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ABSTRACT
Machine learning approaches have become critical tools in data mining and knowledge discovery, especially when attempting to uncover
relationships in high-dimensional data. However, researchers have noticed that a large fraction of features in high-dimensional datasets are
commonly uninformative (too noisy or irrelevant). Because optimal feature selection is an NP-hard task, it is essential to understand how
uninformative features impact the performance of machine learning algorithms. Here, we conduct systematic experiments on algorithms
from a wide range of taxonomy families using synthetic datasets with different numbers of uninformative features and different numbers of
patterns to be learned. Upon visual inspection, we classify these algorithms into four groups with varying robustness against uninformative
features. For the algorithms in three of the groups, we find that when the number of uninformative features exceeds the number of data
instances per pattern to be learned, the algorithms fail to learn the patterns. Finally, we investigate whether increasing the distinguishability of
patterns or adding training instances can mitigate the effect of uninformative features. Surprisingly, we find that uninformative features still
cause algorithms to suffer big losses in performance, even when patterns should be easily distinguishable. Analyses of real-world data show
that our conclusions hold beyond the synthetic datasets we study systematically.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0170229

INTRODUCTION

Learning algorithms have become increasingly popular in data
mining and knowledge discovery in various domains, such as pre-
dicting COVID-19 sequelae,1 discovering new drugs,2 designing
new materials,3 understanding human mobility,4,5 and predicting
customer churn rate.6 The performance of learning algorithms is
determined by two main factors: the quality of the training data
and the inductive bias of the algorithm.7 The inductive bias (or
learning bias) allows learning of general characteristics of the task
based on specific training data instances. It refers to the general-
izations of the algorithm for similar consistency with the observed

data, compelling the model’s quality to be related to the data quality.
However, from a practical perspective, the performance of the algo-
rithm depends on not only the quality but also the appropriateness
of data.8

Real-world data are an admixture of informative (signal-rich)
and uninformative (too noisy or irrelevant) features. Disappoint-
ingly, what contributes to the lack of information for a given feature
in the dataset is nearly always unknown. Critically, the learning
algorithms can become overly sensitive to noise in the input data,
resulting in over-fitting.

In data mining applications, two types of noise are gener-
ally considered: class noise and feature noise.7,9–11 Class noise is
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primarily studied by mislabeling data to investigate the performance
limits of the algorithm under weakly supervised or unsupervised set-
tings. Feature noise is typically studied by infusing noise into existing
features.

An aspect of noise that has not been studied systematically is
the presence of uninformative features—those that are not relevant
to the learning task—and their impacts on the algorithm’s perfor-
mance. The increasing availability of data means that for learning
tasks, such as classification, clustering, or regression, keeping poten-
tially uninformative features is less onerous than filtering them
out.12,13 For example, when attempting to predict disease progres-
sion14 or to extract cell type from the expression levels of thousands
of genes obtained through single-cell RNA sequencing,15 it is far eas-
ier to include all features than to determine which features should be
removed because they contain no information.16

Even though different techniques have been proposed to filter
out less relevant and irrelevant features,17,18 optimal selection of the
subset of features is an NP-hard task.19 As a result, large numbers of
features, many of which may lack any information, are still widely
used in tasks such as classification and clustering.20

Here, we test the hypothesis that for some learning algorithms,
the training process can be significantly harmed by the presence
of uninformative features. For example, learning algorithms that
use nearest neighbors and rely on calculating distances between
data instances in space could easily be affected by the “curse of
dimensionality.”21 Uninformative features add extra dimensional-
ity and noise while providing no additional separation for different
clusters. In contrast, learning algorithms using decision trees have
an embedded feature selection process that can potentially filter out
irrelevant features and, therefore, be more robust to uninformative
features. To our knowledge, these intuitions have never been sys-
tematically tested for supervised classification and dimensionality
reduction algorithms.

Thus, we focus on addressing the gap in the understanding of
the impact of uninformative features on knowledge mining through
an experimental investigation using synthetic data from the per-
spective of the user of machine learning algorithms. Specifically, we
analyze the interplay between the number of uninformative features,
the number of patterns to be learned, the distinguishability of the
patterns, and the sample size. We evaluate classification tasks with
2 to 9 Gaussian clusters varying from including no uninformative
features to up to 8000 uninformative features and explore the lim-
its of learning algorithms to maintain their proper function in the
presence of uninformative features. We find that the performance
of most algorithms is susceptible to uninformative features, which
could usually influence model suitability and robustness. Finally, we
test these insights using real-world data for single-cell phenotyping
from cellular indexing of transcriptomes and epitopes by using the
sequencing (CITE-seq) method.

RESULTS

We test the robustness of a suite of 15 popular classification
algorithms—and an additional 11 algorithms in the supplementary
material—in the scikit-learn (version “0.21.3”) Python package.22

These algorithms cover a broad range of machine learning (ML)
approaches and are the most accessible to users of machine

TABLE I. Taxonomy of benchmarked algorithms.

Type Algorithm

Discriminant analysis Linear discriminant analysis

Ensemble methods
Bagging classifier

Gradient boosting classifier
Random forest classifier

Gaussian processes Gaussian process classifier

Linear models

Logistic regression
Logistic regression CV

Perceptron
Ridge classifier

Naive Bayes GaussianNB

Nearest neighbors KNeighbors classifier
Nearest centroid

Neural network MLP classifier

Support vector machine SVC

Tree Decision tree classifier

learning approaches (Table I). See Table S1 for hyper-parameter
values.

Synthetic data

In order to rigorously test the impact of uninformative fea-
tures, we generate synthetic datasets with known properties. In
these synthetic datasets, the patterns to be learned are modeled as
two-dimensional Gaussian clusters with a covariance matrix,

Σ =
⎛

⎜

⎝

1 0

0 1

⎞

⎟

⎠

, (1)

where the separation between the centers of adjacent clusters equals
d (normalized by the standard deviations σ ≡ 1). The uninformative
features are modeled using uniform distributions U(0, 1) [Fig. 1(a)].
The optimal decision boundaries and theoretical accuracy can be
calculated exactly in this case. As shown in Fig. 1, the data used
for the analyses have four major parameters: the number of unin-
formative features in the dataset, the number of patterns (clusters)
to be learned, the separation between adjacent clusters (d), and the
number of training instances (sample size).

Relative loss of predictability

The robustness of a learning algorithm is in its ability to learn
the desired pattern in the presence of noise. José et al. proposed
the relative loss of accuracy (RLA) as a metric to measure the
robustness of learning algorithms in the presence of class and fea-
ture noise.23 RLA is easily interpretable and allows the comparison
of performances of a single algorithm in the presence of different
noise levels. However, RLA is not well suited for comparisons across
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FIG. 1. Illustration of the experimental setup used to evaluate the sensitivity of machine learning (ML) classifiers to uninformative features. (a) We generate corpora of
synthetic datasets in which two features contain information that enables us to identify which two-dimensional Gaussian cluster a data instance belongs to, while a specified
number of uninformative features take values drawn from a uniform distribution over the entire support. (b) Comparison of decision lines obtained with a specific ML learning
algorithm (red full lines) vs the optimal theoretical decision boundaries (red dotted-dashed lines). (c) To enable comparisons across datasets with different numbers of clusters
and different theoretical accuracy expectations, we introduce a new metric in which we denote the relative loss of predictability; see Eq. (2). The relative loss of predictability
normalizes the measured accuracy by the maximum theoretical accuracy A0 and the null accuracy Anull , which is the baseline’s accuracy where instances’ labels are randomly
assigned.

models or for data encoding a different number of patterns to be
learned.

To address these caveats, we build on the RLA here. We
note that more important than model accuracy in the absence of
noise is the theoretical upper limit of accuracy, which we denote
A0. For example, with a minimum separation between clusters
placed on a 2D grid of d = 3.2σ, the theoretical accuracy is 0.94
for two clusters and 0.85 for nine clusters. Additionally, we take
account of task difficulty by computing the baseline accuracy Anull
where each instance class is randomly assigned, which equals the
inverse of the number of clusters for equally populated clusters.
By introducing Anull into the denominator, we allow fair com-
parisons of learning tasks of different difficulties (e.g., different
numbers of clusters to be detected). We define the relative loss of
predictability as

Lk(m, p) = 100 ⋅
A0 − Ak(m, p)

A0 − Anull
, (2)

where Ak(m, p) is the accuracy of algorithm k trained on a dataset
that has m uninformative features and p patterns to be detected. This
metric can be extended to imbalanced datasets by replacing accuracy
with balanced accuracy.

The impact of uninformative features

To evaluate the robustness of learning algorithms against the
presence of uninformative features, we generated multiple datasets
for each set of patterns. The number of clusters varies from 2 to
9, and the number of uninformative features varies from 0 to 8000.
We assign 1000 data instances to each cluster and set the separation
between neighboring clusters to d = 3.2σ, ensuring that the expected
cluster overlapping is less than 0.1%. We thus generate datasets for
8 × 8 = 64 sets of parameters that can be used to benchmark the
performance of 15 classification algorithms (listed in Table I) with
fivefold cross-validation.

Inspired by our visual inspection, we define the following crite-
ria to cluster algorithms based on their sensitivity to the number of
uninformative features and to the number of patterns to be learned:

U: high sensitivity to the number of features: L(100, 2)
− L(0, 2) > 25%,

u: intermediate sensitivity to the number of features:
L(8000, 2) − L(0, 2) > 10%, and

P: high sensitivity to the number of patterns to be learned:
L(0, 9) − L(0, 2) > 25%.

Application of these criteria clusters the 15 algorithms into four
groups [Figs. 2(a) and S1]. Algorithms in group “U” are very sensi-
tive to uninformative features, and the relative loss of predictability
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FIG. 2. The patterns of loss of predictability under an increasing number of uninformative features and clusters enable us to organize the algorithms into four groups. We
generate datasets for 64 different pairs of the number of clusters and the number of uninformative features. (a) The heatmap displays the relative loss of predictability for
15 machine learning classifiers as a function of increasing numbers of clusters and uninformative features. A comparison of the impact of these two parameters enables us
to organize these algorithms into four groups. Algorithms in group U are highly sensitive to the number of uninformative features. Algorithms in group uP are less sensitive
than those in group U to the number of uninformative features but are highly sensitive to the number of clusters to be learned. Algorithms in group u are less sensitive to the
number of uninformative features and insensitive to the number of clusters. Finally, algorithms in group I are insensitive to both the number of uninformative features and the
number of patterns to be learned. (b) Examples of dependence of relative loss of predictability on the number of uninformative features and the number of clusters for one
algorithm in each of the four groups. The lines show the average relative loss of predictability, and the shaded bands show one standard deviation.

starts increasing for even a small number of uninformative features.
Algorithms in group “uP” are less sensitive to uninformative fea-
tures but highly sensitive to the number of patterns to be learned.
Algorithms in group “u” are less sensitive to uninformative fea-
tures and mostly insensitive to the number of patterns to be learned.
Finally, algorithms in group “I” are mostly insensitive to both
uninformative features and the number of patterns to be learned.
We display in Fig. 2(b) the relative loss of predictability against
the number of uninformative features for one algorithm from
each group. We show the full experimental results in Figs. S2, S3,
and S4.

Changing signal-to-noise ratio

The impact of the number of uninformative features can be
formulated in the context of the signal-to-noise ratio. As the separa-
tion between the clusters increases, the patterns in the data become
more distinguishable. Similarly, as the training set size increases,
one could expect that the likelihood that the pattern is learned also
increases.

First, we investigate how the separation between clusters
changes classification performance for datasets with two clusters.
We generate ten synthetic datasets for each set of parameters. For
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FIG. 3. Impact of larger separations between clusters and a higher number of data instances per cluster on the loss of predictability due to uninformative features. (a) We
generate synthetic datasets with two Gaussian clusters and 1000 data instances per cluster for several values of the separation between clusters. The loss of predictability
in learning algorithms can be mitigated by increasing the separations between clusters for some classifiers. By scaling the nth root of the number of uninformative features
by the separation between clusters, we are able to collapse the relative loss of predictability for all different values of the separation between clusters. A larger root index
represents a smaller minimal distance for distinguishing two clusters at the same dimensions. (b) We generate synthetic datasets with two Gaussian clusters and separation
between clusters of 3.2σ for several numbers of data instances per cluster. We find that the loss of predictability in learning algorithms from uninformative features can be
mitigated by increasing the number of data instances in each cluster. By scaling the number of uninformative features by the number of data instances per cluster, we are
able to collapse the relative loss of predictability for all different values of the sample size for all algorithms except the KNeighbors classifier.

each dataset, we estimate accuracy using fivefold cross-validation. As
shown in Fig. S5, while increasing the separation between clusters
can mitigate the loss in relative predictability, a significant num-
ber of uninformative features still cause many algorithms to suffer
from a substantial loss in their predictability even when clusters are
well separated (d > 5σ). The MLP and RandomForest classifiers, in
particular, do not significantly improve performance as the separa-
tion between clusters increases when the number of uninformative
features exceeds 1000.

Inspired by the results on methods for separating high-
dimensional Gaussian mixtures,24–26 we investigate the impact of
scaled separation between clusters for classification algorithms.
Specifically, we scale the distance by n

√

m. As shown in Fig. 3(a), we

are able to collapse the relative loss of predictability for all different
values of separation between clusters when using the correct value
of n (see Fig. S6 for lines under different root indices and different
numbers of samples). A larger root index represents a smaller mini-
mal distance for correctly classifying two clusters for the same value
of m.

Our results suggest that tested algorithms have an n in the range
of 1 to 3, except algorithms in group “I” that have a much larger root
index. Note that the root index is estimated by visually inspecting
data collapse, that is, it does not result from a theoretical analysis.
Note also that the estimate of n = 10 for group “I” is quite inexact
since the loss of predictability is very small and data collapse equally
well under different values of n.
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FIG. 4. Loss of predictability under an increasing number of uninformative genes in the CITE-seq dataset. The CITE-seq dataset contains (a) two informative features (the
expression levels of surface proteins CD14 and CD19) that can separate monocytes (233 samples), B cells (80 samples), and other cells (400 samples). (b) The expression
level of two selected uninformative/less-informative genes (C1orf159 and MT-CO1) from scRNA-seq data. (c) The information content of 17 467 genes and two surface
proteins as a function of the frequency of genes or proteins. 8405 genes with an information content less than 0.05 are identified as uninformative/less-informative. (d) The
loss of predictability on datasets with increasing uninformative genes for four classification algorithms. We generate four sets of datasets (cell balanced, cell imbalanced,
synthetic balanced, and synthetic imbalanced) with increasing numbers of uninformative features from CITE-seq data. The lines show the average relative loss of predictability,
and the shaded bands show one standard deviation. Cell datasets contain two informative features (expression levels of protein CD14 and CD19) and increasing numbers of
uninformative genes as features. Synthetic datasets contain protein CD14, protein CD19, and increasing numbers of uninformative uniform features (as in Fig. 1). Balanced
datasets use under-sampling to obtain 48 samples for each class. (e) The loss of predictability on datasets with increasing uninformative genes for four additional classification
algorithms mainly used for biological sequencing data. We use the same two sets of datasets as above (cell balanced and cell imbalanced), which contain two informative
features (expression levels of protein CD14 and CD19) and increasing numbers of uninformative genes as features from CITE-seq data. The lines also show the average
relative loss of predictability, and the shaded bands show one standard deviation.
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FIG. 5. Representational artifacts and loss of information of dimensionality reduc-
tion approaches in synthetic data. Dimensionality reduction is frequently used
for the visualization of high-dimensional data and for feature reduction. How-
ever, some of these methods apply a nonlinear transformation that changes the
data in uncontrolled ways. In the top panel, we show the raw data projected
along the two truly informative features for a synthetic dataset, with 100 data
instances per cluster and a separation of 3.2σ. The plots in the rows below com-
pare the impact of a different number of uninformative features (across columns)
for three-dimensional reduction approaches (across rows). Data points are shown
in white if they are classified correctly and in the original color if they are clas-
sified incorrectly. The background color shows the decision boundary using a
K-nearest neighbor classifier, with a more saturated color indicating a higher con-
fidence. The corresponding loss of predictability is shown on the bottom right of
each panel. It is visually apparent that PCA preserves more of the information
in the discriminatory features than t-SNE or UMAP as the number of uninforma-
tive features increases. While for a low number of uninformative features, t-SNE
and UMAP do not affect performance, they distort the representation in such
a manner that they artificially increase viewers’ confidence in how accurate the
cluster classification is. That is, even though the two clusters appear highly sep-
arated in the t-SNE and UMAP representations, their degree of separation is not
actually real.

The impact of the degree of separation among clusters depends
on both n and the estimation of the threshold at which loss of pre-
dictability occurs. For example, if the separation between clusters is
less than 4

√

m/10, then SVC starts to lose predictability.
Next, we investigate how sample size impacts the performance

of a learning algorithm when different numbers of uninformative
features are present in the data. The required training sample size
for particular learning algorithms is often unknown. Although a
larger sample size can lead to a better estimate of model para-
meters, it also increases the computational cost and may be costly to
obtain.

As shown in Fig. S7, the impact of uninformative features
can be mitigated by sample size for most algorithms. We generate
synthetic datasets with sample sizes ranging from 12 to 1536 data
instances per cluster. To obtain more precise estimates of Lk(m)

FIG. 6. Representational artifacts and loss of information of dimensionality reduc-
tion approach in CITE-seq data. In the top panel, we show the distribution of protein
expression data. The plots in the rows below compare the impact of a different
number of uninformative genes (0, 100, and 8000) for three-dimensional reduc-
tion approaches (PCA, t-SNE, and UMAP). Data points are shown in white if they
are classified correctly and in the original color if they are classified incorrectly.
The background color shows the decision boundary using a K-nearest neighbor
classifier, with a more saturated color indicating a higher confidence. The corre-
sponding loss of predictability is shown on the bottom right of each panel. While
the loss of predictability is low, results from t-SNE and UMAP hint at the pres-
ence of spurious clusters when datasets have no uninformative features. This
suggests the likelihood of false discovery when the ground truth is unknown.
That is, even though the data are not separable, they appear to have multiple
clusters.

for cases with small sample sizes, we generate 30 synthetic datasets
with two clusters with a separation d = 3.2σ for each set of parameter
values. For each dataset, we estimate algorithm accuracies using five-
fold cross-validation. We find that learning algorithms can benefit
from increasing sample sizes except for the KNeighbors and Gaus-
sianProcess classifiers. For these two algorithms, the drop in relative
predictability is less significant as the sample size increases, espe-
cially when large numbers of uninformative features are present in
the training dataset.

To better understand this interplay between the sample size
and the number of uninformative features, we scale the number
of uninformative features by sample size. As shown in Fig. 3(b),
the relative loss of predictability in Fig. S7 collapsed for all sam-
ple sizes for all algorithms, except the KNeighbors classifier. Our
results suggest that the average number of data instances clustered
in the training data must exceed the number of uninformative fea-
tures to ensure a model with a loss of predictability smaller than 10%.
This bound is lower by a factor of 100 for learning algorithms from
group “I.”
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Generalizability to real-world data

To show the loss of predictability beyond synthetic data, we
apply the same set of supervised algorithms and four additional
unsupervised algorithms specifically designed for single-cell RNA
sequencing data to a curated CITE-seq dataset (details of the data
are provided in the “Methods” section) obtained from peripheral
blood mononuclear cells (PBMCs). The dataset comprises expres-
sion levels of genes and of surface proteins for each cell. Using the
surface protein data, we can rigorously assign each cell to one of
the following three types: monocytes, B cells, and other cells. As
shown in Fig. 4(a), these three classes of cells can be well sepa-
rated by the expression levels of two surface proteins (CD14 and
CD19). These classifications provide a ground truth for the results
of the previously considered supervised classification algorithms. To
investigate the impact of uninformative features, we create sepa-
rate datasets by systematically adding data from genes with a low
information content (defined as information content <0.05; see
Ref. 27 for details) as additional features. Figure 4(b) shows the
distinction across cells of the expression levels of two such unin-
formative genes (C1orf159 and MT-CO1). It is visually apparent
that the information content of the two surface proteins is much
higher [Fig. 4(c)].

The original dataset contains 713 cells with imbalanced classes
(233 monocytes, 80 B cells, and 400 others). For a better compar-
ison with the results from synthetic data, we also create balanced
datasets with 48 instances from each class. Figures 4(d) and 4(e)
show the loss of predictability as the number of uninformative fea-
tures increases for the four representative algorithms (see Fig. S8 for
all 15 algorithms and Fig. S9 for additional 11 algorithms) and the
four additional unsupervised algorithms (Monocle3, Scanpy, Seu-
rat, and Topic Mapping). Our analysis shows that the KNeighbors
classifier, SVC, and Topic Mapping suffer significant losses in pre-
dictability as increasing numbers of uninformative genes are used as
features.

We also create referencing synthetic datasets, where the signals
are the expression levels of the same surface proteins and uninfor-
mative features are drawn from a uniform distribution as shown
in Fig. 1. As shown in Figs. 4(d), S8, and S9, depending on the
algorithm, datasets with uninformative genes have a better perfor-
mance compared with their synthetic counterparts, likely due to
the presence of some residual information in some of those genes.
However, the small amount of information does not compensate for
the impacts of extra dimensions. This leads to algorithms having a
larger loss of predictability for datasets built with a large number of
uninformative features.

Dimensionality reduction

Finally, we investigate how uninformative features impact the
three most used dimensionality reduction approaches:17,28 princi-
pal component analysis (PCA),29 t-distributed stochastic neighbor
embedding (t-SNE),30,31 and uniform manifold approximation and
projection (UMAP).32 Figure 5 shows the two-dimensional embed-
ding of datasets of two clusters with a separation d = 3.2σ and 100
data instances per cluster for different numbers of uninformative
features (see Fig. S10 for an investigation of synthetic data with 3–6
clusters). Our analysis reveals important insights. In the absence

of uninformative features, t-SNE and UMAP produce artifacts that
create an artificial separation of the two clusters that obscures the
fact that some points cannot possibly be classified correctly. In con-
trast, PCA is able to maintain the reality of the actual separation
between the clusters and the difficulty in correctly classifying some
data instances.

The most remarkable result, however, is the impact of a large
number of uninformative features. While PCA is mostly insensi-
tive to even very large numbers of uninformative features, UMAP
and, in particular, t-SNE create a great deal of intermixing of
data instances belonging to different clusters. If one would use the
KNeighbors classifier to identify clusters in the projected space, then
the classification would yield large losses of predictability.

We also applied dimensionality reduction approaches to the
CITE-seq data. Figure 6 shows the two-dimensional embedding
of CITE-seq data with different numbers of uninformative genes.
The results suggest that t-SNE and UMAP again hint at the pres-
ence of spurious clusters even when datasets have no uninformative
genes due to the nature of distribution of signals. However, a strik-
ing observation is that spurious clusters merged into the ground
truth clusters when about 100 uninformative features are added.
Since the separations between the three clusters are large (see the
“Methods” section for the statistics of clusters), we do not see
a large loss in predictability when using the KNeighbors classi-
fier to identify clusters in the projected space. However, clusters
are visually indistinguishable when there are 8000 uninformative
genes.

DISCUSSION

A key advantage of machine learning algorithms is their abil-
ity to learn the complex correlations between high-dimensional data
that minimize desired loss functions. While this is a powerful fea-
ture in many contexts, one must contend with concerns about using
machine learning for very high-dimensional data with potentially
many uninformative features retained “for the sake of convenience.”
Here, we presented systematic experiments that benchmark a set
of machine learning algorithms to investigate their limitations in
handling uninformative features. Our study provides a reference
for the user of machine learning algorithms when selecting suitable
algorithms for different tasks. Our work highlights that algorithms
relying on Euclidean distance are particularly ill-suited for tasks
where one cannot filter out large numbers of uninformative features
space.21,33

We recognize that our study has several limitations, which
might reduce the generality of our conclusions. First, we do not
cover deep learning approaches in this work. We believe that this
is not a critical limitation as several studies have shown that they
are not well-suited for panel data.34,35 Second, we do not consider
the computational efficiency of algorithms a significant factor when
benchmarking because all the algorithms considered require modest
computational resources and can be applied to data with the char-
acteristics considered using a standard modern laptop. Third, some
algorithms, including the Ridge classifier, have hyper-parameters
that can be tuned to penalize less relevant features. In such cases,
a grid search for a set of optimal hyper-parameters could be under-
taken, but it is computationally costly. While hyper-parameter tun-
ing using Bayesian optimization could reduce the computational
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cost,36 as shown in Fig. S11, tuned models do not appear to—at least
for the KNeighbors classifier and Ridge classifier—significantly mit-
igate the loss in performance when the number of uninformative
features is high. Fourth, we do not consider the possibility of cor-
relations across independent variables. Studying such a case would
require a very large number of additional computations. We believe
that this is not a critical limitation as it is plausible to assume that,
if anything, cross correlations would make the task of classifying
data instances into clusters even more challenging. In such cases,
the loss of predictability that we already identify due to uninforma-
tive features would likely become even more significant. Finally, we
build all of the synthetic datasets using simple 2D Gaussian clusters
with uninformative features drawn from uniform distributions. In
real data, the distributions of values of different features are likely to
be much more varied than this. However, one could easily hypoth-
esize that the distribution of the values for uninformative features
could be skewed and have low decaying tails, and under those condi-
tions, fluctuations would be much more likely to result in the model
over-fitting that occurs when the number of uninformative features
increases. Indeed, our analysis of the CITE-seq dataset demonstrates
that nonuniform, less informative features still cause algorithms to
lose predictability.

Indeed, our study shows that uninformative features have the
ability to introduce a sort of “phase transition” between a regime
where an algorithm displays good predictability and a regime where
predictability is lost. While such limits may appear unimportant
for large datasets, they can nonetheless become a problem if there
are a large number of clusters to be identified or if, instead of all
clusters being equally represented in the data, some clusters are
dominating.

METHODS
CITE-seq data

CITE-seq data are single-cell data comprising transcrip-
tome measurements (gene expression) for each cell as well
as surface protein expression level.37 Our data on periph-
eral blood mononuclear cells (PBMCs) are openly available
from 10x Genomics at https://support.10xgenomics.com/single-
cell-gene-expression/datasets/3.0.0/pbmc_1k_protein_v3.

TABLE II. Statistics of CITE-seq clusters.

First GMM using CD 14

Mean Weight Variance

B cells and other cells 2.77 0.67 0.62
Monocytes 7.20 0.33 0.23

Second GMM using CD 19

Mean Weight Variance

B cells 6.53 0.17 0.21
Other cells 1.10 0.83 0.44

For the purpose of our experiments, we focus on the expression
level of two surface proteins (CD14 and CD19). These two proteins
enable us to separate monocytes and B cells from other cells (T cells,
NK cells, dendritic cells, etc.). We first use a Gaussian mixture model
(GMM) on CD14 to separate monocytes (233 samples), and then, a
second GMM is used to separate the rest of the cells into B cells (80
samples) and other cells (400 samples). Table II shows the statistics
of the two GMMs. The table and Fig. 4 show that the clusters are well
separated.

To investigate the impacts of uninformative features, we
selected genes based on their information content.27 Among 17 467
curated genes, we identify 8405 genes with an information con-
tent less than 0.05. The expression levels of those genes are then
used as uninformative features. Finally, since the counts of genes
and proteins are highly skewed, expression levels are represented by
log(1 + count).38

SUPPLEMENTARY MATERIAL

The supplementary online material contains additional figures
and tables.
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