
APL Machine Learning ARTICLE pubs.aip.org/aip/aml

Computational experiments
with cellular-automata generated images reveal
intrinsic limitations of convolutional neural
networks on pattern recognition tasks

Cite as: APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905
Submitted: 14 April 2024 • Accepted: 26 June 2024 •
Published Online: 15 July 2024

Weihua Lei,1 Cleber Zanchettin,2,3 Flávio A. O. Santos,3 and Luís A. Nunes Amaral1,2,4,a)

AFFILIATIONS
1 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
2Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
3Centro de Informática, Universidade Federal de Pernambuco, Recife, Pernambuco 52061080, Brazil
4Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, Illinois 60208, USA

a)Author to whom correspondence should be addressed: amaral@northwestern.edu

ABSTRACT
The extraordinary success of convolutional neural networks (CNNs) in various computer vision tasks has revitalized the field of artificial intel-
ligence. The out-sized expectations created by this extraordinary success have, however, been tempered by a recognition of CNNs’ fragility.
Importantly, the magnitude of the problem is unclear due to a lack of rigorous benchmark datasets. Here, we propose a solution to the bench-
marking problem that reveals the extent of the vulnerabilities of CNNs and of the methods used to provide interpretability to their predictions.
We employ cellular automata (CA) to generate images with rigorously controllable characteristics. CA allow for the definition of both extraor-
dinarily simple and highly complex discrete functions and allow for the generation of boundless datasets of images without repeats. In this
work, we systematically investigate the fragility and interpretability of the three popular CNN architectures using CA-generated datasets. We
find a sharp transition from a learnable phase to an unlearnable phase as the latent space entropy of the discrete CA functions increases. Fur-
thermore, we demonstrate that shortcut learning is an inherent trait of CNNs. Given a dataset with an easy-to-learn and strongly predictive
pattern, CNN will consistently learn the shortcut even if the pattern occurs only on a small fraction of the image. Finally, we show that widely
used attribution methods aiming to add interpretability to CNN outputs are strongly CNN-architecture specific and vary widely in their abil-
ity to identify input regions of high importance to the model. Our results provide significant insight into the limitations of both CNNs and
the approaches developed to add interpretability to their predictions and raise concerns about the types of tasks that should be entrusted to
them.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0213905

INTRODUCTION

Following the excitement about expert systems in the 1980s,
the study of artificial intelligence (AI) entered another “winter”
period.1,2 The development of, first, deep neural networks and, then,
convolutional neural networks (CNNs) and their success at com-
puter vision tasks created a wave of interest in AI that has not yet
subsided. CNNs have been reported to achieve super-human per-
formance in object classification and face recognition.3,4 Because of
such successes, they have been applied to a variety of domains that

have a strong influence on lives and the society, including detecting
diseases from medical images,5 self-driving cars,6 job applications
screening,7 urban surveillance systems,8 and scientific discovery.9–11

Some of the excitement and trust in CNNs may be due to claims
of a strong analogy between how they work and how information
is processed in the human brain. It is hypothesized, if not outright
assumed, that CNNs develop representations of objects through
their training.12,13 Despite the successes and excitement, there is
still a wide gap between the practical success and the theoretical
understanding of CNNs.

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-1

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml
https://doi.org/10.1063/5.0213905
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0213905
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0213905&domain=pdf&date_stamp=2024-July-15
https://doi.org/10.1063/5.0213905
https://orcid.org/0000-0002-5044-5345
https://orcid.org/0000-0001-6421-9747
https://orcid.org/0000-0003-2378-5376
https://orcid.org/0000-0002-3762-789X
mailto:amaral@northwestern.edu
https://doi.org/10.1063/5.0213905


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

Many studies have found that because CNNs are over-
parametrized, they overfit the data and are susceptible to identifying
“shortcuts,” i.e., powerful predictors that are easy to learn but unre-
lated to the task at hand.14–16 Consequently, those models can
become very sensitive to small changes that are unremarkable to
humans.15,17 Concerns about the fragility of CNNs have led to the
development of adversarial training strategies.18,19 However, many
studies have also demonstrated that adversarial training is not a
panacea.20–23

The concern about the black-box nature of CNN models
and their fragility has spurred the development of computational
approaches to the interpretability of a model’s predictions.24–29

While there have been attempts at benchmarking attribution
approaches (see Refs. 30–32 and the references therein), those
attempts are limited by the difficulty in creating flexible, control-
lable, and rigorous datasets that are sufficiently large and require no
human labeling.

Analyzing CNNs from a theoretical perspective is also not
without challenges due to the astronomical degrees of freedom
of the system. Some studies have suggested that the extraordi-
nary performance of over-parametrized CNNs can be explained
using renormalization group methods33,34 or information theory
perspectives.35,36

Attempts at addressing these heterogeneous challenges have
also called upon experimental investigations. Such studies suggest
that CNNs—unlike humans, who attended to the global shape of
an object—preferentially learn “texture” instead of object shape.37–39

However, progress is hindered because the available datasets are, to a
great extent, convenience samples with uncharacterizable properties
that make controlled experiments impossible.40,41

We present here a solution to the lack of flexible, controlled,
rigorously characterizable datasets. Specifically, we use cellular
automata (CA)42,43 to generate images with rigorously controllable
characteristics. This choice is motivated by the nature of images
where the interactions between pixels determine the macroscopic
pattern (rather than the value of individual pixels). The great success
of CNNs has been attributed to their capabilities to capture the rela-
tions of multiple local pixels by convolutional operations.44–46 CA
offers a minimum toy example to the test of the above-mentioned
hypothesis. In CA, macroscopic patterns arise from the interac-
tions of a predefined number of pixels and a set of evolutionary
rules. Moreover, CA allow for the definition of both extraordi-
narily simple and extraordinarily complex discrete functions and
for the generation of limitless datasets of images without repeats.
Cellular automata have long been an object of study in AI. Wol-
fram investigated the Turing universality of cellular automata,42 and
Crutchfield and Mitchell used them to study genetic algorithms.43,47

More recently, Gilpin studied the equivalence between CNNs and
two-dimensional CA,48 and Mordvintsev et al. developed neural
cellular automata for pattern regeneration.49

RESULTS

Cellular automata

Cellular automata are discrete functions of a finite number
of discrete inputs—“rules”—that update the state of a system syn-
chronously (see “Methods”). The most well-studied class of CA are

denoted elementary cellular automata (ECA). They are applied to
one-dimensional systems where each component’s state is a binary
variable and the state of each component is updated according to its
state and those of its two nearest neighbors [Fig. 1(a)]. Despite their
apparent simplicity, CA are capable of generating rich phenomena,
including stationary, periodic, and chaotic patterns [see Figs. 1(b)
and S1 for example of patterns].42 Importantly, if one starts from a
random state, a single ECA rule can generate an essentially limitless
set of patterns—a system with L = 100 binary components can have
2100 ≈ 1.3 × 1030 distinct states.

Similarly, the number of distinct CA can be vast. An update rule
that returns one of ns possible values and takes as inputs its own state
and that of its k nearest neighbors allows for the definition of nnk+1

s
s

distinct rules. For example, k = 2 and ns = 3 yields 333 ≈ 7.6 × 1012

distinct rules. Finally, and perhaps most importantly, CA build cor-
relations within the local neighborhood of a pixel, thus generating
objects with a shape. These characteristics make CA ideal genera-
tive processes for datasets of images used to probe how CNNs learn
about the organization of the neighborhood of a given pixel.

Trainability of CNNs on CA-generated images

We first investigate the extent to which CNNs are able to learn
CA rules [Fig. 1(a)]. To align with the classification nature of most
vision tasks, we formulate our experiments as a classification prob-
lem. For each experiment, we first select the values of ns and k and
then select a rule R(ns, k) at random from the set of possible rules
for those parameters and generate images by iterating R. For most
experiments, we consider a state vector of length L = 224 and iter-
ate the rule 223 times for each of 4000 + 1000 + 1000 randomly
selected initial configurations for training, validation, and testing,
respectively. We generate negative instances by shuffling the values
in each of the CA-generated images (see “Methods”). Thus, the key
difference between a positive and a negative CA-generated image
will be the correlations within the neighborhood of a pixel.

We hypothesized that CNNs would readily learn to identify
CA rules because of the similarity between the convolutional opera-
tions and the definition of local rules. Indeed, Gilpin showed that
arbitrary CA may be represented by convolutional filters analyt-
ically.48 We test the effectiveness of three state-of-the-art CNN
architectures—VGG19,46 ResNet18,50 and GoogleNet51—in learn-
ing CA with different characteristics [Fig. 1(c)]. We find that there is
little qualitative difference in the performance whether we fine-tune
the fully connected layers of the three CNNs or retrain both features
layers and the fully connected layers [Fig. 1(d)]. Thus, we conclude
that these CNN architectures are highly effective at learning simple
CA rules.

Learning limits of CNNs

Next, we systematically study the ability of CNNs to learn
arbitrarily complex CA rules. To this end, we randomly select five
CA rules {Ri(ns, k)}i=1,...,5 for values of ns in the range of 2–6 and
values of k in the range of 2–20 [Fig. 2(a)]. For each Ri, we gener-
ate a dataset consisting of 4000 + 4000 images for training, 1000+ 1000 images for preventing over-fitting during training (vali-
dation), and 1000 + 1000 test images never seen during training
for estimating the performance (testing). We detail the training

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-2

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

FIG. 1. Convolutional neural networks (CNNs) can easily learn to identify whether an image was generated by a cellular automaton. Cellular automata are sets of discrete
functions, “rules,” that update the state of a system synchronously. One-dimensional systems where each component’s state is a binary variable and the state of each
component is updated according to its state and those of its two nearest neighbors are denoted elementary cellular automata (ECA). (a) Illustration of ECA rule 30. The
number assigned to the rule is just the number obtained by the binary output of the rule. Other, more complex, cellular automata allow for different numbers of states, ns, and
size of the neighborhood, (1 + k), where k is the number of nearest neighbors. We can use an ECA to generate an image by iterating the rule (L − 1) times for a system
with L components with states assigned randomly. This generates an L × L image. L = 10 for the image in the figure. (b) Example outputs from four ECA rules illustrate the
diverse outputs that can be generated by ECA (see Fig. S1 for more examples). (c) Illustration of the experimental setup. We generate a large number of images with L = 224
starting from random initial states and using a specific ECA rule. For each generated image, we create a control by shuffling the pixel values (negative sampling). Before
feeding the set of images and controls to the CNN for training and validation, we stack three copies of the image to create an (L, L, 3) array, as expected by the CNNs. We
set up a classification task, in which the goal is to determine whether an image was generated using a certain rule or by a negative control. We study the performance of
three state-of-the-art models—VGG19,46 ResNet18,50 and GoogleNet.51 (d) Accuracy of the training and validation datasets for the first 300 epochs of training for VGG19
for rule 30. It is visually apparent that both transfer learning and retraining yield nearly perfect performance in fewer than 100 epochs.

process in the “Methods” section (also see Fig. S2 for learning
curves).

We quantify the performance of a CNN on a given task as
a linear transformation of the calculated accuracy. We denote this
measure as the loss of predictability,52

Loss ∶= 100% × 1 − A
1 − Ao

, (1)

where A is the accuracy and Ao = 0.5 is the expected accuracy from
random guessing in a balanced test. It is visually apparent that the
three CNNs show decreasing performance as either the number of
states or the number of neighbors increases [Figs. 2(a) and S4]. To
rationalize these experimental results, we recall that the number
of possible mappings for a CA characterized by parameters (ns, k)
increases as ns

1+k. Following a statistical physics perspective, we can
surmise that the latent space entropy for a given class of CA rules

increases with the logarithm of the size of this latent space (see
“Methods”)

S = (1 + k) ln ns. (2)

This rationalization enables us to collapse the experimental data
onto a single curve that shows a sharp transition from a learn-
able phase to an unlearnable phase as one increases the latent
space entropy [Fig. 2(b)]. Those transitions suggest that there might
be a complexity threshold beyond which CNNs cannot learn pat-
terns in the data, leading to diminished performance as patterns
become highly intricate. We model this transition with a standard
generalized logistic function,

Loss = 100%
1 + e−(S−Sx)�w , (3)

where Sx is the midpoint of the transition between learnable and
unlearnable phases and w measures how broad the transition region

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-3

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

FIG. 2. CNN learning performance decreases sharply with task difficulty. We estimate the loss of predictability of different CNNs as we increase the number of k nearest
neighbors affecting the update function and the number ns of possible states for each component in the system. (a) For each (k, ns) pair, we select five discrete functions at
random (function numbers are listed in the supplementary material). We then generate 4000 + 4000 images and controls for the training dataset for each rule and another
2000 + 2000 for the testing dataset for each rule. Because of the vast space of possibilities (2224 � 1050 for ns = 2), an image will never be repeated in a set. We used
transfer learning to train the CNN. The heatmaps show the average loss of predictability of transfer learning for VGG19, ResNet18, and GoogleNet on the testing datasets.
(See Fig. S6 for heatmaps for retraining of the CNNs). As ns and k increase, model performances sharply decrease. We can understand these results more fully by noting
that the latent space entropy S ∝ k ln ns. (b) Data collapse of loss of predictability vs entropy for fine-tuned and fully retrained models. If we interpret the entropy of the
space of discrete functions considered as a measure of the difficulty in learning a particular function, then we can collapse the data onto a single function form. The data
are shown as blue circles, and the lines are robust least square fits (see “Methods”) to a generalized logistic function. This collapse is suggestive of a phase transition from
learnable to unlearnable, similar to what was found for the P–NP transition.53 Fully retraining the models yields sharper transitions at larger values of S, indicating a better
model performance.

is. Our results suggest that retraining CNNs produces sharper
transitions at higher complexities compared to fine-tune training.

While it is beyond the scope of this study to fully investigate
the characteristics of this transition, we recognize its similarity to
the transition reported between P and NP phases for some class of
problems.53–55 We also note that the dataset sizes used appear to be
above the threshold needed for the CA rule to be learned if it was
learnable (Fig. S5).

Significantly, latent space entropy may not be the only factor
affecting the learnability of CA rules. To test this possibility, we sys-
tematically investigate the loss of predictability of VGG19 for every
ECA rule. For each of the 256 ECA, we generate images of size(50, 50, 3). As before, each dataset comprises an equal number of
cellular automaton images and negative images—8000 images for
training, 2000 images for selection, and 2000 images for testing.

We find that fine-tuned VGG19 shows different difficulties in
learning 256 ECA (Fig. S1). For four rules belonging to the class of
ECA rules capable of producing chaotic patterns,56 we find a less
than perfect performance for a fine-tuned model, whereas a fully
retrained model yields a perfect performance in all cases (Fig. S3).
This finding suggests that some learning situations may require full
retraining of the CNN.

The simplest strongly predictive pattern
is an attractor of the learning dynamics

It is well known that CNNs are prone to overfitting the training
data and that they frequently learn “shortcuts” instead of task-related
patterns (see the work by Wang16 for an example of this). However,
the field’s understanding of the factors determining shortcut learn-
ing remains primarily qualitative and ad hoc. Armed with the wide
spectrum of difficulty in novel cellular automata datasets, we are now
able to design controlled experiments that test the characteristics of
shortcut learning in CNNs.

Following on the work of Wang,16 we first investigate the
impact of signal destruction on a CNN’s ability to learn the relevant
pattern. Generalizing the approach in the work of Wang,16 we gen-
erate datasets as before but shuffle pixel values outside of a central
square taking a fraction fs of the CA-generated image [Fig. 3(a)].
Our exploratory analysis confirms that for easy-to-learn patterns
(CA rules drawn from small latent spaces), the CNN can learn the
pattern even when it comprises a very small fraction, fs → 0, of
the image. For higher complexity CA rules, the learning perfor-
mance decreases more gradually with decreasing fs, recapitulating
the results in the work of Wang.16

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-4

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml
https://doi.org/10.60893/figshare.aml.c.7303861


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

FIG. 3. Shortcut learning is unavoidable in CNNs. Here, we investigate the impact of both uninformative features and competition between patterns with different inherent
levels of learnability. (a) Impact of uninformative features on the learning of CNNs. We generate two datasets of images and controls according to the process described
earlier but then shuffled all but a fraction fs of pixels in the center of the image. (b) Mean loss of predictability for GoogleNet models on two sets of automata with different
latent space entropies (see Fig. S8 for other models). For the easy-to-learn automata (low latent space entropy), there is almost no loss of predictability until fs approaches
zero. In contrast, for the harder-to-learn—but still learnable—automaton, the loss of predictability increases steadily as fs decreases. The shaded areas show one standard
deviation bands. (c) Impact of competing predictive patterns. We create datasets in which a fraction fl of the image is generated using a rule drawn from CAl and the remaining
fraction is generated using a rule drawn from CAr (see the text and “Methods”). We consider two limiting cases. In the first, the image is split 50:50 between the two CA. In the
second, the image is split 80:20. The blue dotted lines show the expected loss of predictability for learning the function applied on the left side of the image, and the orange
dotted lines show the expected loss of predictability for learning the function applied on the right side of the image. The black circles show the actual loss of predictability
calculated from our computational experiments for GoogleNet (see Fig. S8 for VGG19 and ResNet). The shaded regions show where learning is determined by the rule with
the matching color. It is visually apparent that the CNN learns the simplest function for the extreme cases (blue-shaded and orange-shaded), but that when both rules have
intermediate complexity, it does not learn either as well as if only the easiest-to-learn function was present. This situation is made more acute if the easiest-to-learn function
occupies a smaller fraction of the image.

Next, we address the more realistic case of competition between
multiple patterns that—if learned correctly—would yield high pre-
dictability but which would have different intrinsic levels of learning
difficulty. Specifically, we generate patterns independently using
pairs of CA with staggered latent space entropies and then concate-
nate the images. To specify the CA, we draw rules {Ri(ns, k)}i=1,...,9
for values of ns and k that yield a set of 18 latent space entropies

(see Table S2). Then, if we denote by CAl (CAr); the CA used
to generate the leftmost (rightmost) columns of the image, CAl
uses rules with increasing values of S, whereas CAr use rules with
decreasing values of S. Again, images in the datasets are gen-
erated with sizes of (224, 224, 3), and each dataset comprises
8000 images for training, 2000 for validation, and 2000 images for
testing.

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-5

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

If CNNs preferentially learn “shortcuts” (i.e., the easiest-to-
learn strongly predictive pattern), then their performance should
track the performance on the CA with the lowest latent space
entropy. As the data shown in Fig. 3(c) demonstrate, this is indeed
what happens but with a caveat. GoogleNet’s performance on the
entire image more closely tracks the expected performance for the
CA with the lowest latent space entropy regardless of its location or
of the fraction of the image it covers. However, when the CA have
similar learning difficulties, GoogleNet displays a lower performance
than what would be expected for the simplest CA to learn. We find

similar behaviors for VGG19 and ResNet18 (Fig. S8) as well as for
horizontally split images (Fig. S9). Thus, we conclude that the sim-
plest strongly predictive patterns are unavoidable attractors of the
training dynamics.

Benchmarking attribution methods

A criticism frequently thrown at CNNs is that they are unin-
terpretable “black boxes”. In response, researchers have developed
several approaches for estimating the importance of specific inputs

FIG. 4. CA-generated datasets enable the objective benchmarking of attribution methods. We investigate here the ability of different attribution methods to inform about
the regions in an image that contribute most to a CNN’s prediction. For concreteness, we focus on benchmarking attribution methods for VGG19 and GoogleNet. See the
supplementary material for the results for other CNN architecture. We create datasets in which an image is generated using a specific CA but then divide each image into
four quadrants. In one of the quadrants, we leave the image unaltered, but create specific negative controls within the other quadrants that we denote shuffled-rows, shuffled-
columns, and shuffled-both (see “Methods”). In the first case (left side), we keep the treatment applied to each quadrant fixed. That is, the top left quadrant always remains
unshuffled. In the second case (right side), each treatment is applied to a randomly selected quadrant. (a) ECA 90 generated images for fixed and stochastic treatments.
This is an easy-to-learn rule and retrained VGG19 has high confidence [P(CA) ≈ 100%] in their classification. We display the attribution maps for two approaches—guided
back-propagation and deconvolution (see the supplementary material for other approaches); it is visible that higher attribution values occur for the unaltered quadrant,
followed by the quadrant with shuffled rows. We repeat this experiment for other ECA (see “Methods”) with 8000 images for training and 13 ECA-generated images for
calculating the attribution score. (b) Fractional importance estimated by different attribution approaches to quadrants assigned to different treatments when using different
training approaches. The black error bars show the 95% confidence intervals for the estimation of the fraction. For fine-tuned models and for the case of fixed quadrant
treatments, we find a systematic pattern of high importance for the unaltered quadrant, followed by the shuffled-row quadrant, then the shuffled-column quadrant, and finally
the shuffled-both (uninformative) quadrant. Deconvolution is an exception. The results from fine-tuned models are more revealing for the stochastic quadrants treatment.
Here, it is visible that only the unaltered quadrant provides higher than random importance (except, again, for deconvolution). By comparing estimated importance to expected
importance, we can conclude that guided backpropagation performs the best, followed by saliency and input × gradient and that deconvolution performs only at the level of
chance. When the models are fully re-trained, we see that the results follow our expectations more closely, even in the case of stochastic quadrants treatment. In fact, two of
the methods even show S�N > 1 for the unaltered quadrants when applied to GoogleNet models.

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-6

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml
https://doi.org/10.60893/figshare.aml.c.7303861
https://doi.org/10.60893/figshare.aml.c.7303861


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

to the CNN model. However, due to a lack of standard, rigor-
ous, and controllable benchmarking datasets, we currently lack a
deep qualitative and quantitative understanding of the strengths
and weaknesses of each of those attribution methods. Fortunately,
CA offer near limitless opportunities for altering inputs in controlled
manners so as to truly measure the performance of competing
attribution approaches and gain generalizable insights.

To rigorously quantify the performance of an attribution
approach, we start by considering the 256 easy-to-learn ECA. We
then alter the images created using a given ECA rule in order to
destroy the pattern imposed by the rule. Specifically, we divide each
ECA-generated image into four quadrants. In one quadrant, we
leave unaltered; in a second (third) quadrant, we perturb by shuf-
fling the sections of the columns (rows) falling within the quadrant;
and in a fourth quadrant, we perturb by shuffling all the pixel values
within the quadrant.

Our expectation is that during training, the CNN will assign the
greatest importance to the inputs in the unaltered quadrant and the
least importance to the inputs in the shuffled quadrant because the
latter stores no information, whereas the former stores full infor-
mation about the pattern. Similarly, because the rules are applied
synchronously to an entire row, we expect that the CNN will assign
greater importance to the quadrant with shuffled rows than to the
quadrant with shuffled columns. These considerations effectively
create sanity tests for attribution methods.57

We generate, according to each ECA rule, datasets of (50, 50, 3)
images—8000 images for training, 2000 images for validation, and
2000 images for testing—and consider two treatments. In the first,
which we denote with fixed quadrants, the positioning of the differ-
ent types of perturbations is fixed. As shown in Fig. 4(a), the top left
quadrant is where all the pixels are kept untouched, the top right
is where rows are shuffled, the bottom left is where columns are
shuffled, and the bottom right is where both rows and columns are
shuffled.

Because in real-world conditions the patterns to be learned are
not consistently within a fixed region of an image, we also con-
sider a second treatment, which we denote stochastic quadrants. In
this treatment, the positioning of the four types of perturbation is
selected at random for each individual image [Fig. 4(c)].

We find that models still perform extraordinarily well for these
datasets with test accuracies close to 100%. The question, thus, is
how well different attribution methods work. Figure 4(a) shows
two input images and the corresponding attribution maps obtained
with guided backpropagation28 and deconvolution24 for VGG19 and
GoogleNet (see the supplementary material for ResNet-18, other
attribution methods, and other ECA rules). It is visually apparent
that, unlike guided backpropagation, deconvolution cannot uncover
the fact that the retrained VGG19 model must be finding different
levels of information in different quadrants.

Figure 4(b) shows the average fractional importance of each
region averaged over all the images in the datasets for fine-tuned
and fully retrained VGG19 and GoogleNet models, and several attri-
bution methods. Except for deconvolution, all the other attribution
methods pass our sanity test for VGG19, but only two pass the san-
ity test for retrained GoogleNet and ResNet18 models (Figs. S10 and
S11).

Next, we define a signal-to-noise ratio (S/N) using the fractional
importance of the signal and shuffled-both quadrants, to quantita-

tively compare the performance of the different attribution methods.
We find that several attribution methods have a strong performance
(S/N ≈5) for VGG19, especially for the fully re-trained models.

The outcomes are more sobering for the stochastic quadrants
treatment. First, we uncovered that fine-tuned VGG19 (pre-trained
on ImageNet) has an inbuilt preference for features in the top left
corner (see Fig. S12). Second, signal-to-noise ratios decrease across
the board (but not as much for fully retrained models). For example,
S/N approaches 1 for deconvolution, showing that it fails our sanity
test.

For the other attribution methods, we see that either the CNNs
are no longer able—or “willing” (because of shortcut learning)—to
glean the partial information in the quadrants with shuffled rows or
columns, or that the attribution methods are not sensitive enough
to the differences in importance. In view of our results for short-
cut learning (Fig. 3), we believe that learning from shuffled data is
more challenging and thus less likely to occur, making the former
explanation more likely.

We also extended this analysis to three local attribution
methods—occlusion,24 LIME,58 and feature permutation.59 All three
fail our sanity tests (Fig. S10). In addition, our analysis confirms
that attribution methods are highly architecture-dependent. Suc-
cessful attribution methods in VGG19 fail to attribute high scores
to the regions where the signal is located when used on other CNN
architectures for both treatments (Fig. S11).

DISCUSSION

The lack of flexible, controlled, and rigorous benchmarking
datasets has hindered our ability to understand the limitations of
CNNs in tasks such as image classification. For the most part, we
do not know whether there are limits to the complexity of the pat-
terns that a CNN can learn, whether shortcut learning occurs only
for certain types of patterns, or whether the interpretability of CNN
predictions can be accomplished with the current attribution meth-
ods. This study significantly advances our understanding of all of
these critical matters.

By using CA, a class of discrete functions operating on a finite
number of discrete inputs, we can generate nearly limitless num-
bers of images displaying nearly limitless patterns. Significantly, by
controlling the number of possible outputs of the function (with
the parameter ns) and the number of potential input combinations
(with the parameters ns and k), we can tune both the size of the
neighborhood that the CNN has to learn to consider and the num-
ber of possible distinct patterns. For example, for CA that have three
distinct outputs and consider the states of the two nearest neighbors(S = 3.30), the CNN has to learn to recognize the relevant 4-pixel
combinations. CNNs accomplish this quite easily. However, the
CNNs considered in this study start failing to learn when the latent
space entropy approaches 10. Making the situation even more acute,
not all S ≤ 10 CA rules are likely to be equally learnable. It is unlikely
that CNNs will be able to conquer all the problems that we pose to
them in a task-appropriate manner.

This brings us to the problem of shortcut learning. Our
results strongly suggest that CNN learning dynamics are
attracted toward the simplest—i.e., that encompasses the smallest
neighborhoods—strongly predictive pattern. This also explains
why previous studies found CNNs biased toward the local texture

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-7

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml
https://doi.org/10.60893/figshare.aml.c.7303861


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

(fewer pixels) rather than the global shape of objects, which involves
many pixels.37,38 Without access to controlled experimentation or
robust attribution methods, it is likely that one will not be able to
determine whether a CNN’s learning used a shortcut or not. This
implies that uninterpretable CNNs are extraordinarily dangerous
when used for critical matters. Indeed, studies have demonstrated
that while CNNs appear to be able to accurately recognize faces,
they show high errors for faces of individuals from marginalized
groups,60 while CNNs appear able to select good applicants from
standard resumes, they incur unacceptable levels of false negatives
for members of under-represented groups.61

While the use of attribution methods may ameliorate concerns
about what a CNN is learning (see the remarkable study by DeGrave
et al.15), this functionality relies on demonstrating that the attribu-
tion method is truly highlighting the inputs that contribute the most
to the CNN’s predictions. While prior studies have suggested that
attribution should be used exclusively with CNN architectures for
which they were developed, it has not been clear the extent to which
some attribution methods may fail to appropriately identify impor-
tant regions of an image. By perturbing CA-generated images, we are
able to demonstrate that attribution methods optimized for a spe-
cific CNN architecture should not be used in conjunction with other
CNN architectures and that attribution methods require retrain-
ing of the model—even those with high performance—in order to
better capture important features for the model. For the attribu-
tion methods developed for VGG19, our results demonstrate beyond
any doubt that local methods are utterly inadequate and that not all
gradient methods are equally accurate.

Despite being task-specific, the insights gained from our study
may extend to other areas of computer vision and beyond. They
reveal the nature of model fragility, of learning limits in high entropy
latent spaces, of the inevitability of shortcut learning, and of the
limitations of current attribution methods that aim to make CNN
predictions interpretable. Our study also demonstrates how syn-
thetic datasets with rigorously quantifiable properties can advance
our understanding of over-parameterized learning algorithms and
open new opportunities for future research. Indeed, our approach to
the generation of rigorously quantifiable datasets can be extended
to other areas of computer vision, allowing greater insights into
tasks such as segmentation and de-noising. Outside of computer
vision, finite state automata have been used for modeling language
production,62,63 suggesting that the approach illustrated here may be
extendable to that domain as well.

The strength of these conclusions must be tempered by rec-
ognizing some of the potential limitations of our study. First, it is
not clear that CA can capture all the heterogeneities present in real-
world photos. Nonetheless, CA can display extraordinarily complex
and heterogeneous patterns that are able to demonstrate practical
limits to the degree of complexity that a CNN can learn. Second,
many of our experiments rely on CNNs pre-trained on ImageNet.
These pre-trained models were primarily exposed to color natural
images that differ quite dramatically from the black and white CA-
generated images. We note, however, the similarity of the results
obtained using fine-tuned vs retrained models increasing the robust-
ness of our findings and the confidence one can have in the findings
about the limitations of CNN learning. Indeed, while fully retrained
models display higher performances for a range of intermediate pat-
tern complexities, retraining does not remove the sharp transition

from a learnable to an unlearnable phase. Third, we do not investi-
gate how these results would change when using adversarial training
approaches, an important open question that requires further study.
Finally, our study focuses on CNNs and, thus, does not explore
other approaches to deep learning, such as vision transformers.64

Although alternative approaches are becoming increasingly popular
and have demonstrated a strong performance in various computer
vision tasks, much is still unknown about their ability to learn
arbitrarily complex patterns, their interpretability, or their fragility.
We believe that synthetic image generators, including CA, will also
advance our understanding of the capabilities and limitations of
those approaches.64

METHODS

CNN training

We use Pytorch (version 1.4.9)65 and PyTorch Lightning
(version 1.4.9)66 implementations of the three CNNs. We train the
models on a Tesla A100 GPU to minimize the cross entropy loss with
a batch size of 256 and a learning rate of 10−4.

For most of the results shown in the main text, we use VGG19,
ResNet18, and GoogleNet models pre-trained on ImageNet and
fine-tune them for each CA rule. Specifically, we fine-tune the fully
connected layers with a learning rate equal to 0.0001 for 1000 epochs.
During training, we monitor the validation loss and select the best
model as the one with the lowest validation loss. We estimate the
model performance on the test set, which is never seen by the model
during the training.

For increased robustness of our conclusions, we also retrain
the three CNNs. We initialize weights with the values from the pre-
trained models but then train both the feature layers and the fully
connected layers with a learning rate equal to 0.0001 for 1000 epochs.
During training, we again monitor the validation loss and select the
best model as the one with the lowest validation loss. We estimate
the model performance on the test set, which is never seen by the
model during the training.

Cellular automata

A transition rule of a cellular automaton with ns distinct states,
Xs = {0, 1, . . . , s − 1}, and k nearest neighbors is defined as the set
of mappings from ns

k+1 distinct permutations of an array of length
k + 1 each position with a value in Xs to another value also in Xs.
Each set of mappings corresponds to one rule. For a particular set
of parameters (ns, k), nk+1

s permutations each can map to ns possi-
ble values; there are ns

ns
1+k

distinct mappings (“rules”). Elementary
cellular automata (ECA) refer to the simplest among all possible
nontrivial cellular automata, it comprises 256 different rules (ns = 2
and k = 2).

Each rule R(ns, k) contains nk
s mappings. For example, take

ECA rule 30. The set of mappings are R30(2, 3) = {111� 0, 110� 0, 101� 0, 100� 1, 011� 1, 010� 1, 001� 1, 000� 0}. The
number 30 is the decimal representation of the new states in a
binary number system [00 011 110]2.

We use the Python package CellPyLib (version 2.3.1)67 to gen-
erate the CA datasets studied. Each image is generated by iterating
a specific rule L − 1 times for an array with length L and randomly

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-8

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

assigned initial values from Xs. We then stack the same L × L CA-
generated image three times to get an array with three channels(L, L, 3).

For instance, as shown in Fig. 1(a), the generation of the 10 × 10
array starts with an initial row of random values of length 10,[1 001 110 110]. The subsequent row, [1 111 000 100], is generated
by applying transformation rules defined by R30(2, 3) under periodic
boundary conditions. Each element in the second row is computed
based on specific mappings from neighboring pixels in the preceding
row: for example, the first element “1” is derived from pixels at posi-
tions 10, 1, and 2 in the first row (010), while the second “1” stems
from pixels 1, 2, and 3 (100). This process iterates across the entire
row, resulting in the formation of the second row [1 111 000 100].
This procedure is repeated sequentially eight more times to gen-
erate a 10 × 10 array. Subsequently, this 10 × 10 array is replicated
three times to form a three-dimensional image of dimensions(10, 10, 3).
Negative instance

To avoid introducing unintended differences that could act
as “learning shortcuts,” we shuffled the values in each of the CA-
generated images to ensure the same probability distribution of
states in CA-generated images and negative instances. In this way,
the key difference between a CA-generated image and a nega-
tive instance is the correlation between pixel values within a local
neighborhood.

Latent space entropy

Ludwig Boltzmann defined the entropy of a macroscopic sys-
tem as an extensive, i.e., additive, measure of the number of its
allowed microstates. Similarly, we define the latent space entropy
S of a class of CA characterized by parameters (ns, k) as

S = ln �, (4)

where � = ns
1+k is the number of mappings needed to specify a given

rule. Thus, S measures the information needed to be encoded for a
specific class of CA. For example, for the 256 ECA with k = 2 and
ns = 2, we have a latent space entropy S = ln 8 ≈ 2.08.

Shortcut learning experiments

To investigate the impact of uninformative features on the
learning of CNNs, we generate two sets of rules of different latent
space entropies (S = 2.08: k = 2 and ns = 2, rules 8, 18, 4, 22, and 19;
S = 7.62: k = 2 and ns = 2, rules 1 021 279, 997 448, 1 058 637,
1 010 286, and 1 049 629).

To study the effect of competing predictive patterns, we gener-
ated datasets consisting of images where a fraction fl was generated
using a rule from CAl, while the remaining 1 − fl fraction was gen-
erated using a rule from CAr . We generate 18 competing predictive
patterns with an increasing (decreasing) latent space entropy—3.47,
4.83, 5.38, 5.49, 6.93, 7.69, 8.05, 9.01, 9.7, 9.89, 10.4, 11.27, 11.78,
12.08, 14.28, 15.25, 16.48, and 18.02 (reversed)—for CAl (CAr).
We have listed the datasets in Table S2. To prevent shuffling infor-
mation from the left and right sides together in negative controls,

we generated CAl, CAr , and their corresponding negative controls
independently and then concatenated them.

Robust least square

To get robust estimates of transition threshold Sx and avoid the
impact of large fluctuations near the transition region (especially for
retrained VGG19), we use robust regression to penalize outliers with
large residues.68 Robust least square curves in our results minimized
the soft L1 loss, ∑i 2

�
r2

i + 1 − 1, instead of the ∑i r2
i used in least

squares, where {ri} are the residues.

Attribution methods

To create benchmark images for attribution methods, we
divided each image into four quadrants. In one quadrant, we left the
image unaltered, which we labeled as “CA”. In one negative control
region, we shuffled the rows within the quadrant (“shuffled-rows”),
while we shuffled the columns within the quadrant (“shuffled-
columns”) in another. In the final region, we shuffled both the rows
and columns within the quadrant (“shuffled-both”).

The attribution methods evaluated in this study are imple-
mented in Captum (version 0.4.0).69 In both fixed quadrants and
stochastic quadrants treatments, we calculated the fractional impor-
tance for 256 ECA rules with a test accuracy higher than 90%. For
each of these ECA rules, we compute attribution scores for each
attribution approach for a set of 25 images—13 generated by the
CA model and 12 negative control—using batches of size 5. We
then calculate the average over the high confidence [P(CA) ≥ 0.9]
CA-generated images (∼1000 images) of the fractional importance
for each quadrant as estimated by each attribution method.

For the hyperparameters of attribution methods, we use arrays
of zeros as baselines for Integrated Gradients, Gradient SHAP,
and occlusion. For Integrated Gradients specifically, we used the
Gauss–Legendre algorithm with 200 time steps for the integration
approximation. For Gradient SHAP, which requires random sam-
pling to estimate gradients, we set the number of random samples
to 5. Finally, for occlusion, the size of the patch for shading is set to
3 × 1.

SUPPLEMENTARY MATERIAL

The supplementary material 1.pdf includes the supplementary
experimental results mentioned in the manuscript. The
supplementary material 2.zip includes additional examples of
attribution maps utilized for benchmarking attribution methods.

ACKNOWLEDGMENTS
This research was supported by the National Science Founda-

tion Grant Nos. 1937123 and 2033604.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-9

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml
https://doi.org/10.60893/figshare.aml.c.7303861
https://doi.org/10.60893/figshare.aml.c.7303861


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

Author Contributions

W.L., C.Z., and L.A.N.A. conceived and designed the study.
W.L. and F.A.O.S. performed the numerical simulations. W.L., C.Z.,
and L.A.N.A. performed the data analysis. W.L., C.Z., and L.A.N.A.
created the figures. W.L., C.Z., F.A.O.S., and L.A.N.A. wrote, read,
and approved the final version of the paper.

Weihua Lei: Conceptualization (equal); Formal analysis (equal);
Investigation (equal); Methodology (equal); Validation (equal);
Visualization (equal); Writing – original draft (equal); Writing –
review & editing (equal). Cleber Zanchettin: Conceptualization
(supporting); Formal analysis (supporting); Investigation (support-
ing); Methodology (equal); Validation (equal); Visualization (equal);
Writing – original draft (equal); Writing – review & editing
(equal). Flávio A. O. Santos: Conceptualization (supporting); For-
mal analysis (supporting); Investigation (supporting); Methodology
(supporting); Validation (supporting); Visualization (supporting);
Writing – original draft (supporting); Writing – review & editing
(supporting). Luís A. Nunes Amaral: Conceptualization (equal);
Formal analysis (equal); Funding acquisition (equal); Investiga-
tion (equal); Methodology (equal); Project administration (equal);
Resources (equal); Supervision (equal); Validation (equal); Visual-
ization (equal); Writing – original draft (equal); Writing – review &
editing (equal).

DATA AVAILABILITY
The synthetic dataset is generated with codes in the repository

https://github.com/amarallab/benchmarkCNNs.
The codes for reproducing the results in this article are available

in the repository https://github.com/amarallab/benchmarkCNNs.

REFERENCES
1D. Crevier, AI: The Tumultuous History of the Search for Artificial Intelligence
(Basic Books, New York, NY, 1993), ISBN: 9780465029976.
2M. Mitchell, Artificial Intelligence: A Guide for Thinking Humans (Farrar, Straus
and Giroux, New York, 2019), ISBN: 9780374257835.
3Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, in 2014 IEEE Conference
on Computer Vision and Pattern Recognition (IEEE, Columbus, OH, 2014),
pp. 1701–1708, ISBN: 9781479951185, https://ieeexplore.ieee.org/document
/6909616.
4K. He, X. Zhang, S. Ren, and J. Sun, in 2015 IEEE International Conference on
Computer Vision (ICCV) (IEEE, Santiago, Chile, 2015), pp. 1026–1034, ISBN:
9781467383912, http://ieeexplore.ieee.org/document/7410480/.
5G. Kaissis, A. Ziller, J. Passerat-Palmbach, T. Ryffel, D. Usynin, A. Trask,
I. Lima, J. Mancuso, F. Jungmann, M.-M. Steinborn et al., Nat. Mach. Intell. 3, 473
(2021).
6Q. Rao and J. Frtunikj, in Proceedings of the 1st International Workshop on
Software Engineering for AI in Autonomous Systems (ACM, Gothenburg Sweden,
2018), pp. 35–38, ISBN: 9781450357395, https://dl.acm.org/doi/10.1145/3194085.
3194087.
7M. Mridha, R. Basri, M. M. Monowar, and M. A. Hamid, in 2021 International
Conference on Science and Contemporary Technologies (ICSCT) (IEEE, Dhaka,
Bangladesh, 2021), pp. 1–6, ISBN: 9781665421324, https://ieeexplore.ieee.org/
document/9642652/.
8X. Liu, W. Liu, T. Mei, and H. Ma, in Computer Vision–ECCV 2016, edited
by B. Leibe, J. Matas, N. Sebe, and M. Welling (Springer International Publish-
ing, Cham, 2016), Vol. 9906, pp. 869–884, ISBN: 9783319464749, 9783319464756,
http://link.springer.com/10.1007/978-3-319-46475-6_53.

9G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby,
L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys. 91, 045002 (2019).
10N. Sapoval, A. Aghazadeh, M. G. Nute, D. A. Antunes, A. Balaji, R. Baraniuk,
C. J. Barberan, R. Dannenfelser, C. Dun, M. Edrisi et al., Nat. Commun. 13, 1728
(2022).
11K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn, C. W. Park, A.
Choudhary, A. Agrawal, S. J. L. Billinge et al., npj Comput. Mater. 8, 59 (2022).
12I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, Commun. ACM 63, 139 (2020).
13C. Olah, A. Mordvintsev, and L. Schubert, Distill (Nov. 7, 2017).
14R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and
F. A. Wichmann, Nat. Mach. Intell. 2, 665 (2020).
15A. J. DeGrave, J. D. Janizek, and S.-I. Lee, Nat. Mach. Intell. 3, 610 (2021).
16D. Wang, J. Pers. Soc. Psychol. 122, 806 (2022).
17J. Su, D. V. Vargas, and K. Sakurai, IEEE Trans. Evol. Comput. 23, 828
(2019).
18I. J. Goodfellow, J. Shlens, and C. Szegedy, in 3rd International Conference on
Learning Representations (ICLR), 2015; arXiv:1412.6572.
19A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, in Interna-
tional Conference on Learning Representations, 2018, https://openreview.net/
forum?id=rJzIBfZAb.
20H. Zhang, H. Chen, Z. Song, D. Boning, I. dhillon, and C.-J. Hsieh, in 7th
International Conference on Learning Representations (ICLR), 2019, https://
openreview.net/forum?id=HylTBhA5tQ.
21A. Nguyen, J. Yosinski, and J. Clune, in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (IEEE, Boston, MA, 2015), pp. 427–436,
ISBN: 9781467369640, http://ieeexplore.ieee.org/document/7298640/.
22M. A. Alcorn, Q. Li, Z. Gong, C. Wang, L. Mai, W.-S. Ku, and A. Nguyen, in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE,
Long Beach, CA, 2019), pp. 4840–4849, ISBN: 9781728132938, https://ieeex
plore.ieee.org/document/8954212/.
23D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song, in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(IEEE, Nashville, TN, 2021), pp. 15257–15266, ISBN: 9781665445092, https://
ieeexplore.ieee.org/document/9578772/.
24M. D. Zeiler and R. Fergus, in Computer Vision–ECCV 2014, edited by D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars (Springer International Publishing, Cham,
2014), Vol. 8689, pp. 818–833, ISBN: 9783319105895, 9783319105901, http://link.
springer.com/10.1007/978-3-319-10590-1_53.
25A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje, “Not just a black
box: Learning important features through propagating activation differences,”
Proc. Machine Learn. Res. 70, 3145–3153 (2017).
26R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, in
2017 IEEE International Conference on Computer Vision (ICCV) (IEEE, Venice,
2017), pp. 618–626, ISBN: 9781538610329, http://ieeexplore.ieee.org/document
/8237336/.
27S. M. Lundberg and S.-I. Lee, in Proceedings of the 31st International Conference
on Neural Information Processing Systems (NIPS’17) (Curran Associates, Inc., Red
Hook, NY, 2017), pp. 4768–4777, ISBN: 9781510860964.
28J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for
simplicity: The all convolutional net,” arXiv:1412.6806 [cs] (2015).
29Y. Sun and M. Sundararajan, in Proceedings of the 12th ACM Conference
on Electronic Commerce (ACM, San Jose, CA, 2011), pp. 177–178, ISBN:
9781450302616.
30M. Yang and B. Kim, “Benchmarking attribution methods with relative feature
importance,” arXiv:1907.09701 [cs, stat] (2019).
31R. Tomsett, D. Harborne, S. Chakraborty, P. Gurram, and A. Preece, in Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI, 2020), Vol. 34,
pp. 6021–6029, https://ojs.aaai.org/index.php/AAAI/article/view/6064.
32H. Shah, P. Jain, and P. Netrapalli, in Advances in Neural Information Processing
Systems (NeurIPS, 2021), Vol. 34, p. 2046.
33P. Mehta and D. J. Schwab, “An exact mapping between the variational
renormalization group and deep learning,” arXiv:1410.3831 [cond-mat, stat]
(2014).

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-10

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml
https://github.com/amarallab/benchmarkCNNs
https://github.com/amarallab/benchmarkCNNs
https://ieeexplore.ieee.org/document/6909616
https://ieeexplore.ieee.org/document/6909616
http://ieeexplore.ieee.org/document/7410480/
https://doi.org/10.1038/s42256-021-00337-8
https://dl.acm.org/doi/10.1145/3194085.3194087
https://dl.acm.org/doi/10.1145/3194085.3194087
https://ieeexplore.ieee.org/document/9642652/
https://ieeexplore.ieee.org/document/9642652/
http://link.springer.com/10.1007/978-3-319-46475-6_53
https://doi.org/10.1103/revmodphys.91.045002
https://doi.org/10.1038/s41467-022-29268-7
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1145/3422622
https://doi.org/10.23915/distill.00007
https://doi.org/10.1038/s42256-020-00257-z
https://doi.org/10.1038/s42256-021-00338-7
https://doi.org/10.1037/pspa0000294
https://doi.org/10.1109/tevc.2019.2890858
http://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=HylTBhA5tQ
https://openreview.net/forum?id=HylTBhA5tQ
http://ieeexplore.ieee.org/document/7298640/
https://ieeexplore.ieee.org/document/8954212/
https://ieeexplore.ieee.org/document/8954212/
https://ieeexplore.ieee.org/document/9578772/
https://ieeexplore.ieee.org/document/9578772/
http://link.springer.com/10.1007/978-3-319-10590-1_53
http://link.springer.com/10.1007/978-3-319-10590-1_53
http://ieeexplore.ieee.org/document/8237336/
http://ieeexplore.ieee.org/document/8237336/
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1907.09701
https://doi.org/10.1609/aaai.v34i04.6064
https://doi.org/10.1609/aaai.v34i04.6064
https://ojs.aaai.org/index.php/AAAI/article/view/6064
http://arxiv.org/abs/1410.3831


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

34D. A. Roberts, The Principles of Deep Learning Theory: An Effective The-
ory Approach to Understanding Neural Networks (Cambridge University Press,
New York, 2022), ISBN: 9781316519332.
35N. Tishby and N. Zaslavsky, in 2015 IEEE Information Theory Workshop (ITW)
(IEEE, Jerusalem, Israel, 2015), pp. 1–5, ISBN: 9781479955244, 9781479955268,
http://ieeexplore.ieee.org/document/7133169/.
36A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey, and
D. D. Cox, J. Stat. Mech.: Theory Exp. 2019, 124020.
37R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W.
Brendel, in International Conference on Learning Representations, 2019, https://
openreview.net/forum?id=Bygh9j09KX.
38N. Baker, H. Lu, G. Erlikhman, and P. J. Kellman, PLoS Comput. Biol. 14,
e1006613 (2018).
39L. Scimeca, S. J. Oh, S. Chun, M. Poli, and S. Yun, “Which shortcut cues will
DNNs choose? A study from the parameter-space perspective,” arXiv:2110.03095
[cs, stat] (2022).
40H. Hosseini, B. Xiao, M. Jaiswal, and R. Poovendran, in 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA) (IEEE, Cancun, Mexico, 2017), pp. 352–358, ISBN: 9781538614181,
http://ieeexplore.ieee.org/document/8260656/.
41S. Madan, T. Henry, J. Dozier, H. Ho, N. Bhandari, T. Sasaki, F. Durand,
H. Pfister, and X. Boix, Nat. Mach. Intell. 4, 146 (2022).
42S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, IL, 2019),
ISBN: 9781579550257.
43M. Mitchell, P. T. Hraber, and J. P. Crutchfield, “Revisiting the edge of chaos:
Evolving cellular automata to perform computations,” Complex Syst. 7(2), 89–130
(1993).
44K. Fukushima, Biol. Cybern. 36, 193 (1980).
45Y. L. Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel,
and D. Henderson, Handwritten Digit Recognition with a Back-Propagation Net-
work (Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1990), pp. 396–404,
ISBN: 1558601007.
46K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in 3rd International Conference on Learning
Representations (ICLR, San Diego, CA, 2015).
47M. Mitchell, J. P. Crutchfield, R. Das et al., “Evolving cellular automata with
genetic algorithms: A review of recent work,” in Proceedings of the First Interna-
tional Conference on Evolutionary Computation and its Applications (EvCA’96),
edited by E. K. Goodman (Presidium of the Russian Academy of Sciences,
Moscow, Russia, 1996).
48W. Gilpin, Phys. Rev. E 100, 032402 (2019).
49A. Mordvintsev, E. Randazzo, E. Niklasson, and M. Levin, Distill 5(2), e23
(2020).
50K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (IEEE, 2016), pp. 770–778.

51C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (IEEE, Boston, MA, 2015), pp. 1–9, ISBN:
9781467369640, http://ieeexplore.ieee.org/document/7298594/.
52W. Lei, C. Zanchettin, Z. E. Ho, and L. A. Nunes Amaral, APL Mach. Learn. 1,
046118 (2023).
53K. Xu and W. Li, Sci. China, Ser. E: Technol. Sci. 42, 494 (1999).
54C. Moore, arXiv:1702.00467 (2017).
55D. Gamarnik, C. Moore, and L. Zdeborová, J. Stat. Mech.: Theory Exp. 2022,
114015.
56S. Wolfram, Physica D 10, 1 (1984).
57Y. Zhou, S. Booth, M. T. Ribeiro, and J. Shah, in Proceedings of the AAAI
Conference on Artificial Intelligence (AIAA, 2022), Vol. 36, pp. 9623–9633,
https://ojs.aaai.org/index.php/AAAI/article/view/21196.
58M. T. Ribeiro, S. Singh, and C. Guestrin, in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (ACM, San Francisco, CA, 2016), pp. 1135–1144, ISBN: 9781450342322,
https://dl.acm.org/doi/10.1145/2939672.2939778.
59C. Molnar, Interpretable Machine Learning: A Guide for Making Black Box
Models Explainable, 2nd ed. (Christoph Molnar, Munich, Germany, 2022), ISBN:
9798411463330.
60J. Buolamwini and T. Gebru, in Proceedings of the 1st Conference on Fair-
ness, Accountability and Transparency. Proceedings of Machine Learning Research
(PMLR), edited by S. A. Friedler and C. Wilson (PMLR, 2018), Vol. 81, pp. 77–91
https://proceedings.mlr.press/v81/buolamwini18a.html.
61J. Dastin, Ethics of Data and Analytics (Auerbach Publications, 2018),
pp. 296–299.
62J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, 3rd ed. (Pearson/Addison Wesley, Boston, 2007),
ISBN: 9780321455369.
63C. Moore and S. Mertens, The Nature of Computation [Oxford University Press,
Oxford (England); New York, 2011], ISBN 9780199233212.
64A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16 × 16 words: Transformers for image recognition at scale,”
arXiv:2010.11929 [cs] (2021).
65A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga et al., in Proceedings of the 33rd International Con-
ference on Neural Information Processing Systems (Curran Associates, Inc., Red
Hook, NY, 2019).
66W. Falcon et al. (2019). “PyTorch lightning,” GitHub. https://github.com/
PyTorchLightning/pytorch-lightning
67L. Antunes, J. Open Source Software 6, 3608 (2021).
68P. J. Huber, Ann. Math. Stat. 35, 73–101 (1964).
69N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh, J. Reynolds,
A. Melnikov, N. Kliushkina, C. Araya, S. Yan et al., “Captum: A unified and
generic model interpretability library for PyTorch,” arXiv:2009.07896 (2020).

APL Mach. Learn. 2, 036102 (2024); doi: 10.1063/5.0213905 2, 036102-11

© Author(s) 2024

 15 July 2024 14:18:28

https://pubs.aip.org/aip/aml
http://ieeexplore.ieee.org/document/7133169/
https://doi.org/10.1088/1742-5468/ab3985
https://openreview.net/forum?id=Bygh9j09KX
https://openreview.net/forum?id=Bygh9j09KX
https://doi.org/10.1371/journal.pcbi.1006613
http://arxiv.org/abs/2110.03095
http://ieeexplore.ieee.org/document/8260656/
https://doi.org/10.1038/s42256-021-00437-5
https://doi.org/10.1007/bf00344251
https://doi.org/10.1103/physreve.100.032402
https://doi.org/10.23915/distill.00023
http://ieeexplore.ieee.org/document/7298594/
https://doi.org/10.1063/5.0170229
https://doi.org/10.1007/bf02917402
http://arxiv.org/abs/1702.00467
https://doi.org/10.1088/1742-5468/ac9cc8
https://doi.org/10.1016/0167-2789(84)90245-8
https://doi.org/10.1609/aaai.v36i9.21196
https://doi.org/10.1609/aaai.v36i9.21196
https://ojs.aaai.org/index.php/AAAI/article/view/21196
https://dl.acm.org/doi/10.1145/2939672.2939778
https://proceedings.mlr.press/v81/buolamwini18a.html
http://arxiv.org/abs/2010.11929
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://doi.org/10.21105/joss.03608
https://doi.org/10.1214/aoms/1177703732
http://arxiv.org/abs/2009.07896

