

of k). Due to the BFW (α) algorithm, if the rate of accepted edges t/u is smaller than α, any sampled edge should be accepted;
else, k can only increase until the condition t/u < α + 1/

√
2k is invalid. Thus, the function fα(t, u, k) is shown as follows:

fα(t, u, k) =


min


x ∈ N+

 tu ≥ α +
1

√
2(k+ x)


, if

t
u

> α

n, if
t
u
≤ α.

(1)

According to the definition of fα , when a random edge is sampled between two components Ci and Cj, if and only if
fα ≥ n(Ci + Cj) − k, we can accept the edge (t ← t + 1) and the components Ci and Cj merge together (m ← m − 1).
Moreover, k can change by no more than n(Ci + Cj)− k and fα(t, u, k), so we have that in one step:

1k = min

n(Ci + Cj)− k, fα


, (2)

1t = −1m = δ

n(Ci + Cj)− k, fα


. (3)

Here δ(x, y) = 1 if x ≤ y and δ(x, y) = 0 otherwise.
Let’s define the function Pij(t, u, k) as the probability that the vertices of a sampled edge at step u are in Ci and

Cj, Pii(t, u, k) as the probability that vertices are both in Ci. Then as u increases, the evolution equations of k, t and m are
established as follows:

dk
du
=


Ci+Cj>k/n

min

n(Ci + Cj)− k, fα


Pij(t, u, k), (4)

dm
du
= −P2(t, u, k)−


Ci+Cj>k/n

δ

n(Ci + Cj)− k, fα


Pij(t, u, k), (5)

dt
du
= P1(t, u, k)+ P2(t, u, k)+


Ci+Cj>k/n

δ(n(Ci + Cj)− k, fα)Pij(t, u, k). (6)

Here the function P1(t, u, k) is defined as the probability that the vertices of a randomly sampled edge at step u are in the
same component (Case I); similarly, the function P2(t, u, k) is defined as the probability that they are in two components
with the sum smaller than k (Case II). Therefore, we can simply obtain:

P1(t, u, k) =
m
i=1

Pii(t, u, k), (7)

P2(t, u, k) =


Ci+Cj≤k/n

Pij(t, u, k). (8)

For Eq. (4), k is the upper bound of the size of the largest component and never changes in Cases I and II; only in Case III
can k change by nomore than n(Ci+Cj)−k and fα(t, u, k), i.e.,1k = min


n(Ci + Cj)− k, fα(t, u, k)


. For Eq. (5),1m = 0 in

Case I and−1 in Case II respectively; in Case III, the number of componentswill decrease by 1 if and only if fα ≥ n(Ci+Cj)−k,
i.e., 1m = −δ


n(Ci + Cj)− k, fα


. For Eq. (6), the sampled edge must be accepted in Cases I and II, so 1t = 1; similar to

them of Eq. (5) in Case III, an edge can be accepted when fα ≥ n(Ci + Cj)− k and 1t = δ

n(Ci + Cj)− k, fα


.
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3. Dynamical behaviors of BFW (α) model on random graph

On random graphs, the total number of edge is O(n2), but we only accept t ∼ 2n edges. So the probability of sampling
an existing edge can be ignored when the size n is large enough. Function Pii(t, u, k) = C2

i and Pij(t, u, k) = 2CiCj, thus
Eqs. (7) and (8) can be revised as follows:

P1(t, u, k) =
m
i=1

C2
i ,

P2(t, u, k) = 2


Ci+Cj≤k/n

CiCj.

Combining with Eqs. (4)–(6), more information about the BFW (α) model can be obtained. We next provide a theoretical
analysis about properties and behaviors of this model.

3.1. Steady-state conditions of evolution of the BFW (α) model

Although Eqs. (4)–(6) are unsolvable, some interesting properties and results can still be deduced from these equations,
especially the steady-state conditions.

Taking the right side of Eqs. (4) and (5) as 0, we can obtain P2(t, u, k) = 0,min

n(Ci + Cj)− k, fα


= 0 and

δ

n(Ci + Cj)− k, fα


= 0. Furthermore, for two components with sum smaller than k, they must merge together, but the

merging operation is forbidden after the system stabilizes, so any two giant components stay with n(Ci + Cj)− k > 0 after
stabilizing, then the steady-state conditions can be simplified to be:

fα(t, u, k) = 0
P2(t, u, k) = 0. (9)

According to the definition, fα(t, u, k) = 0 if and only if t/u > α + 1/
√
2k, so we just need to prove t/u > α + 1/

√
2k

and P1(t, u, k) > α are equivalent.
For P1(t, u′, k) > α with some u′, we can prove that t/u > α + 1/

√
2k for any u > u′. Doing calculations on both sides

of Eq. (6) from an initial state (t0, u0) to a current state (t1, u1), we have:

t1 − t0 =
 u1

u0
P1 du+

 u1

u0
2


Ci+Cj>k/n

δ(n(Ci + Cj)− k, fα)CiCj du

>

 u1

u0
P1 du.

No matter how large u is, we can always find some u0 > u with t0/u0 > α because the BFW (α) model ensures the
fraction of accepted edges is never smaller than α for ever. Suppose t/u is always smaller than α, by the rule of the BFW (α)
model, the sampled edge must be accepted and t, u increase accordingly in each step, which will lead to the increase of the
value of t/u and finally make t/u > α.

For P1, only when a sampled edge linking Ci and Cj is accepted, the part of C2
i + C2

j changes to (Ci+ Cj)
2, which will make

the value of P1(t, u, k) increase; otherwise, P1(t, u, k) will never change. So once P1(t, u, k) > α for some u, it will be kept
for ever.

In summary, once P1(t, u′, k) > α for some u′, choosing u0 > u′ with t0/u0 > α, we obtain:

t1 > t0 + α

 u1

u0
du > αu1.

Notice that the formula above is correct for any u1 > u0. After the giant components come up, we have:
k ∼ nCmax ∼ O(n).

So 1/
√
2k ∼ o(1) and it can be ignored when n is large enough. Therefore, when P1(t, u1, k) > α for any u1 > u′, we obtain

t1/u1 > α + 1/
√
2k.

On the other hand, if fα(t, u, k) = 0 keeps for any u > u′, Eq. (6) turns out to be:
dt
du
= P1(t, u, k).

In order to ensure t/u > α + o(1)(∀u > u′), we need the slope P1(t, u, k) > α. �
Finally, we can obtain the steady-state conditions for any u > u′:

P1(t, u, k) > α
P2(t, u, k) = 0. (10)

In Fig. 1, simulations have verified this conclusion. For different values of α, the values of t/u and k/n change until
P1(t, u, k) =

n
i=1 C

2
i > α, which means the BFW (α) system evolves until Eq. (10) takes effect.
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Fig. 1. Simulation of BFW (α) model by 100 random instances with N = 106 nodes. The solid lines denote the fraction of accepted edges for different
values of α, which can be calculated by t/u in the algorithm; the dashed lines denote P1(t, u, k) =

100
i=1 C

2
i . The above subgraph shows the dynamical

evolution of variables k/n, t/u and P1(t, u, k) with α = 1/3. By the results, when P1(t, u, k) > α, t/u stays greater than α and k keeps still.

3.2. Merging mechanism on the multiple giant components of BFW (α) model

Since in Cases I and II, sampled edges are always accepted, we just need to explicitly consider Case III. To obtain the
maximal accepted change of k, i.e. fα , we set t/u = α + 1/

√
2k and differentiate u on both sides by k [30]:

du
dk
=

1

2
√
2


α +
√
1/2k

2 t
k3/2

. (11)

Before the giant component appears, we consider that t ∼ O(n), k ∼ nCi ∼ o(n). With du = 1 and Eq. (11), we obtain
fα ∼ dk ∼ O(k

3
2 /n). Let S denote the component set {Ci | k/2 < Cin < k}. If the sampled edge links components Ci and Cj,

where Ci, Cj ∈ S, then n(Ci + Cj)− k ∼ O(k)≫ O(k
3
2 /n). That leads to δ


n(Ci + Cj)− k, fα


= 0, which means this edge is

rejected. So the edge linking two components of S must be rejected and only the edge linking to at least one component of
{S ({S is the complementary set of S) can be accepted. For the process to be performed successively, either a new member
in S comes up or the scale of an original one in S becomes more close to k. That is the key for coexisting multiple giant
components, and they are expected to grow simultaneously before a critical point (Fig. 2).

Similarly, after the giant components appear, k ∼ nCi ∼ O(n),∀Ci ∈ S, so we have:

fα(t, u, k) ∼ O(n1/2)≪ n(Ci + Cj)− k. (12)

Then we still have δ

n(Ci + Cj)− k, fα


= 0 and the members of {S keep merging into S until P2 = 0. According to

the steady-state conditions Eq. (10), if Ci satisfies P1 > α, the system will stabilize; else, P1(t, u, k), which is the probability
that the vertices of the sampled edge are in the same component, is smaller than α. As it is proved above, if P1 < α, we can
always have some uwith t/u < α+ 1/

√
2k, which makes k keep increasing (the 14th and 15th lines of the algorithm) until

two components merge together.
Furthermore, only two minimal components (marked as Cmin

1 , Cmin
2 ) can merge together. We define P as the probability

of any two other components (marked as Ci, Cj) merging together before the two minimal ones, then

P 6

1− 2Cmin

1 Cmin
2

n(Ci+Cj−Cmin
1 −Cmin

2 )/fα(t,u,k)
. (13)

For one step, 1k = min

n(Ci + Cj)− k, fα


= fα . Let’s take fα(t, u, k) as the average increase of k for one step. Based on

Eq. (12), fα(t, u, k) ∼ O(n1/2). When k increases to be larger than n(Cmin
1 + Cmin

2 ) but smaller than n(Ci + Cj), only one
edge linking Cmin

1 and Cmin
2 is sampled to make them merge together. So in order to ensure that Cmin

1 and Cmin
2 can’t merge

together before Ci and Cj, we need k to increase by n(Ci+ Cj− Cmin
1 − Cmin

2 ) without any components merging, which means
n(Ci + Cj − Cmin

1 − Cmin
2 )/fα(t, u, k) edges not linking Cmin

1 and Cmin
2 should be added. So the probability P satisfies Eq. (13).
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a b

c d

e2

e1

e3

Fig. 2. An example for the evolution of BFW (α) model. System consists of n = 60 nodes. Subgraph (a) provides the initial graph at some step u, in which
k = 16 and t = 29. At this step, two random edges (e1, e2) are picked yet only one is added to the graph based on the selection rule of BFW (α) model,
whereas the other is discarded. The blue (yellow) components are (not) in the setS. The green circles denote the isolated nodes. Subgraph (b) is the situation
of adding edge e1 , two components of set {S merge into the one of set S. Subgraph (c) is the situation of adding edge e2 , a component of {S merges into set
S, forming a newmember of set S. In subgraph (d), after the situation of subgraph (b) happens, there are more than one members in set S. All the sampled
edges linking two components in set S will be rejected, such as edge e3 . (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

As the system size n→∞, the number of needed edges n(Ci + Cj − Cmin
1 − Cmin

2 )/fα(t, u, k)→ O(n1/2)→∞, causes
P → 0, which means two minimal components can merge before any two other components. This phenomenon can also
be verified by simulation of the BFW (α) model (Fig. 3).

According to the discussion of the impact of a single edge added to the graph in Ref. [36], three distinct mechanisms
which may contribute to increasing the size of the maximal component are identified:
(i) Direct growth: a smaller one merges into the maximal component;
(ii) Overtaking: two smaller components merge together to create a new maximal one;
(iii) Doubling: two components both of maximal size merge together to double the size of the original one.

With the analysis of the evolution mechanism of the BFW model above, we can recognize which kind of growth it is in
the BFW model. Before the giant components appear, only the edge linking at least one component of {S can be accepted,
and it means themaximal component C1 may increase by overtaking [36] or bymerging with a tiny component of {S, which
is essentially an isolated node [31]. After the giant components emerge but the system is not stabilized, the members of {S
will keepmerging into S until P2 = 0, themaximal component C1 may increase over almost all by overtaking. Since the BFW
model restricts the increase of the maximal component, the merging between a member of {S and a non-maximal member
of S can minimize the increase, which makes the maximal component grow by overtaking. Finally, we prove that only two
minimal components in S can merge together, i.e. the maximal component C1 may increase only by overtaking (Fig. 3).

3.3. Quantitative properties of the giant components of BFW (α) model

Since we have analyzed the BFW (α) model with fixed α in detail, in this section, we are going to calculate the number
and size of giant components with arbitrary α in theory. Taking Cm

i (α) as the ith largest giant component of the steady-
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Fig. 3. Top: the maximal component’s size in critical interval of the BFW (α) process; the horizontal axis t reflects a ‘‘jump point’’ at which the maximal
component increases dramatically. Bottom: the yellow and red rectangles represent the first and second minimal components before ‘‘jump point’’, and
the blue ones represent the maximal component after ‘‘jump point’’. At the ‘‘jump point’’, the two minimal components merge into the maximal one. All
the other components in S stay unchanged at ‘‘jump point’’. That shows the growth of the maximal component is overtaking [36]. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

state with m giant components (m-steady-state) to replace Ci above, we will find some common properties of Cm
i (α) when

α belongs to some intervals.

3.3.1. Steady states with different evolution parameter α

In the BFW (α) model, the parameter α plays a key role in the problems of when the system can stabilize and which state
the system can stabilize in. Defining (αm+1, αm] as the m-steady-state interval in which there exist m giant components,
m = 1, 2, 3, . . . , for any α with αm+1 > α > αm, the values of Cm

i (α) are all the same when the system stabilizes (Fig. 4), so
we take Cm

i instead of Cm
i (α) briefly for all α ∈ (αm+1, αm]. Thus, the members in the set S evolve similarly with different

phases in different intervals of α.
Moreover, if system BFW (α) with α ∈ (αm+1, αm] has m + 1 components Cm+1

i (α) in S, there must be P1(t, u, k) < α,
which leads to its collapse and a steady phase of m-steady-state. As mentioned above, Eq. (13) ensures that only the two
minimal components can merge before the system stabilizes and they merge to the largest one inm-steady-state (Fig. 3). So
the Cm

i and Cm+1
i must satisfy:

Cm
i+1 = Cm+1

i , ∀i = 1, 2, . . . ,m− 1. (14)

In addition, when two components merge together, P1(t, u, k) will ‘‘jump’’ by (Cm+1
m+1 + Cm+1

m )2 − (Cm+1
m+1 )2 − (Cm+1

m )2 =

2Cm+1
m Cm+1

m+1 . Notice that inm-steady-state, P1(t, u, k) stays unchanged and is larger than α ∈ (αm+1, αm], so P1(t, u, k) must
be the upper bound of α in m-steady-state:

m
i=1

(Cm
i )2 = αm. (15)

Suppose all components’ sizes in S are very close and
m

i=1 Ci ≃ 1, we have the theoretical expression of αm:

αm =

m
i=1

(Cm
i )2 =

m
i=1

1
m2
=

1
m

. (16)

As the value ofα goes smaller, the assumption is closer to the truth by numerical results (Fig. 5). Considering the evolution
process of the BFW model discussed above, the members of {S keep merging into S without increasing the value of k too
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much; this is the kernel point to ensure that the multiple giant components emerge and the percolation is discontinuous.
The members of the set S will grow evenly and slowly and the sizes of them are very close. With the smaller value of α, we
prove that the systemwill stabilize in the steady-state ofmore giant components, the growth of components in the set S will
bemore uniform. As increasing the value ofα, the systemwill evolve to the next steady-state of fewer giant components, the
errors of the previous statewill accumulate and finally become a large deviation between theoretical results and simulations.

3.3.2. Number and sizes of multiple giant components
Firstly, we can take thewhole set S as a component and assume it grows similarly as the giant component on Erdös–Rényi

random graphs, in which the number of added edges is expected to be the sampled edge number u. As rejected edges are
almost between two components of S, the size of the whole set S is almost unchanged if we take these rejected edges on.
According to themethod of generating function [37], the fraction x of giant component satisfies the equation 1−x = e−2xu/n,
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Table 1
The fraction of components, P1 and fraction of the whole set S with α = 1/2, 1/3, 1/4, 1/5. The results are obtained by 100
random instances with 106 nodes. The numbers in brackets are theoretical results, which are obtained by Eqs. (14)–(17).

α = 1/2 α = 1/3 α = 1/4 α = 1/5

C1 0.5736 0.4142 0.3220 0.2631
C2 0.4144 0.3217 0.2629 0.2223
C3 0.2633 0.2223 0.1926
C4 0.1928 0.1699
C5 0.1519

C2
i 0.5007 (0.5000) 0.3444 (0.3333) 0.2594 (0.2500) 0.2077 (0.2000)

xm 0.9880 (0.9802) 0.9992 (0.9975) 0.9999 (0.9997) 0.9998 (0.9999)

where u represents the number of added edges. At the critical point, the threshold tc ≃ 1 and tc/u ≃ α when u is large
enough (Fig. 1). With Eq. (15), we obtain the general equations of the fraction of giant components Cm

i for any integer m:

m
i=1

(Cm
i )2 = αm

m
i=1

Cm
i = xm

1− xm = e−2xm/α.

(17)

Here xm denotes the fraction of the whole set S which hasm giant components. Notice for casem = 2, Eq. (17) can be solved
uniquely (due to the error of αm in Fig. 5, the accurate result αm = 0.52 is adopted), then with the results and Eq. (14), we
can obtain all the sizes of multiple giant components. The contrast between theory and simulation is shown as follows (see
Table 1).

In summary, the parameter α determines when the system can stabilize and which state the system can stabilize in. In
the evolution process of the BFW (α) model, α can only take effect on the time to increase k. As to how much k increases, α
doesn’t work. With this special evolution rule of the BFW (α) model, the connection between two adjacent steady-states is
found and sizes of giant components are obtained. As the value of α decreases, theoretical results can be much better and it
is verified by simulations.

4. Dynamical behaviors of BFW (α) model on finite-dimensional lattice

Different from random graphs, the total number of edges on a finite-dimensional lattice is E ∼ O(dn), where d is the
dimension of the lattice and n is the number of vertices. If t edges have been added to the lattice at step u, the probability
of sampling a random edge at the next step is θ(t) = 1 − t/E. In mean-field theory, no matter what the structures of
the components are and only considering which component the vertices of the random sampled edge belong to, we have
functions Pij(t, u, k) = 2θ(t)CiCj and Pii(t, u, k) = θ(t)C2

i . So on a d-dimensional lattice, the right side of Eqs. (4)–(6) should
be revised by multiplying by the factor θ(t) and the exact form will be:

dk
du
= 2θ(t)


Ci+Cj>k/n

min

n(Ci + Cj)− k, fα


CiCj, (18)

dm
du
= −θ(t)P2(t, u, k)− 2θ(t)


Ci+Cj>k/n

δ

n(Ci + Cj)− k, fα


CiCj, (19)

dt
du
= θ(t)(P1(t, u, k)+ P2(t, u, k))+ 2θ(t)


Ci+Cj>k/n

δ(n(Ci + Cj)− k, fα)CiCj. (20)

Notice thatwith t increasing, θ(t)decreases to 0. Thus, the steady-state conditions on randomgraphs (Eq. (10)) are invalid
because P1(t, u, k) > α doesn’t ensure t/u > α+1/

√
2k anymore. Only when θ(t) = 0, i.e. t = E, can the system stabilize.

Actually the steady-state on finite-dimensional lattices is a complete graph with one component, which is different from
the result of multiple giant components on random graphs. However, with t increasing, some metastable-states appear and
can stabilize for a period of time, in which multiple giant components coexist. Then, we will introduce the metastable-state
phenomenon on finite-dimensional lattices, which is very similar to random graphs.

For Eqs. (18)–(20), as in what we do on random graphs, suppose P1(t, u, k) > α and P2(t, u, k) = 0 and we have:

dt
du
= θ(t)P1(t, u, k). (21)
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As proved on random graphs, the steady-state condition on finite-dimensional lattices should be θ(t)P1(t, u, k) > α, for
all t > t0. But P1(t, u, k) ≤ 1 andwith t increasing, the factor θ(t) keeps decreasing to 0. So the slope of t versus uwill finally
become smaller than α, which makes t/u < α and fα > 0. So condition θ(t)P1(t, u, k) > α is invalid on finite-dimensional
lattices. Only when t increases up to E, i.e. θ(t) = 0, will the system stabilize to a complete graph, which has only one
component (Fig. 6).

The phenomenon on randomgraphs is different from that on finite-dimensional lattices (Fig. 6). On randomgraphs,O(n2)
edges can be sampled and added. According to the rule of the BFW (α) model, the edges linking two vertices of the same
component are preferred to be accepted. That means O((Cin)2) edges in component Ci can be added without any restraint.
In contrast, for the stable system in the thermodynamic limit, there are O(dn) edges on finite-dimensional lattices, which is
linear to n. So the system can stabilize only when the edges are all added to graphs.

Furthermore, there are also some ‘‘m-metastable-states’’ (stabilizingwithm giant components for a period of time) during
the evolution process on finite-dimensional lattices, which are similar to the m-steady-states on random graphs. Every
system on finite-dimensional latticesmust experience all them-metastable-states (m ∈ [1/α, 1]) and reach the steady-state.
This phenomenon is much similar to what it does on random graphs. Based on the evolution Eqs. (18)–(20), all the analysis
and conclusions obtained on random graphs are applicable to finite-dimensional lattices. They have the same dynamical
behaviors and merging mechanism. Let’s take α′ = α/θ(t) as the substantial parameter of the system, then, by Eq. (21) the
steady-state condition on finite-dimensional lattices will be:

P1(t, u, k) > α′.
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Fig. 7. The process of BFW (α) model on 6-dimensional lattice (top) and random graph (bottom) with different values of α = 1/5, 1/4, 1/3, 1/2. Colors
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As t increases, the parameter α′ will change from α to 1 (though α′ can be infinity, the upper bound of 1 is large enough
for our analysis). As in what we analyzed on random graphs, the system on a lattice will stabilize on some metastable-state
until the change of parameter α′ causing P1(t, u, k) < α′. At this time, the system will evolve to the next metastable state,
and keep doing this until reaching the steady-state. In every metastable-state, the slower the parameter α′ changes, the
longer the systemwill be steady. Moreover, the changing speed of α′ depends on the factor θ(t) = 1− t/O(dn), so with the
same size n, the system will stay longer in every metastable-state on the lattice with larger dimensions (Fig. 6).

In Fig. 7, it shows the process on a 6-dimensional lattice and random graph with varying parameter α. We can see the
phenomenon related to the change of α′ clearly on the top four subgraphs. From the critical point, the metastable-state
with multiple giant components appears. With t increasing, the system evolves to the next metastable-state with fewer
components, which indicates the substantial parameter α′ increasing. Finally, the system reaches the steady-state with one
component, and now the parameterα′ has increased larger than 1. On the bottom four subgraphs, these are the counterparts
on random graphs. Compared to the lattices, it is clear that the system on random graphs stabilizes on the m-steady-state,
which is just the m-metastable-states on lattices. The number and size of components between the m-steady-state and
m-metastable-states are exactly the same for different values of α.
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5. The scaling properties and nonlocality of BFW (α) model

We establish the explosive properties of the BFW (α) model on both random and finite-dimensional lattices via
theoretical methods and numerical simulation. Next, we analyze the scaling behavior on the BFW (α) model. For infinite
size n, the size of maximal component Cin jumps at the critical point tc if the transition is discontinuous, while if it varies
continuously with a power law singularity Cin ∼ (t − tc)β for a continuous transition [16]. Many models have been proved
continuous based on the scaling behaviors [15,17]. As analyzed above, it is accurately described that the growth of the
maximal component is by overtaking (Fig. 3) and only the two minimal components in set S can merge together (Eq. (13)).
So the size of the maximal component must jump at the critical point, which means the transition of the BFW (α) model is
discontinuous. In Fig. 8 is shown the distribution of C1 at the critical point. With the size n increasing, the distance between
two peaks increases and the distribution approaches a binomial distribution. Based on the evolutionmechanism of the BFW
(α) model, two minimal components in set S merge together causing the growth of maximal one by overtaking. So there
are several ‘‘jumps’’ occurring before the system stabilizes; we just show the biggest ‘‘jump’’ in Fig. 8.

Meanwhile, according to the studies about locality and nonlocality on the other models [11,38], the BFW (α) model is
typically nonlocal. We find that nonlocality of the BFW (α) model contributes very much to the overtaking, which finally
causes the discontinuous phase transition. It is a strong restriction that the BFW (α) model uses the nonlocal information
to control the size of the maximal component. On increasing the value of α, the restriction will decline, the frequency of
growth by overtaking will also decrease, and it will be instead from direct growth. With removing the restriction, i.e. α = 1,
this model becomes the original ER model, which is a continuous transition.

Additionally, let ∆n(γ , A) denote the number of edges required for C1 to go from size C1n ≤ |nγ
| to C1n ≥ |An|. We want

to prove that limn→∞∆n(γ , A)/n = 0, which also means the transition is discontinuous [11]. See Fig. 9, at some step u, we
always have t/u = α+ 1/

√
2k, and the slope of t versus u is P1(t, u, k). So the maximal number of accepted edges (marked

X in Fig. 9) before C1 grows can be obtained:

X =
P1

(α − P1)
√
2k

. (22)

Integrating Eq. (22) from k = nγ to k = An, we have:

∆n(γ , A) =

 An

nγ

P1
(α − P1)

√
2k

dk ≤ B
 An

nγ

1
√
2k

dk = B
√
2k

k=An
k=nγ

.

Here B denotes the upper bound of P1/(α− P1). P1 is a monotonically nondecreasing function and P1 < α before the system
stabilizes, so the function P1/(α− P1) is bounded. The limn→∞∆n(γ , A)/n = 0 can be proved and the transition of the BFW
(α) model is discontinuous. It can be verified by simulation in Fig. 10. Notice Eq. (22) above is applied on the random graph,
and on lattices P1 should be changed to θ(t)P1. The same operation can be expanded to lattices because the factor θ(t) is
also bounded.
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√
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direction of advance now is P1 . According to the rule of BFW (α) model, any sampled edge should be accepted when the point goes below the blue line
(t/u < α), even though that would make C1 grow dramatically. So the maximal number of accepted edges for growth of C1 is marked as X , which is the
distance between blue solid circle and black solid circle. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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6. Conclusion and discussion

We detect the steady-state and evolution process of the BFW (α) model with both numerical and theoretical methods
on random graphs and finite dimensional lattices. According to the rule of the BFW (α) model, the function fα is defined to
calculate the change of the stage k and number of giant components m. Furthermore, by establishing the mathematical
expression of evolution equations on this model, a relationship between the parameter α and steady-state condition
is proved. Meanwhile, with some hypothesis, the correspondence between the parameter α and the number of giant
components in steady-state is obtained, that is when α ∈ ( 1

m+1 ,
1
m ], the BFW (α) model must stabilize with m giant

components. Through the further analysis of the evolution process and the numerical results, the set S is defined to find
the rule of two components merging before and after the threshold. Moreover, the sizes of giant components for different
evolution strategies also have a close connection with each other and satisfy some constraint equations, which are derived
from the evolution equations. The similar conclusion can be expanded to finite-dimensional lattices.

So far, on random graphs, we can calculate the number and sizes of giant components for different evolution strategies
with theoretical methods, which fit very closely with the simulations, especially when the value of α is smaller than 0.25. As
to finite-dimensional lattices, the steady-state must be a complete graph, but there are some metastable states during the
evolution process, in which the number and sizes of multiple giant components are the same as those on related random
graphs. Additionally, the analysis of the steady-state and evolution process is of great help to explain why the percolation of
the BFW (α) model is discontinuous and how dramatic the transition is, which is almost supported before by simulations.
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For example, before the giant component appears, we can obtain dk/dt ∼ O(k
3
2 /n), although the k ∼ O(n

2
3+δ) ∼ o(n),

for 0 < δ < 1/3, we still have dk/dt ∼ ∞; here k ∼ Cmax, so the result means percolation of the BFW (α) model is
dramatically discontinuous. Finally, we find the nonlocality on the BFW (α) model decides the growing mechanism of the
maximal component.

Besides, we just analyze thismodel on Erdös–Rényi random graphs and finite-dimensional lattices; as to other structures
with any degree distribution, the theoretical framework in this paper alsoworks, inwhichweonly need tomodify the related
probabilities in the evolution equations. As to the nature of discontinuous transitions on other models and how to apply this
method to real systems, future work must bridge the gap and establish a universal framework.
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